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The Nucleus is not Point-like 

R. Hofstadter, et al., Phys. Rev. 92, 978 (1953). 
Figure adapted from http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/elescat.html 
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Electron scattering data of
 Hofstadter fell short of the
 point-like predictions,
 indicating the nucleus has
 structure. 
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Deviations from Rutherford 

  For incident particles of higher energy and/or 
low Z nuclei, deviations from Rutherford 
prediction were observed. 

  High energy ⇒ distance of closest approach 
is small.  Low Z ⇒ same, since Coulomb 
force is weaker. 

  The nucleus itself was being probed. 
  Nucleus is not point-like and force is not 

Coulomb force. 



Properties of Nuclei 

  Nuclei consist of protons and neutrons.  (Heisenberg 
uncertainty principle:  suggests electrons cannot 
exist inside nucleus.) 

  Notation:   N = # neutrons       
  Z = # protons      
 A = N + Z       
 Nucleus X:  AXZ 

  Isotopes:  AXZ   and A'XZ 

  Isobars:   AXZ  and AYZ’ 

  Isotones:  same number of neutrons 



Nuclear Masses 

  To first order:  M(A,Z) = Zmp + (A-Z)mn 
  mp = proton mass   ≈ 938.27 MeV/c2

 

  mn = neutron mass ≈ 939.56 MeV/c2 

  If this were true, then the nucleus would be 
unstable and could simply break apart into its 
constituents. 

  The nucleus is a bound system and so its 
mass is less than this simple estimate: 
  ΔM(A,Z) = M(A,Z) - Zmp - (A-Z)mn = B.E./c2 < 0 



Binding Energy per Nucleon 
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Figure from http://library.thinkquest.org/3471/mass_binding_body.html 



Implications 

  56Fe is the most stable nucleus.   
  Higher mass nuclei will release energy to make 

two smaller nuclei:  Fission 
  Lower mass nuclei will release energy when 

combined into a higher mass one:  Fusion 
  Rule of thumb:  B.E./nucleon ~ 8 MeV 
  If we supply 8 MeV, all to one nucleon, then 

we can free it from the nucleus. 



Implications, cont’d. 

  If we give 8 MeV to a single nucleon: 

  This is a typical nuclear dimension 
  Nuclei can absorb or emit nucleons of this energy 

  For an 8 MeV electron: 

  8 MeV electrons will not fit! 
  120 MeV electrons would fit, but are not consistent with 

typical binding energies. 
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Nuclear Sizes 

  Cannot calculate without knowing the nuclear force. 
  Can use low-energy α backscattering (distance of 

closest approach is a minimum) to estimate the size:  
get upper limits of few 10’s of fm.  Not too precise! 

  Can use high energy electron scattering 
  Not sensitive to nuclear force.  EM interaction is known and 

can be used to determine distribution of charge and 
magnetism in the nucleus. 

  Can penetrate deeply into the nucleus. 

   ⇒ Determine nuclear form factors 
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Form Factor and Charge Radius 
  The charge form factor is 
  If the charge density is spherically symmetric, we 

can integrate over angles explicitly: 
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Charge Radius 

  The slope of the form factor at low q2 gives 
the rms charge radius: 

  Further, the charge density can be 
determined from the form factor via the 
inverse Fourier transform: 
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Example:  Charge Density of 58Ni 

Elastic electron scattering:  I. Sick et al., Phys. Rev. Lett. 35, 910 (1975). 



Electron Scattering Cross Section 
  Neville Mott considered effect of electron spin in scattering from a 

nucleus.  The Rutherford formula has to be modified: 

  This gives the scattering of (point-like) spin-1/2 electrons from a 
spinless, infinitely massive point-like nucleus. 

  To include nuclear size, we insert the form factor: 

  We can also include (i.e. determine) the magnetic form factor as well 
as a factor accounting for the finite nuclear mass (i.e. nuclear recoil). 
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Nuclear Sizes 

  The above can be used to determine the nuclear 
form factor: 

  We can also scatter strongly interacting particles 
such as pions.  The nuclei effectively absorb pions 
out of the beam.  The resulting diffraction pattern 
(similar to diffraction of light by a disk) can be used 
to determine the size of the nucleus. 
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Pion Elastic Scattering from Lead 

G. Kahrimanis et al., Phys. Rev. C 55, 2533 (1997). 
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Nuclear Sizes, an Empirical Formula 

  A wide body of such experiments indicates 
nuclear sizes follow a very simple empirical 
formula:    
   R = r0A1/3 ≈ (1.2 fm) A1/3    

 where A is the mass number. 
  The volume is proportional to A and the 

density is independent of A.  This suggests 
the nucleus can be approximated for certain 
purposes as an incompressible liquid droplet. 



Nuclear Spins and Dipole Moments 

  Like the electron, the proton and neutron are both 
spin-1/2: 

  Nuclear spin is the sum of nucleon spins and orbital 
angular momenta: 

  For charged particles, the spin gives rise to a 
magnetic moment: 

 where g = “gyromagnetic ratio” = 2, for a point-like Dirac particle 
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g-factors 

  For the electron 
  ge-2 ≈ 2.3×10-3: 
  ge = 2.0023193043718 ± 0.0000000000075 

  The value agrees with the QED prediction which is of 
comparable accuracy! 

  For the proton 
  gp /2 ≈ +2.79 
  Strong indication of internal structure. 

  For the neutron 
  gn /2 ≈ -1.91 
  For a neutral object, expect g = 0 ⇒ neutron has an 

extended charge distribution. 



