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An m×n matrix is a rectangular array of complex or real 
numbers arranged in m rows and n columns: 
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Types, Operations, etc. 


   Types: square, symmetric, diagonal, triangular (upper 
U or Lower L), tri-diagonal, banded, transpose, sparse, 
Hermithean, … 


   Basic operations: A+B, A-B, AB (generally AB≠BA). 

   Square matrices 


   Determinant: det(A) 

   Inverse matrix A-1: AA-1 = I (I is a unit matrix) 


   … 
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Applications 

Linear systems of equations 

Eigenvalue problem 
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Linear systems of equations 


   m>n  over determined system (data processing) 

   m=n  square case (what we will do) 

   m<n  under determined system 
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Linear systems in matrix notation 
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Two cases for right-hand coefficients 

  right-hand coefficients bi ≠ 0 
Unique solution if the determinant det(A) ≠ 0 

  right-hand coefficients bi = 0 
 Unique solution if the determinant det(A) = 0 
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Two fundamental groups for solving (1)  
Direct elimination methods – systematic procedures for obtaining 
solutions in a fixed number of operations 

  Gauss elimination 

  Gauss-Jordan elimination 

  the matrix inverse method 

  Doolittle LU factorization 

  … 

Direct elimination methods are generally used when one or more of 
the following conditions holds: 

  the number of equations is small (<100) 

  the most of the coefficients are nonzero 

  the system is not diagonally dominant 

  the system is ill-conditioned  
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Two fundamental groups for solving (2)  
Iterative methods – obtain a solution asymptotically by an iterative 
procedure 

  Jacobi iteration 

  Gauss-Seidel iteration 

  SOR – successive-over-iteration 

  …   

Iterative methods are used  

  when the number of the equations is large and the most of the 
coefficients are zero (sparse matrix) 

Iterative methods generally diverse unless thye system is diagonally 
dominant 
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Useful row operations 
Useful properties for solving systems of liner equations 

  any equation may be multiplied by a constant (scaling) 

  the order of the equations may be interchanged (pivoting) 

  any equation can be replaced by a weighted linear combination 
of that equation with any other equation (elimination) 
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Analytic solutions for n=2 

a11x1 + a12x2=b1 

a21x1 + a22x2=b2 

expressing the first unknown x1 from the first equation  
x1 = (b1 - a12x2)/a11 

and substituting to the second equation we have a 
single equation with one unknown x2.  
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Gaussian elimination 

  Since there is no such an operator as elimination 
neither in C++ nor Fortran we should translate this 
procedure to an appropriate numerical method for 
solving systems of linear equations. 

  Numerical method = Gaussian elimination 
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Let subtract the first equation multiplied by the coefficient a21/a11 from the 
second one, and multiplied by the coefficient a31/a11 from the third equation.  
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Repeating the same procedure to the last of two equations 
gives 

where 



14 

Doing back substitution we will find x2 and then x1.  

This direct method to find solutions for a system of 
linear equations by the successive elimination is 
known as Gaussian elimination. 
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  zero diagonal elements 
  round-off errors 
  ill-conditioned systems 
  computational time 
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Zero diagonal elements 
  The problem may be solved by interchanging the 

rows of the system, pushing zero elements to off 
the diagonal. This is the partial pivoting 
procedure. 

  Moreover, reordering the system in a way when 
a11>a22>a33>...>ann would increase efficiency of 
the method. This is the issue of the complete 
pivoting. 
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Round-off errors 
  For the each new elimination the Gaussian method 

utilizes results from the previous eliminations. This 
procedure accumulates the round-off errors.  

  Thus, for large systems you may get wrong numerical 
solution by doing everything right.  

  It is highly recommended to check solutions by direct 
substitution of x1, x2, ..., xn into the original system of 
linear equations.  
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Round-off errors 2. 

  How can we reduce the round-off errors?  

  Usually, complete pivoting may be very efficient. 

  Scaling, multiplication of the i-th equation by a 
constant ci, may also help in improving accuracy. 
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ill-conditioned systems 
  a small change in coefficients will produce large 

changes in the result. 

  In particularly, this situation occurs when the 
determinant for A is close to zero. 

  The solution may be very unstable, regarding the 
way you are solving the system 
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Computer time 
  As the number of equations in the system increases, 

the computation time grows nonlinearly.  
  Systems with hundreds, even thousands, equations 

are common in physics. And you may face a problem 
of waiting for weeks, if not years, to get an output 
from your computer.  

  Sometimes iterative methods can help to increase 
speed, but generally they are less accurate. 
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The most powerful method! 

  Using standard libraries!!! 

  Specifically, LAPACK library is a very large Linear 
Algebra Package with hundreds programs.  

  However, you have to be careful selecting a program 
that is right for your specific system of linear equations. 
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Eigenvalue problem 

Ax = λx 

Structure calculations for quantum systems  
(atomic, molecular, nuclear, solid state systems) 

coefficients λ (eigenvalues) are unknown! 
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Other form 
Regrouping terms gives 

Looks like a system of linear equations 

For the each eigenvalue there is a unique set of 
solutions called eigenvectors 
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One more form 
Introducing a unit matrix I, which is 

then 
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Finding λ 
Solutions for the system  
exists if and only if the determinant of the matrix is zero 

For a n×n matrix the equation above would give a 
polynomial in λ of degree n 

The coefficients c are determined through the matrix elements 
aij by the definition for the matrix determinant. This polynomial 
equation is known as the characteristic equation of the matrix 
A. Roots of this equation would give the required eigenvalues. 

