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Integration 

 Exact integration 

 Simple numerical methods 

 Advanced numerical methods 
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Part 1 

Exact integration 
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Three possible ways for exact integration 

  Standard techniques of integration 
substitution rule, integration by parts, using 
identities, … 

  Tables of integrals 

  Computer algebra systems 
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Tables of integrals 

Table of Integrals, Series and Products  
by Gradshteyn I. S. and Ryzhik I. M. 
Academic Press, 1994 (many editions since 195x)  
(most referenced in physics) 

Integral and Series, vol.1-3,  
by Prudnikov A P, Brychkov Yu A and Marichev A I 
Gordon and Breach, New York, 1986 
(most sophisticated) 

Tables of Integrals and Other Mathematical Data 
by Herbert B. Dwight  
(very simple integrals) 

and many more … 
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Computer algebra systems 

  Maple 

  Mathematica 

  MathCad 

  Scientific Workplace 

  Derive 
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Part 2 

Basic ideas 
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Quite often we need numerical 
integrations 

  if you can not get an analytic answer using 
Tables of integrals 
Computer algebra systems 
… and various calculus books 

  if you have a discrete set of data points, i.e.  
as a result of measurements or calculations  
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Integrating approximating functions 
Numerical integration can be based on fitting 
approximating functions (polynomials) to discrete data 
and integrating approximating functions  
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Integrating approximating functions 
Case 1: 

The function to be integrated is known only at a finite set  
of discrete points 

Parameters under control – the degree of approximating 
polynomial  
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Integrating approximating functions 
Case 2: 

The function to be integrated is known.  

Parameters under control 

  The total number of discrete points 

  The degree of the approximating polynomial to 
represent the discrete data.  

  The locations of the points at which the known 
function is discretized 
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Part 3a 

Direct fit polynomials 
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Direct fit polynomials 
The procedure can be used for both unequally and  

equally spaced data 

It is based on fitting the data by a direct fit polynomial 

and integrating that polynomial.  
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Part 3b 

Quadrature methods on  
equal subintervals 
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Riemann Integral 

If          is a continuous function defined for 
and we divide the interval into n subintervals of equal width  
                           then the definite integral is 

Bernhard Riemann, 1826-1866, German mathematician 

The Riemann integral can be interpreted as a net area 
under the curve                 from a to b 
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Primitive rules 

1. The left endpoint Riemann sum  
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Primitive rules 

2. The right endpoint Riemann sum  
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Primitive rules 

3. The midpoint Riemann sum 



18 

Primitive rules 

The area of the trapezoid that lies 
above the i-th subinterval 

4. The trapezoidal rule 
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// Integration by the trapezoidal rule of f(x) on [a,b] 
// f - Function to integrate (supplied by a user) 
//    a - Lower limit of integration 
//    b - Upper limit of integration 
//    r - Result of integration (out) 
//    n - number of intervals 
double int_trap(double(*f)(double),  
                double a, double b, int n) 
{ 
    double r, dx, x; 
    r = 0.0; 
    dx = (b-a)/n; 
    for (int i = 1; i <= n-1; i=i+1) 
    { 
        x = a + i*dx; 
        r = r + f(x); 
    } 
    r = (r + (f(a)+f(b))/2.0)*dx; 
    return r; 
} 

Example: C++ 
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Let us talk about … interpolation 

First-order interpolation for the i-th subinterval 

Integral for the i-th subinterval 

Trapezoidal approximation is application of the 1st order 
interpolation for the each subinterval 
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Integration and the second order 
interpolation 
Using the three-point interpolation one may write 
Simpson’s Rule for integration 

Number of n intervals should be even. If n is odd then the 
last interval should be treated by some other way 

Thomas Simpson, 1710-1761, England 

Useful exercise: Derive the Simpson rule with a pair of slices with 
an equal interval by using second-order interpolation for f(x) in 
the region [xi-1, xi+1].  
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// integration by Simpson rule of f(x) on [a,b] 
// f - Function to integrate (supplied by a user) 
//    s - Result of integration (out) 
//    n - number of intervals 

double int_simp(double(*f)(double),  
                double a, double b, int n) 
{   double s, dx, x; 
// if n is odd we add +1 interval to make it even 
    if((n/2)*2 != n) {n=n+1;} 
    s = 0.0; 
    dx = (b-a)/n; 
 for ( int i=0; i <n/2; i=i+1) 
    { x = a+2*i*dx; 
        s = s + 4.0/3.0*f(x); } 

 for ( int i=1; i <n/2; i=i+1) 
    { x = a+2*i*dx; 
        s = s + 2.0/3.0*f(x); } 

    s = (s + (f(a) + f(b))/3.0)*dx; 
    return s;} 

Example: C++ 
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Part 3c 

Newton-Cotes formulas 
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Equally spaced points –>  
Newton forward difference polynomials 
Newton forward/backward/centered difference 
polynomial are very useful in interpolation and numerical 
differentiation. Let’s consider numerical integration  
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Comments 
using s as a variables 

Each choice of the degree n of the interpolating 
polynomial yields a different Newton-Cotes formula.  