Bohr Magneton and Nuclear Magneton 

  From before (for spin-1/2): 

  Bohr magneton: 

  Nuclear magneton: 

  Due to the mass dependence, the Bohr magneton is 
~ 2000 times larger than the nuclear magneton.      
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Nuclear Spin and Magnetic Moment 

  General observations about spin  
  For A even:  integral spin 
  For A odd:    half-integral spin 
  For N and Z even:  spin = 0, always 
  Even large nuclei have small ground state spins 
  Suggests that spins are strongly paired in nuclei 

  Magnetic moments 
  All measured values lie between -3µN and 10µN 
  Additional evidence for strong pairing 
  Difficult to accommodate electrons within the nucleus, 

given the much larger electron magnetic moment 



Nuclear Stability 

From http://www.algebralab.org 

N Z # of Stable 
Nuclei 

Even Even 156 

Even  Odd 48 

Odd Even 50 

Odd Odd 5 

Stable
 Isotopes 



Nuclear Stability, cont’d. 

  For light nuclei:  N ≈ Z 
  For heavier nuclei:  N ≈ 1.7 Z 

  Neutron excess reflects smaller overall Coulomb 
repulsion and therefore higher stability 

  Even # of protons/neutrons is favored 
  Further evidence of strong pairing, i.e. pairing of 

nucleons leads to nuclear stability 



Nuclear Instability:  Radioactivity 

  Discovered in uranium salts by Henri Becquerel (1896). 
  Three basic types:  α, β and γ 

Radioactive
 Material 
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Radiation 

  Various sheets of materials could be used to study 
the range of each type of particle and therefore 
establish the degree to which it ionizes matter. 

  A superimposed electric field could be arranged to 
establish the charge-to-mass ratio of each particle. 

  Results: 
  α = helium nucleus, small range, heavily ionizing 
  β = electron, longer range, less heavily ionizing 
  γ  = photon, longest range, least ionizing 



Nature of the Nuclear Force 

  A new type of force is needed to bind nuclei 
  Gravity is too weak to bind 
  EM cannot bind the deuteron and leads to 

instability for other nuclei (repulsive force between 
like charged protons) 

  Range of the nuclear (strong) force 
  Atomic structure is well described by just the EM 

force ⇒ range of nuclear force ~ size of nucleus 
  Other evidence for short range:  saturation of 

nuclear force … 



Saturation of Nuclear Force 

  For a long-range force, such as EM, every particle 
can interact with all others. 

  This gives # pairwise interactions = A(A-1)/2 
  Binding energy: B ∝ A(A-1) ⇒ B/A ∝ A, for large A 

  We would get tighter binding for larger systems. 
  But for nuclei: B/A ≈ constant 

  Nucleons only interact with a few nearest neighbors. 
  Adding nucleons does not increase average binding 

energy, but just increases the nuclear size (i.e. density 
is nearly constant). 

  This is further evidence of short-ranged nature of 
nuclear force. 



Nuclear Force 
  Nuclear force is 

  Short-ranged 
  Attractive at “long” distances 
  Repulsive at very short distance:  repulsive core 
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Inclusion of Coulomb force 

  Neutrons experience no Coulomb force and so even relatively 
low energy neutrons can penetrate the nucleus. 

  Protons of comparable energy will experience an effective 
(Coulomb) barrier of height VB. 
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Nuclear Bound States 

  The nucleus is a bound system and so exhibits 
discrete energy levels (bound states). 

  These states can be probed in various scattering 
experiments and the energies can be determined by 
measuring the particle energy loss and/or various 
emitted particles from subsequent decay to the 
ground state. 

  In fact, nuclei, just like atoms, are well-described by 
a shell structure (nuclear shell model). 



Charge Independence of Nuclear Force 

  The proton-proton, proton-neutron and neutron-
neutron forces are the same, once we correct for 
Coulomb effects. 
 ⇒ The nuclear force is charge independent. 

  This is called isospin symmetry 
  The proton and neutron can be regarded as two different 

states of a nucleon (analogous to the spin “up” and “down” 
states of a spin-1/2 particle). 

  In the absence of Coulomb forces, the proton and neutron 
would be indistinguishable.   



Yukawa Potential 

  EM force is mediated by the exchange of a (massless) photon 
giving an infinite range potential: 

  Hideki Yukawa (1934) showed that the corresponding 
potential for a massive (mass = m) exchange particle is: 
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Yukawa and Range of the Nuclear Force 

  The range of the force varies inversely as the mass of the 
exchanged particle.  This is consistent with the Heisenberg 
uncertainty principle: 
  The (virtual) particle’s energy must be created and therefore is 

short-lived. 
  A short-lived particle cannot propagate very far. 

  The range is related to the (reduced) Compton wavelength: 

  Conversely, the mass of the exchanged particle can be 
deduced from the range of the force: 

  

€ 

 =


mc

  

€ 

mc 2 =
c

≈

197 MeV - fm
1.2 fm

≈164 MeV



The Pion as the Exchange Particle 

  This estimate was crude, but the mass is 
close to that of the pion: 
  mπ+ = mπ- = 139.6 MeV/c2 
  mπ0 = 135.0 MeV/c2 

  The one-pion exchange assumption gives a 
reasonable description of the nuclear force, 
especially the long-range part. 

  However, other, more massive, mesons can 
also be exchanged.  These mainly affect the 
short-distance character of the nuclear force. 


