Welcome to

Introduction

Electromagnetic Theory

Coordinate Systems

Cartesian Coordinates

$$\vec{A} = A_{x}\hat{x} + A_{y}\hat{y} + A_{z}\hat{z}$$

- magnitude 1 - points along axis

Note that \bar{A} is the sum of the 3 vectors which point in the x,y,z direction.

The magnitude of
$$\vec{A} = |\vec{A}|$$
 which is

 $|\vec{A}| = [A_x^2 + A_y^2 + A_z^2]^{1/2}$

Vector operations in Cartesian coordinates

$$\begin{split} \vec{A} &= A_x \hat{i} + A_y \hat{j} + A_z \hat{k} \\ \vec{B} &= B_x \hat{i} + B_y \hat{j} + B_z \hat{k} \end{split}$$

Simply add components Addition:

$$\vec{A} + \vec{B} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j} + (A_z + B_z)\hat{k}$$

Subtraction: Add the inverse vector

$$\vec{A} - \vec{B} = \vec{A} + (-\vec{B})$$

$$\vec{A} - \vec{B} = (A_x - B_x)\hat{i} + (A_y - B_y)\hat{j} + (A_z - B_z)\hat{k}$$

Note: - addition is commutative: $\vec{A} + \vec{B} = \vec{B} + \vec{A}$

- addition is associative: $(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$

The sum or difference of 2 vectors is itself a vector. And the magnitude of the difference of 2 vectors is:

$$|(\bar{A} - \bar{B})| = [(A_x - B_x)^2 + (A_y - B_y)^2 + (A_z - B_z)^2]^2$$

$$\vec{A}$$
 \vec{A} \vec{B}

Notation: Sometimes we will write

Multiplication:

Scalar times vector: $\Rightarrow a\vec{A}$

a>0 direction unchanged a<0 direction reversed

Scalar multiplication is distributive:

$$a(\vec{A} + \vec{B}) = a\vec{A} + a\vec{B}$$

Vector times vector.

• dot product (scalar product)

$$\vec{A} \cdot \vec{B} \equiv \left| \vec{A} \right| \left| \vec{B} \right| \cos \theta$$

The dot product is a scalar and

is commutative: $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$

and distributive: $\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$

heta is the angle between $ar{A}$ and $ar{B}$

We can think of $B\cos\theta$ as the "projection" of \bar{B} onto the direction of \bar{A}

So the dot product is a measure of how much one vector points along the direction of the other vector.

For \vec{A}, \vec{B} parallel $\vec{A} \cdot \vec{B} = AB$ $(\cos 0 = 1)$ \vec{A}, \vec{B} perpendicular $\vec{A} \cdot \vec{B} = 0$ $(\cos \frac{\pi}{2} = 0)$

Since $\vec{A} \cdot \vec{A} = A^2$ we see that the magnitude of \vec{A} is $|\vec{A}| = \sqrt{\vec{A} \cdot \vec{A}}$

What about unit vectors:

$$\hat{x} \cdot \hat{x} = \hat{y} \cdot \hat{y} = \hat{z} \cdot \hat{z} = 1$$

$$\hat{x} \cdot \hat{y} = \hat{y} \cdot \hat{z} = \hat{x} \cdot \hat{z} = 0$$

From which it follows

$$\begin{split} \vec{A} \cdot \vec{B} &= \left(A_x \hat{x} + A_y \hat{y} + A_z \hat{z} \right) \cdot \left(B_x \hat{x} + B_y \hat{y} + B_z \hat{z} \right) \\ &= A_x B_x + A_y B_y + A_z B_z \end{split}$$

× cross product (vector product)

The cross product of 2 vectors is a \underline{vector} whose direction is \bot to the plane containing the 2 initial vectors.

$$\vec{D} = \vec{A} \times \vec{B} = |\vec{A}| |\vec{B}| \sin \theta \hat{n}$$

 \hat{n} is unit vector \bot to plane containing \vec{A} and \vec{B}

There are two possible directions for the resulting vector use "right hand rule":

Curl fingers (of your right hand!) from \vec{A} to \vec{B} . then \hat{n} is the direction of your thumb.

