I. WAVES
A. Types of waves

Mathematically, the most basic wave is the (spatially) one-dimensional sine wave (also

called harmonic wave or sinusoid) with an amplitude described by the equation:
u(z,t) = Asinlkr —wt +90] = Acoskr —wt+ 6§ — g] (1)

A - “amplitude”, kx — wt + 6 = “phase”, § = “phase constant” or ”phase shift”

If u(z,t) = y(x,t) this equation describes a “transverse” wave moving to the right with
velocity v.

Mechanical transverse waves correspond to situation when displacement y is orthogonal to
the direction of motion of the wave, like in a string. Longitudinal waves cause the medium
to vibrate parallel to the direction of the wave. It consists of multiple compressions and

rarefactions. Example- sound waves.
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Here w = ck and &(k) - “polarization vector”, k - &(k) = 0.



B. Wave equation

Eq. (1) describes sine wave moving to the right with velocity v = %.
u(z,t) = Asinfkx —wt + 9] = Asin[k(z — vt) + ] (2)
Left-moving wave has the form
uw(z,t) = Asin[k(x + vt) + 9] (3)
Superposition of right- and left-moving waves with same amplitudes is a standing wave

Asin[k(x — vt)] + Asin[k(x + vt)] = 2Asinkx - coskvt = 2Asinkx - cos wt

In general, a wave is a solution of a wave equation

Pu(x,t) 1 Pu(z,t)

Ox? o2 o2
It is easy to check that
F(x —vt) + G(z + vt)

with arbitrary F' and G is a solution of this equation. Such solution is a superposition of

many (or infinitely many) sine waves with different £’s.

C. Description of waves with complex exponentials

Sometimes is very convenient to describe a (right-moving) sine wave
a cos[kx — wt + ¢ (5)
as a real part of the expression
w(z,t) = Aeilke=wt+d) (6)

with complex amplitude A = ae”. (Recall that ¢ = cos ¢ + isin¢.) The "physical wave”
is then

Ru(z,t) = RAF9 = Rae!ka=wt+0) — g cos[kx — wt + 0] (7)

The left-moving wave with w = vk is described similarly by

Ru(z,t) = RATF—D = RaelThe=wttd) — g cos[ka + wt — 0] (8)



D. Wave packets and group velocity

Let us consider the simple case of two monochromatic waves, of the same amplitude
and of neighbouring frequencies (k1,w;) and (ka,ws), where ki, ks ~ kg. Then the resulting

“wave packet” propagates as
U(l’,t) — A [ei(klx—wlt) + ei(kzx—wzt)}
— Aei[(kl+k2)(l)/2—(wl+w2)t/2] {ei[(kl—kg)w/Q—(wl—w2)t/2} + 6i[(k2—kl)m/2+(w2—w1)t/2]}

ki ; k2$ W ; W2 t] oilk1+k)z/2—(w1+w2)t /2]

= 2A cos [

We have written the wave as a slowly moving amplitude factor with velocity

W1 — Woy dw

= —" — k k
,I{;l—l—k? — dr as Ko — Kq, (9)
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known as the | group velocity |, and a rapidly moving “phase” with velocity

w1 + wo w
v, — ———— = — as ky — ky. (10)
ky + ko k
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| Figure 5-15 Two waves of slightly different wavelength and frequency

: produce beats. (@) Shows y(x) at a given instant for each of the two
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waves. The waves are in phase at the origin, but because of the
difference in wavelength, they become out of phase and then in phase
again. (b) The sum of these waves. The spatial extent of the group Ax is
inversely proportional to the difference in wave numbers Ak, where k

is related to the wavelength by k = 27r/\. Identical figures are obtained
if y is plotted versus time ¢ at a fixed point x. In that case the extent in
time At is inversely proportional to the frequency difference Aw.
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E. “Gaussian hat”

Definition:

Normalization: since

o —az? ™ 43 ! "
dr e = 4/— —  “Gauss’ integral
—00 a

we have



Why the notation is Az?:

e8] 1 1/4 oo 22
(%) = / dx %g*(z) = <2A2> / dv r°e" a2 = (Ax)? = Az®
—o0o TAX —00
where we used [*_dx e™%" = =1/,

Right-moving Gaussian wave packet:

1 1/4  (a—vt)?
glx —vt) = <27TAJ;2) e 1aa?

It is a superposition of waves with infinitely many £’s.

II. FOURIER TRANSFORMATION

Fourier transformation:

iy = [T e

Inverse Fourier transformation

fla) = [ et

Example: Fourier transformation of Gaussian hat

_(l{i) — dx —ikx ( ) o ( 1 )1/4 dx —ikx *% — (1 >1/4/
g = \/% € g\r) = 21 A2 \/ﬁ € € T 2w A2

( 1 >1/4 eag [ AT amas? ( 1 )1/4 a2
— - 4Ax g _ 4Ak
orA?)  © Nz 2mAk?) €
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(11)

where Ak = ﬁ. Thus, Fourier transform of a Gaussian hat is a Gaussian hat again with

AkAz = ; (+)

Similarly, if one considers a time-dependent Gaussian hat

1 1/4 _ 2
ht) = <27TAt2) o

its Fourier transform is a Gaussian hat in frequency

h(w) A et ( ! )1/4 BE Aw=
= Er—— = _ 1AW =
w N mAw?) € ’ Y= oAL
SO
1
AwAt = 5 (>|<>|<)

These properties ((x) and (xx)) are called classical uncertainty relations.



