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I. THE SOLUTION OF THE SCHRÖDINGER EQUATION IN THREE

DIMENSIONS

A. Infinite square well in three dimensions

Consider the three-dimensional time-idependent Schrödinger equation(
− h̄2

2m
∇2 + V (r)

)
ψ(r) = Eψ(r) . (1)

This is a three-dimensional partial differential equation and the approach to the solution of

this equation depends very much on the character of the potential.

A simple example of this is to consider the three-dimensional version of a particle in a

cubical box. The potenital is

V (~r) = 0 if 0 < x < L, 0 < y < L, 0 < z < L

V (~r) = ∞ otherwise (2)

The Schrödinger equation for this potential can be written in Cartesian coordinates as

− h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ(x, y, z) = Eψ(x, y, z), 0 ≤ x, y, z ≤ L (3)

Similarly to one-dimensional case, the boundary conditions are

ψ(x, y, z) = 0 if



x < 0 or x > L

or

y < 0 or y > L

or

z < 0 or z > L

which means that the wave function vanishes outside the box (and by continuity, on the

sides of the box).

This equation can be solved using separation of variables by trying the ansatz

ψ(x, y, z) = X(x)Y (y)Z(z) . (4)

Substituting this into the Schrödinger equation and dividing by the wave function gives

− h̄2

2mX(x)

∂2X(x)

∂x2
− h̄2

2mY (y)

∂2Y (y)

∂y2
− h̄2

2mZ(z)

∂2Z(z)

∂z2
= E . (5)
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This clearly results in a separation of the three coordinates. If this equation is to be true

for all possible values of x, y and z, it is necessary that each separated term be constant.

This allows us, for example, to write

− h̄2

2mXnx(x)

∂2Xn1(x)

∂x2
= En1 , (6)

or

− h̄2

2m

∂2Xnx(x)

∂x2
= EnxXnx(x) . (7)

This is the equation for one-dimensional box with (normalized) solutions

Xn1(x) =

√
2

L
sin k1x, k1 =

πn1

L
(8)

vanishing at x = 0, L. The eigenvalue En1 =
h̄2k21
2m

= p2x
2m

where px ≡ h̄k1. Similarly, we get

Yn2(y) =

√
2

L
sin k2y, k2 =

πn2

L
, En2 =

h̄2k2
2

2m
=

p2
y

2m

Zn3(z) =

√
2

L
sin k3z, k3 =

πn3

L
, En3 =

h̄2k2
3

2m
=

p2
z

2m
(9)

Thus, the solution of Schrödinger equation (5) is

ψn1,n2,n3(x, y, z) =
( 2

L

) 3
2 sin k1x sin k2y sin k3z (10)

with energy

En1,n2,n3 =
p2
x + p2

y + p2
z

2m
=

π2h̄2

2m
(n2

1 + n2
2 + n2

3) (11)

The energy and wave function are characterized by three quantum numbers, each arising

from a boundary condition on one of the coordinates.

In general, there are multiple combinations of n1, n2, n3 leading to the same energy (14).

An energy level that has more than one wave function associated with it is said to be

degenerate. The ground state for this potential is non-degenerate

ψ111(x, y, z) =
( 2

L

) 3
2 sin

πx

L
sin

πy

L
sin

πz

L
, E0 = 3

h̄2π2

2m
(12)

but already the first excited state with energy E1 = 6 h̄
2π2

2m
has degeneracy 3:

ψ211 =
( 2

L

) 3
2 sin

2πx

L
sin

πy

L
sin

πz

L
, E = 6

h̄2π2

2m

ψ121 =
( 2

L

) 3
2 sin

πx

L
sin

2πy

L
sin

πz

L
, E = 6

h̄2π2

2m

ψ112 =
( 2

L

) 3
2 sin

πx

L
sin

πy

L
sin

2πz

L
, E = 6

h̄2π2

2m
(13)
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The degeneracy is related to the symmetry of the problem, and anything that destroys

or breaks the symmetry will also destroy or remove the degeneracy. If, for example, we

considered a non-cubical box V = 0 for 0 < x < L1, 0 < y < L2, 0 < z < L3, the boundary

condition at the walls would lead to the quantum conditions

k1L1 = πn1, k2L2 = πn2, k3L3 = πn3

and we will get

En1,n2,n3 =
h̄2π2

2m
(n2

1 + n2
2 + n2

3) (14)