The cross product is distributive:

$$\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$$

But, it is not commutative:

$$\vec{A} \times \vec{B} \neq \vec{B} \times \vec{A}$$

Unit vectors:

$$\hat{x} \times \hat{x} = \hat{y} \times \hat{y} = \hat{z} \times \hat{z} = 0$$

$$\hat{z} \times \hat{x} = \hat{v}$$
 $\hat{x} \times \hat{z} = -\hat{v}$

So:
$$\vec{A} \times \vec{B} = (A_x \hat{x} + A_y \hat{y} + A_z \hat{z}) \times (B_x \hat{x} + B_y \hat{y} + B_z \hat{z})$$

$$= A_{a}B_{x}\hat{x} \times \hat{x} + A_{b}B_{x}\hat{x} \times \hat{y} + A_{b}B_{x}\hat{x} \times \hat{z} + A_{b}B_{x}\hat{y} \times \hat{x} + A_{b}B_{x}\hat{y} \times \hat{y} + A_{b}B_{x}\hat{y} \times \hat{z} + A_{b}B_{x}\hat{z} \times \hat{z} + A_$$

Note that the cross product can be written as a determinant:

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

Cylindrical Coordinates

Note: \hat{s} and $\hat{\phi}$ depend of ϕ .

Unit vectors:

$$\hat{s} = \cos\phi \hat{x} + \sin\phi \hat{y}$$
$$\hat{\phi} = -\sin\phi \hat{x} + \cos\phi \hat{y}$$

Ã= A≥2+A5S

The coordinate transformation to Cartesian coordinates:

$$x = s \cos \phi$$
$$y = s \sin \phi$$
$$z = z$$

10

Spherical Coordinates

 θ - polar angle φ - azimuthal angle

$$\phi$$
 - azimutnai angle
 $\hat{\Phi} \cdot \hat{\Phi} = \hat{\Gamma} \cdot \hat{\Gamma} = \hat{V} \cdot \hat{V} = \hat{V}$

$$\vec{A} = A_r \hat{r} + A_\theta \hat{\theta} + A_\phi \hat{\phi}$$

Unit vectors:

 $\hat{r} = \sin\theta\cos\phi\hat{x} + \sin\theta\sin\phi\hat{y} + \cos\theta\hat{z}$

 $\hat{\phi} = -\sin\phi\hat{x} + \cos\phi\hat{y}$

 $\hat{\theta} = \cos\theta\cos\phi\hat{x} + \cos\theta\sin\phi\hat{y} - \sin\theta\hat{z}$

The coordinate transformation $x = r \sin \theta \cos \phi$ to Cartesian coordinates:

 $y = r \sin \theta \sin \phi$ $z = r \cos \theta$

Uses of vectors

One of the uses of a vector is a "locator"

Consider a point P(x,y,z). The position vector is defined:

$$\vec{r} \equiv x\hat{x} + y\hat{y} + z\hat{z}$$

It is a vector which points from the origin to point P.

Clearly, it has magnitude

$$r = \left[x^2 + y^2 + z^2\right]^{1/2}$$

And the unit vector is simply the normalized \vec{r} vector

$$\hat{r} = \frac{\vec{r}}{r} = \frac{x\hat{x} + y\hat{y} + z\hat{z}}{\left[x^2 + y^2 + z^2\right]^{1/2}}$$

12

What about the difference or "separation" of two vectors?

 $\vec{\Re} = \vec{r} - \vec{r}'$

We will encounter $\vec{\Re}$ frequently since one point is often a "source" and the other a "point of interest" (to determine the effect of the source).

A vector can also be considered a function to represent a physical quantity associated with a point (like a field).

We would write

$$\vec{A}(\vec{r})$$

A - vector function \vec{r} - point location

Of course, our function could also be a scalar. $f(\vec{r})$

Calculus

Derivatives

Recall that a derivative measures how fast a function changes with respect to a change

in a independent variable.

For example, a rate (change w.r.t. time) $\Delta \vec{A} = \Delta A_x \hat{x} + \Delta A_y \hat{y} + \Delta A_z \hat{z}$

$$\frac{d\vec{A}}{dt} = \lim_{\Delta \to 0} \frac{\vec{A}(t + \Delta t) - \vec{A}(t)}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{\Delta A_x \hat{x} + \Delta A_y \hat{y} + \Delta A_z \hat{z}}{\Delta t}$$

$$= \frac{dA_x}{dt}\hat{x} + \frac{dA_y}{dt}\hat{y} + \frac{dA_z}{dt}\hat{z}$$

What about spatial derivatives?