See Abramowitz and Stegun (1964) for many high-order 
formulas 
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Some terminology 
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The trapezoid rule (revisited) 
A first degree polynomial for a single interval (two points) 
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The trapezoid rule (revisited) 
The error estimation can be done by integrating the error 
term in the polynomial 
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The Simpson’s rule (revisited) 
Simpson’s 1/3 rule = a second degree polynomial for  
two intervals (three equally spaced points) 

upper limit of integration for a single interval s=2 
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The Simpson’s rule (revisited) 
The error estimation can be done by integrating the error 
term in the polynomial 



31 

The Simpson’s 3/8 rule 
Simpson’s 3/8 rule = a third degree polynomial for four 
equally spaced points 

upper limit of integration for a single interval s=3 
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The Simpson’s 3/8 rule 
total number of increments must be a multiple of three  

the same order of the error as Simpson’s 1/3 rule!  
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Other view on numerical integration 

Quadrature is weighted sum of finite number of sample 
values of integrand function 

trapezoid approximations 

Simpson’s rule  
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Equal interval integration (quadrature) 

Elementary weights for uniform-step integration rules 

name   degree  elementary weights 

trapezoid  1  (h/2, h/2) 

Simpson’s  2  (h/3, 4h/3, h/3) 

3/8   3  (3h/8, 9h/8, 9h/8, 3h/8) 

Milne   4  (14h/45, 64h/45, 24h/45, 64h/45, 14h/45) 
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Integration error 
Generally as N increases, the precision of a method increases 
However, as N increases, the round-off error increases 

Some evaluations (not exact but gives an idea)*: 
Number of steps for highest accuracy: 
trapezoid rule   steps   error 
single precision   631   3*10-6  

double precision   106   10-12 

Simpson’s rule   steps   error 
single precision   36   6*10-7 

double precision   2154   5*10-14 

* see details in R.H. Landau & M.J.Paez, An Introduction to Computational Physics 
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Integration error (cont.) 

The best numerical evaluation of an integral can be obtained 
with a relatively small number is sub-intervals (N~1000)  
(not with N           )  

It is possible to get an error close to machine precision with 
Simpson’s rule and with other higher-order methods (Newton-
Cotes quadrature) 
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Example 
  Intervals  Trapez.   Simpson 
         2  1.570796  2.094395 
         4  1.896119  2.004560 
         8  1.974232  2.000269 
        16  1.993570  2.000017 
        32  1.998393  2.000001 
        64  1.999598  2.000000 
       128  1.999900  2.000000 
       256  1.999975  2.000000 
       512  1.999994  2.000000 
      1024  1.999998  2.000000 
      2048  2.000000  2.000000 

    result from quanc8 
    nofun =         33 
 integral =   2.000000 
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Example 
  Intervals  Trapez.   Simpson 
         2  0.578769  0.811200 
         4  0.813285  0.891458 
         8  0.688670  0.647131 
        16  0.285919  0.151669 
        32  0.049486 -0.029325 
        64  0.004360 -0.010682 
       128  0.001183  0.000124 
       256  0.000526  0.000306 
       512  0.000368  0.000315 
      1024  0.000329  0.000316 
      2048  0.000319  0.000316 
      4096  0.000316  0.000316 
      8192  0.000316  0.000316 
     16384  0.000316  0.000316 
     32768  0.000316  0.000316    
result from quanc8 
    nofun =       1601 
 integral =  0.0003156 
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Richardson Extrapolation and  
Romberg Integration 
Key idea – use the error estimation to extrapolate 
integrals’ values 

When extrapolation is applied to numerical integration by 
the trapezoid rule, the result is called Romberg integration 
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Romberg Integration 

Error in the trapezoid rule has the functional form 
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Part 4 

Gaussian quadrature 
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Gaussian quadrature 

Flexibility for known functions – to choose n points xi and 
ci so that the integral of a polynomial of degree 2n-1 is 
exact. 

Gaussian integration produces higher accuracy than the 
Newton-Cotes formulas with the same number of function 
evaluations. 

