Lifetime of hydrogen atom in classical electrodynamics

Suppose electron is rotating around nucleus in a circular orbit. For a circular orbit
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The kinetic and potential energies are
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The rotating electron radiates power
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Let us suppose that the loss of energy due to radiation over one period is much smaller
that the total energy, then one can consider R = R(t) slowly varying function of time.
After one revolution:

The radiated energy is
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Thus, we get a differential equation
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Integrating this equation we get
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Suppose at t =0 R = Ry (radius of the atom), then const = % and we get
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so the lifetime of the classical hydrogen atom is
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Taking m = 9.1 x 1073%kg, e = 1.6 x 107YC, po = 47 x 10*7% and estimating

Ry ~ Bohr radius ~ 5 x 10~m we get

T~ 1.3x 107