Scalar functions

 Consider a one-dimensional function f(x) The derivative $\frac{df}{dx}$ is just the slope of f vs. x.

What about higher dimensions?

ullet Consider f(x,y) which is continuous and differentiable. How does f changes if you move dl?

$$d\vec{l} = dx\hat{x} + dy\hat{y} \qquad df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

But, it can be written:
$$df = \vec{A} \cdot d\vec{l} \quad \vec{A} = \frac{\partial f}{\partial x} \hat{x} + \frac{\partial f}{\partial y} \hat{y}$$

The vector \vec{A} is known as the "gradient"

$$\vec{A} = \operatorname{grad} f \equiv \vec{\nabla} f$$

$$\vec{A} = \operatorname{grad} f \equiv \vec{\nabla} f$$

For 3 dimensions:

$$\vec{\nabla} f = \frac{\partial f}{\partial x} \hat{x} + \frac{\partial f}{\partial y} \hat{y} + \frac{\partial f}{\partial z} \hat{z} \quad \Rightarrow \quad \vec{\nabla} = \frac{\partial}{\partial x} \hat{x} + \frac{\partial}{\partial y} \hat{y} + \frac{\partial}{\partial z} \hat{z}$$

$$\text{"del" operator} \qquad \qquad \text{\ Nab(a)}$$

What is the magnitude of $\vec{\nabla} f$?

$$\begin{split} & |\bar{\nabla}f| = \left[\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 + \left(\frac{\partial f}{\partial z} \right)^2 \right]^{1/2} \\ & df = \bar{A} \cdot d\bar{l} = \bar{\nabla}f \cdot d\bar{l} = |\bar{\nabla}f| |d\bar{l}| \cos \theta \end{split}$$

Clearly df is maximum when $\cos\theta=1$ $(\theta=0)$ i.e. $d\vec{l}$ is in the direction of $\vec{\nabla} f$.

The gradient is a vector whose magnitude and direction are those of the max (spatial) change in f.

The height of a certain hill (in feet) is given by Problem 1.12. $h(x, y) = 10(2xy - 3x^2 - 4y^2 - 18x + 28y + 12)$ where y is the distance (in miles) north, x the distance east of a city.

- (a) Where is the top of the hill located?
- (b) How high is the hill?
- (c) How steep is the slope (feet/mile) at a point 1 mile north and 1 mile east of the city. In what direction is the slope steepest, at that point?

$$\vec{\nabla} h = \frac{\partial h}{\partial x} \hat{x} + \frac{\partial h}{\partial y} \hat{y} = 10(2y - 6x - 18)\hat{x} + 10(2x - 8y + 28)\hat{y}$$

(a) At the top,
$$\nabla h = 0$$
.
 $2y - 6x - 18 = 0$ \Rightarrow $-6x + 2y - 18 = 0$
 $2x - 8y + 28 = 0/x3$ \Rightarrow $6x - 24y + 84 = 0$
 $-22y + 66 = 0$

y=3 x=-2The top is 3 miles north and 2 miles west of the city.

(b) h(-2,3) = 10(-12-12-36+36+84+12)ft = 720 ft

(c) $\vec{\nabla} h(1,1) = 10(2-6-18)\hat{x} + 10(2-8+28)\hat{y} = -220\hat{x} + 220\hat{y}$ $|\vec{\nabla}h(1.1)| = \sqrt{220^2 + 220^2} = 220\sqrt{2} ft / mile = 311 ft / mile$

Direction: NORTHEAST

Vector functions

 $\overline{
abla}$ is a vector operator. When it operates on another vector, there are 2 possible operations: - dot product

Consider Dot product:

$$\vec{\nabla} \cdot \vec{A} = \left(\frac{\partial}{\partial x} \hat{x} + \frac{\partial}{\partial y} \hat{y} + \frac{\partial}{\partial z} \hat{z} \right) \cdot \left(A_x \hat{x} + A_y \hat{y} + A_z \hat{z} \right)$$

$$= \left(\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}\right)$$

 $\vec{\nabla}$ · is known as "divergence"

What does the divergence measure?

Think of an infinitesimal volume element surrounding a point P.

At every point in space, there is a value for the vector function (vector field).