If the function to integrate is not smooth, then Gaussian 
quadrature may give lower accuracy 
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Example for n=2 and 2n-1=3 
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Example for n=2 
and 

four unknowns  
and  
four equations 
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Example for n=2 
and after some tedious work … 
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Solving the system gives 

Another way. Choose t1, t2, c1, c2 so that I is exact for the 
following four polynomials: f(t) = 1, t, t2, t3 (and use a=-1, b=1) 
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Gaussian quadratures for 
transformation between x and t space  
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Example: Gaussian quadrature parameters 
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/*  Numerical integration of f(x) on [a,b] 
    method: Gauss (4 points) 
input: 
    f   - a single argument real function 
    a,b - the two end-points (interval of integration) 
output:  r - result of integration 
*/ 
  double gauss4(double(*f)(double), double a, double b) 
{ 
    const int n = 4; 
    double ti[n] = {-0.8611363116, -0.3399810436, 
                     0.3399810436,  0.8611363116}; 
    double ci[n] = { 0.3478548451,  0.6521451549, 
                     0.6521451549,  0.3478548451}; 
    double r, m, c; 
    r = 0.0; 
    m = (b-a)/2.0; 
    c = (b+a)/2.0; 
    for (int i = 1; i <= n; i=i+1) 
    {r = r + ci[i-1]*f(m*ti[i-1] + c); } 
    r = r*m; 
    return r; 
} 

Example: C++ 
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/*  Numerical integration of f(x) on [a,b] 
    method: Gauss (8 points using symmetry) 
input: 
    f   - a single argument real function 
    a,b - the two end-points (interval of integration) 
output:  r - result of integration */ 
  double gauss8(double(*f)(double), double a, double b) 
{ 
    const int n = 4; 
    double ti[n] = {0.1834346424, 0.5255324099, 
                    0.7966664774, 0.9602898564}; 
    double ci[n] = {0.3626837833, 0.3137066458, 
                    0.2223810344, 0.1012285362}; 
    double r, m, c; 
    r = 0.0; 
    m = (b-a)/2.0; 
    c = (b+a)/2.0; 
    for (int i = 1; i <= n; i=i+1) 
    {r=r+ci[i-1]*(f(m*(-1.0)*ti[i-1]+c)+f(m*ti[i-1]+c)); 
    } 
    r = r*m; 
    return r; 
} 

Example: C++ 
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Example 
  Intervals  Trapez.   Simpson 
         2  1.570796  2.094395 
         4  1.896119  2.004560 
         8  1.974232  2.000269 
        16  1.993570  2.000017 
        32  1.998393  2.000001 
        64  1.999598  2.000000 
       128  1.999900  2.000000 
       256  1.999975  2.000000 
       512  1.999994  2.000000 
      1024  1.999998  2.000000 
      2048  2.000000  2.000000 

    result from quanc8 
    nofun =         33 
 integral =   2.000000 

gauss4 = 1.999984 

gauss8 = 2.000000 
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Gaussian quadratures 

Tables with coefficients can be found in 
“Handbook of Mathematical Functions, With 
Formulas, Graphs, and Mathematical Tables” 
by Abramowitz and Stegun. 

 Gauss-Legendre  [-1, +1]            1 

 Gauss-Jacobi (-1,+1) 

 Gauss-Chebyshev (-1,+1) 

 Gauss-Hermite (-∞, +∞) 

 Gauss-Laguerre [0, +∞) 
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Part 5 
Automatic and Adaptive Integration 

The aim of an automatic integration scheme is to relieve the 
person who has to compute an integral of any need to think.  

Davis P. J., and P. Rabinowitz, Methods of Numerical 
Integration (Dover, 2nd edition) (2007) 
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Automatic and Adaptive Integration 
A favorite research topic since the 1960s.  
User-friendly routines where the user enters  
1) the limits of integration, 2) selects the routine for 
computation of f(x), 3) provides a tolerance ε, and 4) enters the 
upper bound N for the number of functional computations.  

Then the program exits either  
1) with the computed value which is correct within the ε  
2) with a statement that the upper bound N was attained but 
the tolerance was not achieved, and the computed result may 
be the "best“ value of the integral determined by the program.  
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Automatic and Adaptive Integration 

Automatic integration falls into two classes: iterative or non-
iterative, and adaptive or non-adaptive.  

The iterative schemes: computing successive 
approximations to the integral until an agreement with the 
tolerance is achieved,  

The non-iterative schemes: the information from the first 
approximation is carried over to generate the second 
approximation, which then becomes the final result.  
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Adaptive Integration 
The adaptive schemes: the points at which the integration 
is carried out are chosen in a manner that is dependent on 
the nature of the integrand – the domain of integration is 
selectively refined to reflect behavior of particular 
integrand function on a specific subinterval. 