Let us prove that wave functions corresponding to different energies are orthogonal∫
dV ψ∗m1,m2,m3

(x, y, z)ψn1,n2,n3(x, y, z) = 0 if Em1,m2,m3 6= En1,n2,n3 (15)

Proof: consider∫
dV ψ∗m1,m2,m3

(x, y, z)Ĥψn1,n2,n3(x, y, z) =

=
∫
dV ψ∗m1,m2,m3

(x, y, z)
[
− h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

) ]
ψn1,n2,n3(x, y, z)
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= En1,n2,n3

∫
dV ψ∗m1,m2,m3

(x, y, z)ψn1,n2,n3(x, y, z) (16)

because ψn1,n2,n3(x, y, z) is a solution of Schrödinger equation (3) with eigenvalue En1,n2,n3 .

On the other hand, we can integrate r.h.s. of Eq. (16) two times by parts and get∫
dV ψ∗m1,m2,m3

(x, y, z)Ĥψn1,n2,n3(x, y, z)

=
∫
dV ψ∗m1,m2,m3

(x, y, z)
[
− h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

) ]
ψn1,n2,n3(x, y, z)

=
∫
dV ψn1,n2,n3(x, y, z)

[
− h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

) ]
ψ∗m1,m2,m3

(x, y, z)

= Em1,m2,m3

∫
dV ψn1,n2,n3(x, y, z)ψ∗m1,m2,m3

(x, y, z) (17)

since ψ∗m1,m2,m3
(x, y, z) is a solution of Schrödinger equation (3) with eigenvalue Em1,m2,m3

(recall that energies are real). Comparing two expressions (16) and (17) we see that∫
dV ψ∗m1,m2,m3

(x, y, z)ψn1,n2,n3(x, y, z) = 0 (18)

unless Em1,m2,m3 = En1,n2,n3 . This is a general property: wave functions corresponding to

states with different energies are orthogonal.

Mathematical statement: eigenfunctions of a Hermitian operator corresponding to differ-

ent eigenvalues are orthogonal. (Hermitian operator ≡ operator with only real eigenvalues).

II. THE SCHRÖDINGER EQUATION WITH A CENTRAL POTENTIAL

We now consider the solution of the three-dimensional time-independent Schrödinger

equation for a central potential

V (r) = V (|r|) = V (r) . (19)

For example, for Coulomb potential of electron V (r) = − Ze2

4πε0r
where Ze is the charge of

the nucleus.

Since the potential depends only on the distance from the origin, the Hamiltonian is

spherically symmetric. It is therefore convenient to represent the Schrödinger equation in

terms of the standard spherical coordinate system shown in Fig. 4.

x = r sin θ cosφ

y = r sin θ sinφ

z = r cosφ

 ⇔


r =

√
x2 + y2 + z2

θ = arccos z
r

φ = arctan y
x

(20)
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FIG. 1. The spherical coordinate system.

It can be demonstrated that for f(x, y, z) = F (r, θ, φ)

( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
F (r, θ, φ) =

(1

r

∂2

∂r2
r +

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

)
F (r, θ, φ)

(21)

and therefore the statiponary Schrödinger equation in spherical coordinates can be written

as{
− h̄2

2m

[
1

r

∂2

∂r2
r +

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

]
+ V (r)

}
ψ(r, θ, φ) = Eψ(r, θ, φ) .

(22)

This can be simplified by treating it as a mathematical problem. We will proceed to do this

and then will explore the physical consequences afterward.

