
1

Machine

 precision

 and errors

2

Machine representation and
precision

Every computer has a limit how small or large a
number can be

A computer represent numbers in the binary form.
Word length: number of bytes used to store a number
Most common architecture:

 Word length = 4 bytes = 32 bites
 Word length = 8 bytes = 64 bites

(1 byte = 1 B = 8 bits: 00000000)

3

Integer numbers

For a 8 bit computer

The highest number then: 28 – 1 (–1 because the first is “0”)
Since we need 1 bit for +/-
Then the highest number is 27 – 1 = 127
For 32-bit computers all integer numbers are in the range
231 – 1 = 2,147,483,647
For N-bit computers the range is [0,2N-1]
note: 1K = 1kB = 210 bytes = 1024 bytes.

4

Floating point numbers

 ------------------------ Three blocks -----------------------------
 0 1000 0000 1000000 0000 0000 0000 0000
 signbit 8-bit exponent 23-bit mantissa

range of exponent [-127,128] (2128 ~10+38)
Single precision : 6-7 decimal places 1/223 ~1.2*10-7
range: max – about ±3.402923×10+38

range: min – about ±1.401298×10−45

machine precision ε: 1.0 + ε = 1.0

5

Example
Getting a problem with the single precision is quite easy:
example – Bohr’s radius

the numerator 1.24*10-78

the denominator 2.33*10-68

the single precision 10-38

What to do?
- restructure the equation
- change units (scales)
- increase precision

6

Floating point: double precision (64 bits)

 ------------------------ Three blocks -----------------------------
 signbit 11-bit exponent 52-bit mantissa

range of exponent [-1023,1024] (21024 ∼10+308)

Double precision : 15-16 decimal places 1/252 ~1.2*10-15

range: max – about ±1.7976931348623157×10+308

range: min – about ±4.94065645841246544×10−324

machine precision ε: 1.0 + ε = 1.0

7

from “A Survey of Computational Physics. Introductory
Computational Science” by R.Landau et al (2008)

8

// test on the machine precision
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
int main()
{
 float one, eps;
 eps = 1.0;
 for (int j=1; j <=100; j++)
 {

 eps = eps/2.0;
 one = 1.0 + eps;
 cout << setw(5)<<j<< setiosflags(ios::scientific)
 << setw(12) << setprecision(6) << eps
 << setiosflags(ios::fixed | ios::showpoint)
 << setw(15)<<setprecision(10)<< one << endl;
 } return 0;
}

 21 4.76837e-07 1.000000477
 22 2.38419e-07 1.000000238
 23 1.19209e-07 1.000000119
 24 5.96046e-08 1.000000000
 25 2.98023e-08 1.000000000

9

// test on the machine precision
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
int main()
{
 double one, eps;
 eps = 1.0;
 for (int j=1; j <=100; j++)
 {

 eps = eps/2.0;
 one = 1.0 + eps;
 cout << setw(5)<<j<< setiosflags(ios::scientific)
 << setw(12) << setprecision(6) << eps
 << setiosflags(ios::fixed | ios::showpoint)
 << setw(23)<<setprecision(18)<< one << endl;
 }return 0;
}

 50 8.88178e-16 1.00000000000000089
 51 4.44089e-16 1.00000000000000044
 52 2.22045e-16 1.00000000000000022
 53 1.11022e-16 1.00000000000000000
 54 5.55112e-17 1.00000000000000000

10

Three Types of Errors*
1. Grammatical

Using what is NOT in the programming language.
The compiler finds them.

2.  Errors in programming the algorithm
Examples: (n-1) errors, inversion of logical tests, …
We have to find them.

3. Mirabile visu (strange to behold) :
They show up only for some input parameters (see
Murphy’s laws). Reasons: loss of significant digits
(round off errors), iterative instabilities, … + many
more. Developing good habits in programming helps to
prevent these errors.

*Classification from F.S. Acton “Real Computing made real”.

11

Type 3 - Typical errors
•  Round off errors: any number is represented by a finite

number of bits
•  Approximation errors: from using approximations, like

replacing

 on with finite a

12

Round off Errors
Loss of significant digits
Example: 3.1425926 – 3.1425811 = 0.0000115
we have lost five significant digits in a single subtraction!
(Multiplications and divisions with real numbers do not
lose significant digits.)

Loss of precision
Erosion by repeated rounding errors (the least
significant digits being eroded away first.)
The average accumulated multiplication error after N
steps is about

13

more examples:

would produce a “noisy” result

but after reducing the expression

example 1

example 2

14

Loss of significant digits
Lost of significant digits “occur in so many ways that
they defy useful classification and lack systematic cures.”

15

Always use double precision for
calculations in physics research

16

Approximation errors
Dealing with infinity:

Solutions 1: transform variables.
Example for integration:

Transform variable of integration so that new interval is
finite: y=1/(x+1) (but: not to introduce singularities)

17

Approximation errors
Dealing with infinity:

Solution 2: work with finite numbers, but evaluate “tails”.
Example: use the asymptotic behavior

for a >> 1

18

Random errors
ECC memory

Error-Correcting Code memory, a type of memory that
includes special circuitry for detecting and correcting
system memory errors by adding additional bits and using
special codes.

In the ECC code each data signal corresponds to specific
rules. Departures from these rules in the receiver can be
automatically detected and corrected.

19

Blunders

Only two things are infinite, the universe and human stupidity,
and I'm not sure about the former.
Albert Einstein

