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I. WAVES

A. Types of waves

Mathematically, the most basic wave is the (spatially) one-dimensional sine wave (also

called harmonic wave or sinusoid) with an amplitude described by the equation:

u(x, t) = A sin[kx− ωt+ δ] = A cos[kx− ωt+ δ − π

2
] (1)

A - “amplitude”, kx− ωt+ δ = “phase”, δ = “phase constant” or ”phase shift”

If u(x, t) = y(x, t) this equation describes a “transverse” wave moving to the right with

velocity v.

Mechanical transverse waves correspond to situation when displacement y is orthogonal to

the direction of motion of the wave, like in a string. Longitudinal waves cause the medium

to vibrate parallel to the direction of the wave. It consists of multiple compressions and

rarefactions. Example- sound waves.

Electromagnetic wave

~E(~r, t) = A~e(~k) sin(~k · ~r − ωt+ δ), ~B =
k̂

c
× ~E

Here ω = ck and ~e(~k) - “polarization vector”, ~k · ~e(~k) = 0.
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B. Wave equation

Eq. (1) describes sine wave moving to the right with velocity v = ω
k
.

u(x, t) = A sin[kx− ωt+ δ] = A sin[k(x− vt) + δ] (2)

Left-moving wave has the form

u(x, t) = A sin[k(x+ vt) + δ] (3)

Superposition of right- and left-moving waves with same amplitudes is a standing wave

A sin[k(x− vt)] + A sin[k(x+ vt)] = 2A sin kx · cos kvt = 2A sin kx · cosωt

In general, a wave is a solution of a wave equation

∂2u(x, t)

∂x2
=

1

v2

∂2u(x, t)

∂t2
(4)

It is easy to check that

F (x− vt) +G(x+ vt)

with arbitrary F and G is a solution of this equation. Such solution is a superposition of

many (or infinitely many) sine waves with different k’s.

C. Description of waves with complex exponentials

Sometimes is very convenient to describe a (right-moving) sine wave

a cos[kx− ωt+ δ] (5)

as a real part of the expression

u(x, t) = Aei(kx−ωt+δ) (6)

with complex amplitude A = aeiδ. (Recall that eiφ = cosφ + i sinφ.) The ”physical wave”

is then

<u(x, t) = <Aei(kx−ωt) = <aei(kx−ωt+δ) = a cos[kx− ωt+ δ] (7)

The left-moving wave with ω = vk is described similarly by

<u(x, t) = <Aei(−kx−ωt) = <aei(−kx−ωt+δ) = a cos[kx+ ωt− δ] (8)
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D. Wave packets and group velocity

Let us consider the simple case of two monochromatic waves, of the same amplitude

and of neighbouring frequencies (k1, ω1) and (k2, ω2), where k1, k2 ∼ k0. Then the resulting

“wave packet” propagates as

U(x, t) = A
[
ei(k1x−ω1t) + ei(k2x−ω2t)

]
= Aei[(k1+k2)x/2−(ω1+ω2)t/2]

{
ei[(k1−k2)x/2−(ω1−ω2)t/2] + ei[(k2−k1)x/2+(ω2−ω1)t/2]

}
= 2A cos

[
k1 − k2

2
x− ω1 − ω2

2
t

]
ei[(k1+k2)x/2−(ω1+ω2)t/2]

We have written the wave as a slowly moving amplitude factor with velocity

vg =
ω1 − ω2

k1 + k2

−→ dω

dk

∣∣∣∣∣
k0

as k2 → k1, (9)

known as the group velocity , and a rapidly moving “phase” with velocity

vp −→
ω1 + ω2

k1 + k2

=
ω

k
as k2 → k1. (10)

The ratio ω
k

is called “phase velocity”

E. “Gaussian hat”

Definition:

g(x) =
(

1

2π∆x2

)1/4

e−
x2

4∆x2

Normalization: since ∫ ∞
−∞

dx e−ax
2

=

√
π

a
− “Gauss′ integral′′

we have ∫ ∞
−∞

dx |g(x)|2 = 1
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Why the notation is ∆x2:

〈x2〉 ≡
∫ ∞
−∞

dx x2g2(x) =
(

1

2π∆x2

)1/4∫ ∞
−∞

dx x2e−
x2

2∆x2 = (∆x)2 ≡ ∆x2

where we used
∫∞
−∞dx e

−ax2
= 1

2a

√
π
a
.

