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Nuclear Decays 

  Three principal decay modes: 
  Alpha decay:   
  Beta decay: 

  Gamma decay: 
  Nucleus can also decay via fission into 

various daughter nuclei (not necessarily α). € 

AXZ→AY Z+1 + e− +ν 
AXZ→AY Z−1 + e+ +ν
AXZ + e−→AY Z−1 +ν€ 

AXZ→A−4Y Z−2+4He2

€ 

AX*Z→AXZ +γ



Alpha Decay 
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       AX Z→A−4Y Z−2+4He2

(Parent →  Daughter +  α)
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MPc
2 = MDc

2 +TD +Mαc
2 +Tα

TD +Tα = MP −MD −Mα( )c2 = ΔMc2 ≡Q

Atomic masses can be used since the 
electron masses will cancel. 



Kinematics 

Treating the decay products nonrelativistically: 
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  For a heavy nucleus, most of the kinetic energy released goes to the 
alpha. 

  For this two-body decay, the alpha energy is unique (i.e. completely 
determined by the masses of parent and daughter). 



Nuclei have Discrete Energy Levels 

  Precise measurements have revealed that the 
emitted α’s have a spectrum of discrete energies. 

  This can be explained by assuming that the 
daughter nucleus can be left in an excited state, 
which subsequently decays: 

  The energy of the excited state can be determined 
from the α energy … 

€ 

AXZ→A−4Y *Z−2+4He2
A−4Y *Z−2→A−4Y Z−2 +γ



Example 
  For a heavy nucleus, we can write: 

  So, for 228Th → 224Ra + α: 

  If the highest energy α’s have:  Tα = 5.421 MeV and 5.338 
MeV, the highest energy corresponds to the ground state of 
224Ra and the first excited state has energy: 
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E = E2 −E1 =Q1 −Q2 ≈
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5.421− 5.338( ) MeV = 0.084 MeV
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Barrier Penetration 
  Low energy α’s incident on heavy nuclei cannot surmount 

Coulomb barrier and will not be absorbed. 
  However, comparable energy α’s are emitted from such 

nuclei, during α-decay.  How can this be? 
  Answer:  QM tunneling + a very large number of “attempts”. 
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Simplified Potential 
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  Ignore angular dependence in S.E. and treat as 1-D problem. 
  Replace Coulomb potential by square barrier of equal area. 



Transmission Probability 
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Numerical Results 

  For E = 4 MeV, V0 = 14 MeV, U0 = 40 MeV,            
2a = 33 fm:    T ≈ 7×10-40 ⇒ there is little chance for 
α absorption by heavy nuclei. 

  For E = 4 MeV, Tα = U0 + E = 44 MeV ⇒ vα ≈ 0.15 c 
  For R ≈ 10-12 cm, vα/R ≈ 4.5×1021 / sec 
  The rate of α emission is: T× vα/R ≈ 3.2×10-18 / sec 
  The mean lifetime is the reciprocal of this decay 

rate:  τ ≈ 3.2×1017 sec = 1.0×1010 yr 
  Though the calculation was crude, the actual value 

is quite close to this estimate.  



Beta Decay 
  Nuclei with N/Z off the stability line, can undergo      
β-decay, converting a neutron to a proton or vice 
versa: 

  The fundamental decay processes are, respectively: 
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n→ p+ e− +ν   (can also occur for a free neutron)

p→ n+ e+ +ν  (can' t occur for a free proton)

p+ e− → n+ν  (electron capture)

€ 

AXZ→AY Z+1 + e− +ν 
AXZ→AY Z−1 + e+ +ν
AXZ + e−→AY Z−1 +ν



Need for the Neutrino 

  Only the electron and daughter nucleus were 
actually observed in the decay: 

  Energy conservation requires: 

  Such a two-body decay will give a fixed 
energy for the electron, but … 

€ 

AXZ→AY Z+1 + e−

€ 

EX = MXc
2 = EY + Ee = TY + MYc

2 + Te + mec
2

⇒ Te = MX −MY −me( )c 2 −TY =Q−TY ≈Q



Need for the Neutrino, cont’d. 

  The electron energy spectrum is continuous with a maximum 
value corresponding to the above two-body decay analysis.  
Energy conservation is at stake! 