But, this method is NOT practical unless n is very small 
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Eigenvalues  
It has been proved that it is not possible to calculate the roots 
of an arbitrary nth-degree polynomial exactly in a finite 
number of steps, for n >5 
The eigenvalue problem stands apart from other problems in  
computational linear algebra.  
All methods for finding matrix eigenvalues are iterative.  
Most methods for finding all eigenvalues and eigenvectors of 
a matrix are based on the fact that the transformation  
             A → Q-1AQ  
does not change the eigenvalues of A.  
Thus "transformation" methods attempt to find matrices Q 
such that Q-1AQ has a form that makes eigenvalue extraction 
trivial (the eigenvalues can be read off the diagonals of 
triangular and diagonal matrices) or at least easier  
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The direct power method  
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The basis of the power method  
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The inverse power method  
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The shifted power method  
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Meanwhile in physics 

  In physics, we often deal with either symmetric aij=aji or 
Hermithean aij=aji* matrices  
(a* stands for complex conjugate elements).  

  It is important o know that all the eigenvalues for these 
matrices are real. 

  Symmetric matrix eigenvalue problems are MUCH 
easier to solve 
# we can avoid complex arithmetic 
# they are generally solved using algorithms especially 
   designed for symmetric matrices 
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The Jacobi method 
The Jacobi method for the symmetric eigenvalue problem is 
no longer considered state-of-the-art (there are other methods 
that are somewhat faster).  

However, it has the advantage that it is simple to program and 
to analyze, and it is no less stable or robust than the more 
sophisticated methods. 

It is guaranteed to find all the eigenvalues and eigenvectors of 
a symmetric matrix in a reasonable amount of time.  
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The Jacobi method 
The Jacobi method constructs a sequence of similarity 
transformations  

where the Q-matrices are Givens rotation matrices of the form 

for Givens rotational matrices 
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The Jacobi method 
Multiplying a matrix      by            has the effect of replacing 
rows i and j by linear combinations of the original rows i and j. 
Coefficients c and s can be chosen so that a zero will be 
introduced into the (j, i)th position of A.  
However, to preserve the eigenvalues of A, we are forced to 
multiply by Qij, which has the effect of changing columns i and 
j,  
… and the multiplication will normally cause the element just 
zeroed (aji) to become nonzero.  
This is not a problem if we plan ahead; we simply have to 
choose c and s so that the zero is not created until the end—
after remultiplication and postmultiplication. 
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The Jacobi method 
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But when we zero a new element of A, a previously zeroed 
element may become nonzero. Every time we knock out one off-
diagonal element, others pop back up; so it might seem that our 
algorithm is useless. 
Fortunately, although our transformed matrices never become 
quite diagonal, they do make steady progress toward that goal. 



42 



43 

  Once we have eigenvalues, we may solve the system 
of linear equations                                 to find a set of 
solutions x = {x1, x2, … xn} for the each value of λ.  

  These solutions are called eigenvectors.  

  For Hermithean matrices, the eigenvectors 
corresponding to distinct eigenvalues are orthogonal. 
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  In general, the scheme above for solving the eigenvalue 
problem looks very straightforward. 

  However, this scheme is getting unstable as the size of the 
matrix increases.  

  The standard libraries have many robust and stable 
computer programs for solving eigenvalue problem. 

  In particularly, programs based on the Faddeev-Leverrier 
method are very popular and successful in atomic and 
molecular structure calculations.  

  The Lanczos algorithm is a good choice for large and sparse 
matrices which are common in many-body problem. 
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Many scientific programming problems arise from the 
improper use of arrays on computers 

  Computers are finite: you can run out of memory or 
run very slowly when dealing with LARGE matrices 
for storing A(10000,10000) matrix -> 1 GB memory 

  Processing time: matrix operation, on average, require 
on the order of N3 steps. Doubling the dimension leads to 
eightfold increase in processing time 

  Paging: when a program runs out of RAM (virtual 
memory on HDD). When a program is near the memory limit, 
even a slight increase in a matrix size may lead to an order of 
magnitude increase in running time. 
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  Matrix storage: the computer stores matrices as a 
linear string of numbers. For a(2,2) matrix 
Fortran: a(1,1) a(2,1) a(1,2) a(2,2) 
C: a(0,0) a(0,1) a(1,0) a(1,1) 

  Processing sizes to subprograms: you must watch 
that the sizes of your matrices do not exceed the 
bounds in the subprograms.  
Main program 

 dimension a(100) 
subroutine One(a) 

 dimension a(10) 
 … 
 a(300) = 8.0 
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Do not write your own matrix subroutines 
unless you solve a simple problem. 

Get them from a well established scientific library 
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  Short list:   free                        commercial  
netlib (meta library/free)   nag ($$$) 
slatec  (free)     imsl ($$$) 
lapack    (free)     essl ($$$) 
lapack++   (free) 

  Extended list:  
http://www.physics.odu.edu/~godunov/computing/lib_net.html 