Right-moving Gaussian wave packet:

g(x− vt) =
(

1

2π∆x2

)1/4

e−
(x−vt)2

4∆x2

It is a superposition of waves with infinitely many k’s.

II. FOURIER TRANSFORMATION

Fourier transformation:

f̄(k) ≡
∫ ∞
−∞

dx√
2π

e−ikxf(x)

Inverse Fourier transformation

f(x) =
∫ ∞
−∞

dk√
2π

eikxf̄(k)

Example: Fourier transformation of Gaussian hat

ḡ(k) ≡
∫ dx√

2π
e−ikxg(x) =

(
1

2π∆x2

)1/4∫ dx√
2π

e−ikxe−
x2

4∆x2 =
(

1

2π∆x2

)1/4∫ dx√
2π

e−
x2+4ikx∆x2

4∆x2

=
(

1

2π∆x2

)1/4

e−k
2∆x2

∫ dx√
2π

e−
(x+2ik∆x2)2

4∆x2 =
(

1

2π∆k2

)1/4

e−
x2

4∆k2 (11)

where ∆k = 1
2∆x

. Thus, Fourier transform of a Gaussian hat is a Gaussian hat again with

∆k∆x =
1

2
(∗)

Similarly, if one considers a time-dependent Gaussian hat

h(t) =
(

1

2π∆t2

)1/4

e−
t2

4∆t2

its Fourier transform is a Gaussian hat in frequency

h̃(ω) ≡
∫ dt√

2π
eiωth(t) =

(
1

2π∆ω2

)1/4

e−
t2

4∆ω2 , ∆ω ≡ 1

2∆t

so

∆ω∆t =
1

2
(∗∗)

These properties ((∗) and (∗∗)) are called classical uncertainty relations.
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III. PROPAGATION OF A GAUSSIAN WAVE PACKET IN THE DISPERSIVE

MEDIUM

Waves propagating in a dispersive medium have non-linear dependence ω = ω(k) (and

linear dependence ω = vk) corresponds to a non-dispersive medium). Let us consider

propagation of a Gaussian wave packet in a dispersive medium.

First, let us recall the propagation of a Gaussian pulse in a linear medium without

dispersion

u0(x, t) =
( 1

πL2

)1/4
exp

{
− (x− vt)2

2L2
+ ik0(x− vt)

}
(12)

where L = ∆x
√

2 is the width of the Gaussian wave packet.

Suppose at t = 0 we switch on the dispersion so that ω = ω(k) (some non-linear function).

What will happen with the pulse? For simplicity, let us consider an approximate model of

the behavior of frequency in the vicinity of ω0 in the form

ω(k) = ω0

(
1 +

a2k2

2

)
(13)

where ω0 = vk0 is the center of our Gaussian wave packet.

We obtain after some math

u(x, t) = < 2(4πL2)1/4

√
L2 + iω0a2t

e
−iω0t

(
1+

a2k2
0

2

)
+ik0x

exp

{
− (x− ω0a

2k0t)
2

2L2(1 + iω0
a2t
L2

)} (14)

The peak of the pulse (14) is located at x = ω0a
2k0t ⇒ it moves with the group velocity

∂ωk

∂k

∣∣∣
k=k0

= ω0a
2k0.

The wave packet spreads as it moves:

√
2∆x(t) ≡ L(t) =

√
L2 +

a4ω2
0t

2

L2

This is a general feature of non-linear Gaussian wave packets: for the same reason (ωk =√
(m2c4/h̄2) + k2) wave packets corresponding to relativistic particles broaden with time.
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IV. INTERFERENCE PATTERN

A. Intensity of a superposition of waves

Intensity of any wave Φ(x, t) is defined as time average of energy

I(x)
def≡ C × lim

T→∞

∫ T

0
dt Φ2(t)

The constant C depends on physics, e.g. for plane electromagnetic wave

~E(x, t) = êyE0 cos(ωt− kx)], ~B = êz
E0

c
cos(ωt− kx)]

the energy is 1
2
(ε0E

2 + 1
µ0
B2) = ε0E

2 so the constant C = ε0. For simplicity, we will take

C = 2 in what follows.