A. Solution of Schrödinger equation in spherical potential by separation of variables

The standard approach to solving partial differential equations is to use the method of

separation of variables, which we have already used several times. We assume that the wave

function is a product of functions each depending upon a single variable. Let

ψ(r, θ, φ) = R(r)P (θ)Q(φ) . (23)



6

Substituting this into (22), dividing both sides by R(r)P (θ)Q(φ) and multiplying both sides

by 2m
h̄2
r2 sin2 θ gives

r sin2 θ

R(r)

∂2

∂r2
rR(r)+

sin θ

P (θ)

∂

∂θ

(
sin θ

∂

∂θ
P (θ)

)
+

2m

h̄2 r2 sin2 θ (E − V (r))+
1

Q(φ)

∂2

∂φ2
Q(φ) = 0 .

(24)

Note that only the last term depends upon φ and that no other variable appears in this

term. This equation can be true for all values of r, θ and φ only if the last term is equal to

a constant. Let
1

Q(φ)

∂2

∂φ2
Q(φ) = −m2 . (25)

This is can be rewritten as
∂2

∂φ2
Q(φ) +m2Q(φ) = 0 . (26)

This is the familiar harmonic equation that has solutions of the form

Q(φ) = eimφ . (27)

Since the solution must satisfy Q(φ) = Q(φ+ 2π), the constant m must be an integer.

Using (25) in (24), and dividing both sides by sin2 θ gives

r

R(r)

∂2

∂r2
rR(r) +

2m

h̄2 r
2 (E − V (r)) +

1

sin θP (θ)

∂

∂θ

(
sin θ

∂

∂θ
P (θ)

)
− m2

sin2 θ
= 0 . (28)

Here the first two terms depend only upon r while the third and fourth terms depend only

upon θ. For this equation to be satisfied for all possible values of r and θ, the third and

forth terms must add to a constant. Let

1

sin θP (θ)

∂

∂θ

(
sin θ

∂

∂θ
P (θ)

)
− m2

sin2 θ
= −l(l + 1) . (29)

(we will show later that l is integer). This can be rewritten as

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ
P (θ)

)
− m2

sin2 θ
P (θ) + l(l + 1)P (θ) = 0 . (30)

The solution to this equation is simplified by changing variables to x = cos θ. In terms of

the new variable (30) becomes

∂

∂x

((
1− x2

) ∂

∂x
P (x)

)
+

(
l(l + 1)− m2

1− x2

)
P (x) = 0 . (31)

This is Legendre’s equation and is known to have finite solutions on the interval −1 ≤ x ≤ 1

only if l is an integer with l ≥ 0.
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First consider the solutions for m=0. These solutions are the Legendre polynomials Pl(x).

Traditionally these polynomials are normalized such that

Pl(1) = 1 (32)

and the first few solutions are

P0(x) = 1 (33)

P1(x) = x (34)

P2(x) =
1

2

(
3x2 − 1

)
(35)

P3(x) =
1

2

(
5x3 − 3x

)
(36)

Note that these are polynomials of order l and that they are even when l is even and odd

when l is odd.

For m 6= 0, the solutions to (31) are the associated Legendre functions. For m > 0 the

associated Legendre functions are given by

Pm
l (x) =

(
1− x2

)m
2 dm

dxm
Pl(x) . (37)

P−ml (x) ≡ (−1)m
(l −m)!

(l +m)!
Pm
l (x) . (38)

The permissable values of m are then given by −l ≤ m ≤ l.

B. Spherical Harmonics

We now have solutions for angular functions Q(φ) and P (θ). It is convenient to com-

bine these into a single normalized function of both angles. These functions are called the

spherical harmonics and are defined as

Ylm(θ, φ) = (−1)m
[

(2l + 1)(l −m)!

4π(l +m)!