  Also, angular momentum conservation cannot be satisfied in 
the two-body decay:  the number of nucleons does not 
change, but a spin-1/2 electron is emitted as a result of the 
decay. 

  Pauli proposed an unseen “neutrino”, which carries off 
energy, has spin =1/2, and which does not interact with matter 
appreciably [an essentially massless (since the endpoint 
energy corresponds with two-body decay) neutral particle]. 

n(E) 

Electron Energy Tmax 



The Antineutrino 
  The neutrino has an antiparticle.  Unlike other 

particles, the neutrino appears to be pointlike, 
uncharged and has no magnetic moment or nucleon 
number.  So what distinguishes it from its 
antiparticle? 

  Helicity (handedness): for a massless particle, the 
component of the spin along the direction of motion. 
  Electrons are accompanied by right-handed (positive 

helicity) antineutrinos. 
  Positrons are accompanied by left-handed (negative 

helicity) neutrinos. 
  Recent experiments indicate the neutrino, in fact, 

has a small mass.  This has important implications, 
as we’ll see later. 



Kinematics for Beta-Decay 

  Energy conservation gives: 

  The decay can occur provided: 

  For a heavy nucleus, we can neglect TD: 
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AXZ→AY Z+1 + e− +ν 

(Parent →  Daughter +  e +  ν )

€ 

TD +Te +Tν = MP −MD −me −mν( )c2 = ΔMc2 =Q

€ 

Q ≈ M (A,Z )−M (A,Z +1)[ ]c2 ≥ 0
Atomic masses 

€ 

Te +Tν ≈Q⇒ 0 ≤Te ≤Q



Lepton Number 

  Electrons and neutrinos are leptons, 
belonging to a family of leptons: 

  All leptons have lepton number +1 
  All their antiparticles have lepton number -1. 
  Lepton number, like baryon number, appears 

to be conserved in all processes. 
  Further, each type of lepton is produced with 

the corresponding type of neutrino. 

€ 

(e− ,νe ),  (µ−,νµ ),  (τ −,ντ )



Neutrino Mass 

  The shape of the β-decay spectrum near the endpoint is 
sensitive to the neutrino mass. 

  This requires very good experimental energy resolution.  
  Current data are somewhat inconsistent, but Katrin (Karlsruhe 

Tritium Neutrino Experiment) promises to be a major 
improvement. 
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mν = 0 
Endpoint tangential 

 to abscissa. 
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Electron Energy Tmax 

mν ≠ 0 
Endpoint tangential 

 to ordinate. 



Solar Neutrino Problem and Resolution 

  Solar neutrinos are of type νe. 
  Number of νe neutrinos detected on Earth was too small by a 

factor of 2-3 compared with solar models (Davis and Koshiba,  
- Nobel Prize in Physics, 2002). 

  1998:  Super-Kamiokande (Japan).  
  Neutrinos of type νµ produced by cosmic rays hitting atmosphere. 
  Number of νµ detected on Earth depends on distance of 

production (i.e. overhead or beneath horizon).  Evidence for 
neutrino oscillations, i.e. neutrinos changing flavors. 

  2002: Sudbury Neutrino Observatory (SNO). 
  Using heavy water (deuterium nuclei), the detector is sensitive to 

all neutrino flavors. 
  The total number of neutrinos detected agreed with the solar 

models.  Further evidence for oscillations. 



Neutrino Oscillations 

  Neutrino mixing:  For non-zero neutrino masses, the flavor 
eigenstates (i.e. e, µ, τ) and mass eigenstates are different: 

  The mass eigenstates propagate with a phase related to the 
energy, and therefore mass, of the neutrino: 

  The different masses propagate with different frequencies and 
so the mass content changes. 

  This implies that the flavor also changes or oscillates. 
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e−iφ = e−iEt / 



Neutrino Mass and Dark Matter 

  Mechanism for neutrino mass generation is currently a 
controversial topic.  It requires some modification to the 
Standard Model. 
  Heavy right-handed neutrinos can induce mass in the light, 

ordinary (left-handed) neutrinos (see-saw mechanism).  The 
mass of the light neutrino is inversely proportional to the mass of 
the heavy neutrino. 