Consider sum of plane waves with different phase shifts

Φ(t, x) = a1 cos(ωt− kx+ δ1) + a2 cos(ωt− kx+ δ2)

For simlicity, take x = 0 (for x 6= 0 you can always absorb kx into phase shift)

1. Intensity for superposition of waves: in terms of real numbers

I = 2 lim
T→∞

1

T

∫ T

0
dt {a2

1 cos2(ωt+ δ1) + a2
2 cos2(ωt+ δ2) + 2a1a2 cos(ωt+ δ1) cos(ωt+ δ2)}

= 2 lim
T→∞

∫ T

0

dt

T
{a2

1 cos2(ωt+ δ1) + a2
2 cos2(ωt+ δ2) + a1a2[cos(δ12) + cos(2ωt+ δ1 + δ2}

Property

lim
T→∞

1

T

∫ T

0
dt cos(ωt+ φ) = lim

T→∞

sin(ωT + φ)− sinφ

ωT
= 0

Corollary

lim
T→∞

∫ T

0
dt cos2(ωt+ φ) = lim

T→∞

1

T

∫ T

0
dt

1 + cos 2(ωt+ φ)

2
=

1

2

We get

I = 2 lim
T→∞

∫ T

0

dt

T
{a2

1 cos2(ωt+ δ1) + a2
2 cos2(ωt+ δ2) + a1a2[cos δ12 + cos(2ωt+ δ1 + δ2)}

= 2[
a2

1

2
+
a2

2

2
+ a1a2 cos(kr12 + δ12) + 0 = a2

1 + a2
2 + 2a1a2 cos(kr12 + δ12)
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2. Intensity for superposition of waves: in terms of complex numbers

Description of waves in terms of complex numbers

Ψ(y, t) = A1e
iωt + A2e

iωt,

where A1 = a1e
iδ1 , A2 = a2e

iδ2

Relation between complex Ψ and real Φ

Φ(y, t) = <Ψ(y, t)

Formula for intensity in terms of complex wave

I =
C

2
lim
T→∞

∫ T

0
dt |Ψ2(t)|

C=2 inour example so

I = lim
T→∞

∫ T

0
dt |Ψ2(t)|

Proof:

lim
T→∞

∫ T

0
dt |Ψ2(t)| = lim

T→∞

∫ T

0
dt [A∗1e

−iωt + A∗2e
−iωt][A1e

iωt + A2e
iωt]

= lim
T→∞

∫ T

0
dt (|A1|2 + |A2|2 + A∗1A2 + A1A

∗
2) = (|A1|2 + |A2|2 + A∗1A2 + A1A

∗
2)

= (a2
1 + a2

2 + a1a2e
iδ12 + a1a2e

−iδ12) = a2
1 + a2

2 + 2a1a2 cos δ12

B. Double-slit interference pattern

Spherical wave

Ψ(t, r) = Aei(kr−ωt) ⇔ Φ(r, t) = a cos(kr − ωt+ δ)

Due to Huygens’ principle, each of the slits can be considered as a source of spherical waves.

Since slits are symmetric (w.r.t. light source) δ1 = δ2 so we can take δ1 = δ2 = 0 (in complex

description, A1 = A2 = A and A is real).

Description of superposition of waves in terms of real numbers

Φ(y, t) = Φ1(y, t) + Φ2(y, t) = a cos(ωt− kr1) + a cos(ωt− kr2)
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FIG. 1. Fig.1-2 from Feynman Lectures on Physics, v.3

For our wave (r12 ≡ r1 − r2)

I = 2 lim
T→∞

1

T

∫ T

0
dt {a2 cos2(ωt− kr1) + a2 cos2(ωt− kr2) + 2a2 cos(ωt− kr1) cos(ωt− kr2)}

= 2 lim
T→∞

∫ T

0

dt

T
{a2 cos2(ωt− kr1) + a2 cos2(ωt− kr2) + a2[cos kr12 + cos[2ωt− k(r1 + r2)]}

= a2
1 + a2

2 + 2a1a2 cos kr12

Superposition in terms of complex waves

Ψ(y, t) = Ψ1(y, t) + Ψ2(y, t) = aei(kr1−ωt) + aei(kr2−ωt) = ae−iωt(eikr1 + eikr2)

We get

I = lim
T→∞

∫ T

0

dt

T
|Ψ2(y, t)| = a2|eikr1 + eikr2|2 ≡ |Ψ(y)|2 = |Ψ1 + Ψ2|2

so intensity of the superposition of the two waves is

I = |Ψ1|2 + |Ψ2|2 + (Ψ∗1Ψ2 + Ψ1Ψ∗2) = I1 + I2 + interference term