] 1
2

Pm
l (cos θ)eimφ . (39)

In particular,

Yl0(θ, φ) =

√
2l + 1

4π
Pl(cosθ) (40)

As we saw above, spherical harmonics are solutions of the equation

−
[ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
Ylm(θ, φ) = l(l + 1)Ylm(θ, φ) (41)
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FIG. 2. First few spherical harmonics.

The spherical harmonics are orthonormal ( ≡ orthogonal and normalized)

∫
dΩ Y ∗l′m′(θ, φ)Ylm(θ, φ) ≡

∫ π

0
sin θdθ

∫ 2π

0
dφ Y ∗l′m′(θ, φ)Ylm(θ, φ) = δll′δmm′ (42)

where δmn is the Kronecker symbol: δmn = 1 if m = n and δmn = 0 otherwise.

We will see later that the differential operator in the l.h.s. of this equation has a meaning

of operator of square of angular momentum (up to factor h̄2).

III. QUANTIZATION OF ANGULAR MOMENTUM

From our discussion of Rutherford scattering in classical mechanics:

For a particle in central potential, the classical motion lies in a fixed plane perpendicular

to angular momentum ~L, which contains the coordinate origin.
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FIG. 3. Motion of a classical particle in the central potential.

Moreover, assuming the motion occurs in the x, y plane, we have derived that due to the

conservation of angular momentum

Lz = mr2φ̇ = const (43)

the problem of motion of a particle in a central potential V (r) can be reduced to 1-

dimensional problem with an “effective potential”:

Veff(r) ≡ V (r) +
m

2

L2

m2r2
(44)

Thus, the energy of a particle in central potential is equal to the energy of a particle moving

in one dimension (at r > 0) in the effective potential Veff(r)

E =
m

2
ṙ2 + Veff(r) (45)

For our purposes, it is convenient to rewrite this formula in terms of components of momen-

tum

E =
p2
r

2m
+ Veff(r) =

p2
r

2m
+

L2

2mr2
+ V (r) (46)

where pr = mṙ is the component of momentum along the radial direction.
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Let us look then at the Schrödinger equation (22){
− h̄2

2m

1

r

∂2

∂r2
r − h̄2

2m

[
1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

]
+ V (r)

}
ψ(r, θ, φ) = Eψ(r, θ, φ) .

(47)

It is possible to show that quantum mechanical operator corresponding to p2
r is

1

r2

∂

∂r
r2 ∂

∂r

and comparing Eqs. (46) and (47) we see that the second term in the l.h.s. of Eq. (47)

should be identified with operator of square angular momentum

L̂2ψ(r, θ, φ) = − h̄2
[ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
ψ(r, θ, φ) (48)

As we saw from the solution of Eq. (41), eigenfunctions of this operators are spherical

harmonics and eigenvalues are l(l + 1):

L̂2Ylm(θ, φ) = h̄2l(l + 1)Ylm(θ, φ) (49)

Thus, we have the very important result that, for all potentials where V = V (r) the angular

momentum is quantized and its allowed magnitudes (eigenvalues) are given by

L = |~L| = h̄
√
l(l + 1) (50)

where l is referred to as the angular momentum quantum number or the orbital quantum

number.

In addition, from the form of the operator of z-component of angular momentum (see

Table 6-1)

L̂z = − ih̄ ∂
∂φ

(51)

we see that the z component of the angular momentum is also quantized

L̂ze
±imφ = mh̄e±imφ (52)

and its allowed values are given by

Lz = mh̄, m = 0,±1,±2, ...± l (53)

The physical significance of Equation (50) is that the angular momentum L, whose magni-

tude is quantized with values h̄
√
l(l + 1), can only point in those directions in space such

that the projection of L on the z axis is one or another of the values given by mh̄. Thus,

L is also space quantized. The quantum number m is referred to as the magnetic quantum

number.
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FIG. 4. Quantization of vector of spin.

