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Machine representation and 
precision 

Every computer has a limit how small or large a 
number can be 

A computer represent numbers in the binary form. 
Word length: number of bytes used to store a number 
Most common architecture:  

 Word length = 4 bytes = 32 bites 
 Word length = 8 bytes = 64 bites 

(1 byte = 1 B = 8 bits: 00000000) 
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Integer numbers 

For a 8 bit computer 

The highest number then: 28 – 1 (–1 because the first is “0”)           
Since we need 1 bit for +/- 
Then the highest number is 27 – 1 = 127 
For 32-bit computers all integer numbers are in the range 
231 – 1 = 2,147,483,647 
For N-bit computers the range is [0,2N-1] 
note: 1K = 1kB = 210 bytes = 1024 bytes. 
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Floating point numbers 

       ------------------------ Three blocks ----------------------------- 
       0     1000 0000              1000000 0000 0000 0000 0000 
  signbit  8-bit exponent        23-bit mantissa 

range of exponent [-127,128]     (2128 ~10+38) 
Single precision : 6-7 decimal places 1/223 ~1.2*10-7   
range: max  – about  ±3.402923×10+38 

range: min – about    ±1.401298×10−45 

machine precision ε: 1.0 + ε = 1.0 
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Example 
Getting a problem with the single precision is quite easy: 
example – Bohr’s radius 

the numerator 1.24*10-78 

the denominator 2.33*10-68 

the single precision 10-38 

What to do? 
- restructure the equation 
- change units (scales)  
- increase precision  
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Floating point: double precision (64 bits) 

       ------------------------ Three blocks ----------------------------- 
  signbit    11-bit exponent        52-bit mantissa 

range of exponent [-1023,1024]     (21024 ∼10+308) 

Double precision : 15-16 decimal places 1/252 ~1.2*10-15 

range: max  – about  ±1.7976931348623157×10+308 

range: min – about    ±4.94065645841246544×10−324 

machine precision ε: 1.0 + ε = 1.0 
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from  “A Survey of Computational Physics. Introductory 
Computational Science” by R.Landau et al (2008) 
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// test on the machine precision 
#include <iostream> 
#include <iomanip> 
#include <cmath> 
using namespace std; 
int main() 
{ 
    float one, eps; 
    eps = 1.0; 
    for ( int j=1; j <=100; j++) 
    { 

   eps = eps/2.0; 
        one = 1.0 + eps; 
        cout << setw(5)<<j<< setiosflags(ios::scientific) 
             << setw(12) << setprecision(6)  << eps  
             << setiosflags(ios::fixed | ios::showpoint) 
             << setw(15)<<setprecision(10)<< one << endl; 
    } return 0; 
} 

 21 4.76837e-07    1.000000477 
 22 2.38419e-07    1.000000238 
 23 1.19209e-07    1.000000119 
 24 5.96046e-08    1.000000000 
 25 2.98023e-08    1.000000000 
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// test on the machine precision 
#include <iostream> 
#include <iomanip> 
#include <cmath> 
using namespace std; 
int main() 
{ 
    double one, eps; 
    eps = 1.0; 
    for ( int j=1; j <=100; j++) 
    { 

     eps = eps/2.0; 
        one = 1.0 + eps; 
        cout << setw(5)<<j<< setiosflags(ios::scientific) 
             << setw(12) << setprecision(6)  << eps  
             << setiosflags(ios::fixed | ios::showpoint) 
             << setw(23)<<setprecision(18)<< one << endl; 
    }return 0; 
} 

  50 8.88178e-16    1.00000000000000089 
  51 4.44089e-16    1.00000000000000044 
  52 2.22045e-16    1.00000000000000022 
  53 1.11022e-16    1.00000000000000000 
  54 5.55112e-17    1.00000000000000000 
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Three Types of Errors* 
1. Grammatical 

Using what is NOT in the programming language.  
The compiler finds them. 

2.  Errors in programming the algorithm  
Examples: (n-1) errors, inversion of logical tests, … 
We have to find them. 

3. Mirabile visu (strange to behold) : 
They show up only for some input parameters (see 
Murphy’s laws). Reasons: loss of significant digits 
(round off errors), iterative instabilities, … + many 
more. Developing good habits in programming helps to 
prevent these errors. 

*Classification from F.S. Acton “Real Computing made real”.  
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Type 3 - Typical errors 
•  Round off errors: any number is represented by a finite 

number of bits 
•  Approximation errors: from using approximations, like 

replacing  

                  on                   with finite a 
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Round off Errors 
Loss of significant digits  
Example: 3.1425926 – 3.1425811 = 0.0000115 
we have lost five significant digits in a single subtraction! 
(Multiplications and divisions with real numbers do not 
lose significant digits.) 

Loss of precision  
Erosion by repeated rounding errors (the least  
significant digits being eroded away first.)  
The average accumulated multiplication error after N 
steps is about  
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more examples: 

would produce a “noisy” result  

but after reducing the expression   

example 1  

example 2  
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Loss of significant digits  
Lost of significant digits “occur in so many ways that  
they defy useful classification and lack systematic cures.” 
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Always use double precision for 
calculations in physics research 
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Approximation errors 
Dealing with infinity: 

Solutions 1: transform variables. 
Example for integration:  

Transform variable of integration so that new interval is 
finite: y=1/(x+1) (but: not to introduce singularities) 
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Approximation errors 
Dealing with infinity: 

Solution 2: work with finite numbers, but evaluate “tails”.  
Example: use the asymptotic behavior  

for a >> 1 
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Random errors 
ECC memory 

Error-Correcting Code memory, a type of memory that 
includes special circuitry for detecting and correcting 
system memory errors by adding additional bits and using 
special codes. 

In the ECC code each data signal corresponds to specific 
rules.  Departures from these rules in the receiver can be 
automatically detected and corrected. 
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Blunders 

Only two things are infinite, the universe and human stupidity, 
and I'm not sure about the former.  
Albert Einstein 