The non-adaptive schemes: the integration points are 
chosen in a fixed manner which is independent of the 
nature of the integrand, although the number of these  
points depends on the integrand - continue to subdivide all 
subintervals, say by half, until overall error estimate falls 
below desired tolerance (not an inefficient way). 
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Adaptive programs tend to be effective in 
practice … but it can be fooled 

Interval of integration may be very wide but 
“interesting" behavior of integrand is confined to 
narrow range 

Sampling by automatic routine may miss interesting 
part of integrand behavior, and resulting value for 
integral may be completely wrong 
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Part 6 

“Special cases” 
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Integrals with oscillating functions 

Use methods or programs specially designed to 
calculate integrals with oscillating functions: 

# Filon’s method  

# Clenshaw-Curtis method 
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Improper Integrals:  
Type 1 – Infinite Intervals 

1.  Transform variable of integration so that the new interval is 
finite: examples: y=exp(-x), then [0,∞]  into [0,1] 
(but: not to introduce singularities) 

2. Replace infinite limits of integration by carefully chosen 
finite values.  

3. Use asymptotic behavior (if possible) to evaluate the “tail” 
contribution. 

4. Use nonlinear quadrature rules designed for infinite 
intervals 
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example: replace infinite limits of 
integration by finite values 
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example: using asymptotic behavior 

for a >> 1 we use the asymptotic behavior of the function 

exact value 
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Example 

    Intervals  Trapez.   Simpson 
         2  0.166362  0.205151 
         4  0.321345  0.373006 
         8  0.536673  0.608449 
        16  0.833630  0.932615 
        32  1.218034  1.346168 
        64  1.619001  1.752657 
       128  1.873848  1.958797 
       256  1.970354  2.002522 
       512  2.003473  2.014513 
      1024  2.015099  2.018974 
      2048  2.019202  2.020570 
      4096  2.020652  2.021136 
      8192  2.021165  2.021336 
     16384  2.021346  2.021407 
     32768  2.021410  2.021432    
result from quanc8 
    nofun =        769 
 integral =   2.021445 

     Intervals  Trapez.   Simpson 
         2  0.366362  0.405151 
         4  0.521345  0.573006 
         8  0.736673  0.808449 
        16  1.033630  1.132615 
        32  1.418034  1.546168 
        64  1.819001  1.952657 
       128  2.073848  2.158797 
       256  2.170354  2.202522 
       512  2.203473  2.214513 
      1024  2.215099  2.218974 
      2048  2.219202  2.220570 
      4096  2.220652  2.221136 
      8192  2.221165  2.221336 
     16384  2.221346  2.221407 
     32768  2.221410  2.221432    
result from quanc8 
    nofun =        769 
 integral =   2.221445 

upper limit = 100        no “tail”                              with the “tail” = 0.20000 
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Improper Integrals:  
Type 2 – Discontinuous Integrands 
                    when           is discontinuous at 0 

Formal definition 

Proceeding to the limit 
Change variables 
Elimination of the singularity 
Gauss type quadratures 
… 
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Improper integrals 3: 
Integrals with integrable singularity 

Method 1:  
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Improper integrals 3: 
Integrals with integrable singularity 

Method 2:  

then for some cases one of following quadrature rules can 
be used: 
Gauss-Christoffel 
Jacoby,   
Chebyshev  
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Improper integrals 3: 
Integrals with integrable singularity 

Method 3:  

using non-standard quadrature rules allowing explicitly for 
the singularity 

Method 4: 

Use programs from trusted numerical libraries or books. 



68 

Principal value integrals 
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Principal value integrals (part 2) 
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Double and multiple integrals 

Use automatic one-dimensional quadrature routine for 
each dimension, one for outer integral and another for 
inner integral 

Monte-Carlo method  
(effective for large dimensions) 
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Integrating Tabular Data 

Reasonable approach is to integrate piecewise 
interpolant 

Cubic spline interpolation could be a good method. 



72 



73 

too sad 
95 % of all practical work in numerical analysis boiled 
down to applications of Simpson's rule and linear 
interpolation. 
Milton Abramowitz  

from Davis P. J., and P. Rabinowitz, Methods of 
Numerical Integration (Dover, 2nd edition) (2007)  
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Conclusion 

  Analyze first: the existence of the integral 

  Transform the integral to a simpler form (if possible) 

  Analyze the function: smooth or oscillating,   
functions with singularities, narrow peaks, … 

  Analyze to type of the integral (regular, improper, …) 

  Select a method that fits the function and the integral  

  Always test any program for integration before using 
for real calculations. 