IV. THE COULOMB POTENTIAL

A. The Radial Equation

Substituting (29) into (28) gives

r

R(r)

∂2

∂r2
rR(r) +

2m

h̄2 r
2 (E − V (r))− l(l + 1) = 0 , (54)

which can be rewritten as

− h̄2

2m

(
1

r

d2

dr2
r − l(l + 1)

r2

)
R(r) + V (r)R(r) = ER(r) . (55)

This is the eigenvalue equation for the radial coordinate and since it explicitly depends

upon the integer l, the eigenfunctions will in general be represented by Rnl(r) where n is

the energy quantum number.

The complete solutions of the Schrödinger equation can then written as

ψnlm(r) = Rnl(r)Ylm(θ, φ) (56)

where the particular form of Rnl(r) will depend upon the choice of potential V (r). Note

that the wave function not only depends on the energy quantum n but also on l and m.
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The wave functions for bound states must be normalizable. That is∫
d3rψ∗nlm(r)ψnlm(r) = 1 . (57)

This implies that

1 =
∫ ∞

0
dr r2R2

nl(r)
∫ 2π

0
dφ
∫ π

0
dθ sin θ Y ∗lm(θ, φ)Ylm(θ, φ) =

∫ ∞
0

dr r2R2
nl(r) . (58)

Also, the wave functions are orthogonal, so we have the orthonormal set ψnlm(r, θ, φ)∫
d3xψ∗n′l′m′(r, θ, φ)ψnlm(r, θ, φ) (59)

=
∫ ∞

0
dr r2R∗n′l′(r)Rnl(r)

∫ 2π

0
dφ
∫ π

0
dθ sin θ Y ∗lm(θ, φ)Ylm(θ, φ) = δnn′δll′δmm′

B. Radial equation for Coulomb potential

A simple version of hydrogen-like atoms can be obtained by solving the Schrödinger

equation with a Coulomb potential

V (r) = −Zke
2

r
. (60)

Strictly speaking, the parameter m in the Schrödinger equation for the electron in the atom

should be a “reduced mass” m = melectronMnucleus

melectron+Mnucleus
but since Mnucleus � melectron our m can be

identified with electron’s mass.

We will focus on the bound state solutions of the Schrödinger equation which will occur

for negative energies. That is where E = −|E|. In this case we can write the radial equation

as

− h̄2

2m

(
1

r

d2

dr2
r − l(l + 1)

r2

)
R(r)− Zke2

r
R(r) = −|E|R(r) . (61)

Multiplying both sides by −2m
h̄2

, moving all terms to the left-hand side and expanding the

second derivative term gives(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
+

2mZe2

h̄2r
− 2m|E|

h̄2

)
R(r) = 0 . (62)

It is convenient to define a dimensionless radial variable

ρ =

√
8m|E|
h̄2 r . (63)
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The radial wave equation in terms of ρ is then(
d2

dρ2
+

2

ρ

d

dρ
− l(l + 1)

ρ2
+
λ

ρ
− 1

4

)
R(ρ) = 0 , (64)

where

λ =
2mZke2

βh̄2 =
Zke2

h̄

√
m

2|E|
= Zα

√√√√mc2

2|E|
, (65)

and

α =
e2k

h̄c
' 1

137
(66)

is the fine structure constant (k ≡ 1
4πε0

).

It can be demonstrated that in order for the function R(ρ) to be normalizable (see Eq.

(58) the constant λ must be integer greater than l

λ = n = n′ + l + 1 (67)

where n′ ≥ 0 is called radial quantum number and n total quantum number.

Using our previous definition (65) of λ we get

n = Zα

√√√√mc2

2|E|
. (68)

and therefore

En = −|En| = −
Z2α2mc2

2n2
, (69)

which is in agreement with the energy spectrum of the Bohr atom.

