HW 5 solution

Problem 1.

First thing which comes to mind is

which is real and $(—1)" = 0.
However, this problem is an illustration of existence of cuts in complex functions of

complex variable z. Since a’ = /" one gets

Logarithm of (-1) is not well defined since e = e~ = —1. I is said that the function In 2
has a cut in the complex plane of z at real negative z and In(—1) = +im depending on how

you approach (-1): as (-1+i0) or (-1-i0). Thus,
(1) = &
depending on how you approach (-1).

Problem 2. At time ¢ = 0 a particle is represented by the wave function

A% a>x>0
U(z,0) = { Ax2 b>z>a
0 otherwise

where A, a, and b are constants.

(a) Normalize ¥ (i.e., find A in terms of a and b)

(b) Where is the particle most likely to be found, at ¢t =0

(c) What is the probability of finding the particle to the left of a?
(d) What is the expectation value of z7
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The function |¥(z,0)|? is maximal at x = a.
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Problem 3 = Probleem 6.51.
From Eq. (6.32) we get
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