  Certain supersymmetric theories can account for finite neutrino 
mass, but typically predict proton decay inconsistent with 
experiment. 

  Neutrinos are extremely abundant in the universe, and a 
finite mass would contribute to the dark matter, needed 
to explain various cosmological anomalies. 



The Weak Interaction 

  Neutrons decay with a lifetime of ~900 sec: 

  Time scales for nuclear processes: ~ 10-23 sec 
  Time scales for EM processes: ~ 10-16 sec 

  Fermi postulated a new force: “weak” force. 
  Must be weak to explain long lifetime of neutron. 
  Must be short-ranged since it occurs within nuclei. 

  Relative strengths of forces: 
  1 : 10-2 : 10-5 : 10-39 

  (Strong, EM, Weak, Gravitational)  
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n→ p+ e− +ν 



Fermi’s Four-Fermion Theory 

  Weak transitions are characterized by the weak 
Hamiltonian.  The transition probability can be 
calculated using Fermi’s Golden Rule: 

  The process                           connects four fermionic 
states. 

  A large body of experiments put strict constraints on 
the nature of this four-fermion theory. 
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n→ p+ e− +ν 



Parity Violation 

  Under mirror (parity) inversion: 

  The handedness therefore changes and left-handed neutrinos 
become right-handed. 

  But right-handed neutrinos do not seem to exist, so the parity 
transformed process does not occur. 

  Parity must be violated in weak interactions.  Confirmed by 
C.S. Wu in 1956. 
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Gamma Decay 

  Excited nuclei can de-excite through 
emission of a photon: 

  The process is electromagnetic. 
  The photon carries away at least one unit of 

angular momentum. 
  The decay conserves parity. 
  Lifetimes are typically ~10-16 sec. 
  Photon energies are typically ~100 keV. 

€ 

AX*Z→AXZ +γ



Kinematics 

For photon emission or absorption: 
€ 

A X*Z

Ei 

Ef 
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A XZ

pR=Mv 

pγ=hν/c 

Photon emission process (absorption can also occur for nucleus initially in its ground state). 

    

€ 

Ei = Ef  hν +
1
2
Mv2  and  hν

c
= Mv

⇒ hν =  Ei −Ef −
h2ν 2

2Mc2
 

 
 

 

 
 =  Ei −Ef −ΔER( )

where −⇒ absorption and +⇒ emission



Resonant absorption 
  Can a photon emitted by one nucleus be 

absorbed by another of the same type? 
  If we can neglect recoil, then obviously YES. 
  Otherwise it would appear NO, since the emitted 

photon will have slightly less energy than the level 
spacing given some energy goes into recoil.  Also, 
the absorbing nucleus must receive a slightly 
higher energy than the level spacing, since it too 
must recoil. 

  However, the level has a natural linewidth.  So the 
question is:  Is the linewidth larger or smaller than 
the recoil energy? … 



Resonant Absorption, cont’d. 

  Natural linewidth of an unstable level: 

  If ΔER » Γ:  resonant absorption cannot occur 
  If ΔER « Γ:  resonant absorption can occur 

  Atoms and nuclei differ in this respect: 
  Atomic levels have longer lifetimes ⇒ smaller Γ 
  Atomic transitions involve lower energy photons 
⇒ smaller ΔER 

  Which effect is larger? 
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δE =Γ ≈
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τ
  where  τ =  lifetime of state



Nuclear vs. Atomic Resonant Absorption 

  Atoms (take A = 50, Ei - Ef = 1 eV, τ = 10-8 sec) 

  Nuclei (take A = 50, Ei - Ef = 105 eV, τ = 10-12 sec) 
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Mössbauer Effect 
  Nuclear resonant absorption would occur if 

the recoil mass were much larger. 
  Rudolf Mössbauer:  embed the emitter and 

absorber in crystals. 
  The atom/nucleus is locked to the crystal ⇒ the 

entire crystal recoils ⇒ the recoil energy is 
negligible. 

  Energy levels have been measured to ~10-7 eV  (1 
part per 1012 !) . 

  Can use this technique to measure hyperfine 
splittings in nuclei. 