For future use, we will also need the explicit form of the dimensionles variable ρ

ρ =

√
8m|E|
h̄

=
2Z

a0n
(70)
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C. Degeneracy

Since the energy depends on on n and this in turn depends on n′ and l, there will be

states that are degenerate in energy. With n′ ≥ 0 and l ≥ 0, then n ≥ 1. This means that

0 ≤ l ≤ n− 1. Now for each value of l, −l ≤ m ≤ l, so there are 2l+ 1 degenerate states for

each l. The total degeneracy will then be given by

n−1∑
l=0

(2l + 1) = 2
n(n− 1)

2
+ n = n2 . (71)

While the degeneracy in m occurs of any central force, the degeneracy in l is characteristic

of the Coulomb force.
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FIG. 5. First few radial functions for the Coulomb potential.

D. Radial Wave Functions

The general form of radial wave function for Coulomb potential is

Rnl(r) = −
{(

2Z

na0

)3 (n− l − 1)!

2n[(n+ l)!]3

} 1
2

ρle−
ρ
2L2l+1

n+l (ρ) , (72)

where

a0 =
4πε0h̄

2

me2
=

h̄

αmc
(73)

is the Bohr radius and Lqp(ρ) is so-called associated Laguerre polynomials.
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E. Summary of Quantum numbers

The allowed values of and restrictions on the quantum numbers n, l and n associated

with the variables r, θ, and φ are summarized as follows:

n = 0, 1, 2, 3...

l = 0, 1, 2, ...n− 1

m = − l,−l + 1, ...− 2,−1, 0, 1, 2...l (74)

The fact that the energy of the hydrogen atom depends only on the principal quantum

number n and not on l is a peculiarity of the inverse-square force. It is related to the result

in classical mechanics that the energy of a mass moving in an elliptical orbit in an inverse-

square force field depends only on the major axis of the orbit and not on the eccentricity.

The largest value of angular momentum l = n−1 corresponds most nearly to a circular orbit,

whereas a small value of l corresponds to a highly eccentric orbit. The quantum number m

is related to the z component of angular momentum. Since there is no preferred direction

for the z axis for any central force, the energy cannot depend on m.
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Figure 7-6 shows an energy-level diagram for hydrogen. These states are referred to by
giving the value of n along with a code letter: S stands for l = 0, P for l = 1, D for l = 2, and

F forl = 3. (These code letters are remnants of the spectroscopist’s descriptions of various

series of spectral lines as Sharp, Principal, Diffuse, and Fundamental.) The allowed electric

dipole transitions between energy levels obey the selection rules

∆l = ± 1, ∆m = 0 or ± 1

That the quantum number l of the atom must change by ±1 when the atom emits or absorbs

a photon results from conservation of angular momentum and the fact that the photon itself

has an intrinsic angular momentum of 1h̄.
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V. WAVE FUNCTIONS OF THE HYDROGEN ATOM

1. Ground state

In general

ψnlm(r) = Rnl(r)Ylm(θ, φ) (75)

so for n = 1, l = m = 0 we get (the Laguerre polynomial is just 1 in this case)

ψ100(r) = C100e
− Z
a0
r

(76)

where C is the normalization constant. From

1 =
∫
d3x |ψ100(r)|2 = |C100|2

∫
d3x e

− 2Z
a0
r

=
a3

0

Z3π
⇒ C100 =

1

π
(Z/a0)

3
2 (77)

Probability to find electron in a spherical shell between r and r + dr

P (r)dr = |ψ|24πr2dr = 4πr2C2
100e

−2Zr
a0
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A. Excited states

In the first excited state, n = 2 and l an be either 0 or 1. For l = m = 0 again we have a

spherically symmetric wave function, given by

ψ200(r) = C200

(
2− Zr

a0

)
e
− Z

2a0
r

(78)

For l = 1, m can be 1, 0, or -1. The corresponding wave functions are

ψ210(r) = C210
Zr

a0

e
− Z

2a0
r

cos θ

ψ21±1(r) = C210
Zr

a0

e
− Z

2a0
r

sin θe±iφ (79)
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