III. PROPAGATION OF A GAUSSIAN WAVE PACKET IN THE DISPERSIVE
MEDIUM

Waves propagating in a dispersive medium have non-linear dependence w = w(k) (and
linear dependence w = wk) corresponds to a non-dispersive medium). Let us consider
propagation of a Gaussian wave packet in a dispersive medium.

First, let us recall the propagation of a Gaussian pulse in a linear medium without

dispersion

uo(x,t) = (7T1LQ)1/4 exp { — (372_;;75)2 + iko(x — vt)} (12)
where L = Azv/2 is the width of the Gaussian wave packet.

Suppose at t = 0 we switch on the dispersion so that w = w(k) (some non-linear function).
What will happen with the pulse? For simplicity, let us consider an approximate model of

the behavior of frequency in the vicinity of wy in the form

w(k) = wo <1+ “22k2> (13)

where wy = vky is the center of our Gaussian wave packet.
We obtain after some math

2RI (1 e - Loy}
VIZ ¥ iwga?t 202(1 + iwo %)

u(z,t) =R (14)

The peak of the pulse (14) is located at = wpa®kot = it moves with the group velocity

Owy,

_ 2
T = woa“ky.

k=ko
The wave packet spreads as it moves:

atwit?

L2

V2Ax(t) = L(t) = /L2 +

This is a general feature of non-linear Gaussian wave packets: for the same reason (wj =

\/ (m2ct/h?) + k?) wave packets corresponding to relativistic particles broaden with time.



IV. INTERFERENCE PATTERN
A. Intensity of a superposition of waves

Intensity of any wave ®(z,t) is defined as time average of energy

def

I(z) ¥ o x hm/ dt (1

The constant C' depends on physics, e.g. for plane electromagnetic wave

—

= E
E(x,t) = é,Eycos(wt — k)], B=é.— cos(wt — k)]
C

the energy is %(60E2 + iB2) = ¢oFE? so the constant C' = ¢y. For simplicity, we will take

C = 2 in what follows.

Consider sum of plane waves with different phase shifts
O(t,x) = aycos(wt — kx + 01) + ag cos(wt — kx + d2)

For simlicity, take x = 0 (for x # 0 you can always absorb kx into phase shift)

1. Intensity for superposition of waves: in terms of real numbers

1 /T
I = 2 lim —/ dt {a? cos*(wt + 61) + a3 cos®(wt + &) + 2a,ay cos(wt + 6;) cos(wt + 62)}
0

T—o0
Tdt
= 2 Tlim T {a} cos?(wt + 61) + a3 cos®(wt + §y) + aras[cos(dyz) + cos(2wt + §; + d}
—00.J0
Property
1 sin(wl' + ¢) —sing
Ilggof dt cos(wt + ¢) = ngo T =0
Corollary
T 1 2(wt 1
Tlgrgo/o dt cos*(wt + ¢) = hm T/ dt o8 2(w +9) =5
We get
L Tdt 2 2
I = 2111m — {al cos” (wt + 01) + a3 cos”(wt + d2) + ajaz[cos d12 + cos(2wt + §; + 92)}
—o00.Jo
2 g2

a
= 2 21 + ? + ajag cos(krig + 012) +0 = a® + a3 + 2a1a; cos(krip + 012)



2. Intensity for superposition of waves: in terms of complexr numbers

Description of waves in terms of complex numbers

U(y,t) = Ae™ + Age™

where A; = a1, Ay = aye™

Relation between complex ¥ and real ®

Dy, t) = RY(y,1)

Formula for intensity in terms of complex wave

— hm/ dt |3 (t)
T—o0
C'=2 inour example so
= hm/ dt |3 (t)
T—o00
Proof:

: T 2 . T * _—iwt * _—iwt iwt iwt

7151010/0 dt [W2(1)] = Tlggo/o dt [Ate™ " + Ae [ A et 4 Aye!]
T

= Jim /0 dt (AL + A2 + ATAs + A1 A5) = (JAL]* + Ao + AT Ay + AL A7)
= (af +a3+ ar1ase™? + alaQe_M”) = a2+ a3+ 2a1ay cos b1y

B. Double-slit interference pattern
Spherical wave
U(t,r) = AP o d(rt) = acos(kr —wt+0)

Due to Huygens’ principle, each of the slits can be considered as a source of spherical waves.
Since slits are symmetric (w.r.t. light source) d; = d2 so we can take d; = do = 0 (in complex

description, A; = A; = A and A is real).

Description of superposition of waves in terms of real numbers

O(y,t) = Dy(y,t) + Pa(y,t) = acos(wt — kry) + acos(wt — kry)
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FIG. 1. Fig.1-2 from Feynman Lectures on Physics, v.3

For our wave (rjs = r; — 13)

1 /T
I = 2 lim f/ dt {a® cos®(wt — kry) + a® cos®(wt — kry) + 2a” cos(wt — kry) cos(wt — kra)}
0

T—o0
Tdt
2 lim T {a? cos*(wt — kry) + a® cos*(wt — kry) + a®[cos krig + cos[2wt — k(ry +13)]}

T—o0J0

a2 + a3 + 2aiay cos kryy
Superposition in terms of complex waves
\Il(y7t) — \I’l(y,t)+\112(y,t) — aei(kr1—wt)+aei(kr2—wt) _ ae—iwt(eikr1+eikr2)
We get
1= dim [ 2wy = @l e = [U)P = [0+ T
T—ooJg T ’ - 1 2

so intensity of the superposition of the two waves is

I = |2+ |Uy? + (UUy + U WE) = I, + I, + interference term