For example, if we calculate the flux through the surface of the volume

$$\Phi = \int \vec{A} \cdot d\vec{a}$$

We can show

$$\Phi = \int_{\tau} \left(\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} \right) d\tau$$
volume

Divergence is the measure how the vector function spreads out. 19

Therefore, $\vec{\nabla} \cdot \vec{A}$ is clearly the <u>outgoing flux per unit volume</u>.

$$\int \vec{A} \cdot d\vec{a} = \int \vec{\nabla} \cdot \vec{A} d\tau$$

This is known as: Gauss' Theorem Green's Theorem divergence Theorem

positive divergence "source"

negative divergence "sink"

zero divergence

20

<u>Problem 1.16.</u> Sketch the vector function $\vec{v} = \frac{r}{r^2}$, and compute its divergence.

blem 1.16. Sketch the vector function
$$\vec{v} = \frac{1}{r^2}$$
, and compute its diverged Explain the answer.
$$\vec{v} = \frac{\vec{r}}{r^2} = \frac{\vec{r}}{r^2} = \frac{\vec{r}}{r^3} = \frac{x\hat{x}}{\left(x^2 + y^2 + z^2\right)^3} + \frac{y\hat{y}}{\left(x^2 + y^2 + z^2\right)^3} + \frac{z\hat{z}}{\left(x^2 + y^2 + z^2\right)^3}$$

$$\vec{\nabla} \cdot \vec{v} = \frac{\partial}{\partial x} \left(\frac{x}{(x^2 + y^2 + z^2)^3}\right) + \frac{\partial}{\partial y} \left(\frac{y}{(x^2 + y^2 + z^2)^3}\right) + \frac{\partial}{\partial z} \left(\frac{z}{(x^2 + y^2 + z^2)^3}\right) = \frac{1}{(x^2 + y^2 + z^2)^3} - x\frac{3}{2} \frac{2x}{\left(x^2 + y^2 + z^2\right)^3} + \frac{1}{(x^2 + y^2 + z^2)^3} - y\frac{3}{2} \frac{2y}{\left(x^2 + y^2 + z^2\right)^3} + \frac{1}{(x^2 + y^2 + z^2)^3} - z\frac{3}{2} \frac{2y}{(x^2 + y^2 + z^2)^3} + \frac{1}{(x^2 + y^2 + z^2)^3} - z\frac{3}{2} \frac{2z}{(x^2 + y^2 + z^2)^3}$$

$$\vec{\nabla} \cdot \vec{v} = 3r^{-3} - 3r^{-5} \left(x^2 + y^2 + z^2\right) = 3r^{-3} - 3r^{-3} = 0.$$

As $r\rightarrow 0$, $v\rightarrow \infty$, where divergence is also infinite. So divergence is 0 everywhere, except at origin, where it is infinite.

Cross Product (Curl)

$$\vec{\nabla} \times \vec{A} = curl$$

Consider the cross product $\vec{\nabla} \times \vec{A} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$

$$=\hat{x}\!\!\left(\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}\right)\!+\hat{y}\!\!\left(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}\right)\!+\hat{z}\!\!\left(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}\right)$$

What does this correspond to? Let's introduce integral calculus.

22

Problem 1.18. Calculate the curl of the vector function in problem 1.15c

$$\vec{v} = y^2\hat{x} + (2xy + z^2)\hat{y} + 2yz\hat{z}$$

$$\vec{\nabla} \times \vec{v} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 & (2xy + z^2) & 2yz \end{vmatrix} =$$

$$=\hat{x}\left(\frac{\partial}{\partial y}(2\,yz)-\frac{\partial}{\partial z}(2\,xy+z^2)\right)-\hat{y}\left(\frac{\partial}{\partial x}(2\,yz)-\frac{\partial}{\partial z}(y^2)\right)+\hat{z}\left(\frac{\partial}{\partial x}(2\,xy+z^2)-\frac{\partial}{\partial y}(y^2)\right)$$

$$= \hat{x}(2z - 2z) - \hat{y}(0 - 0) + \hat{z}(2y - 2y) = 0$$

23

Integral Calculus

Consider a line integral

$$\int_{a}^{b} \vec{A} \cdot d\vec{l}$$

If your ending point and beginning point are the same, the path is said to be <u>closed</u> and the integral is written: $d\vec{A} \cdot d\vec{l}$

If $\vec{A} \cdot d\vec{l} = 0$ for any closed path, the vector \vec{A} is said to be conservative.

In general, though

 $\oint \vec{A} \cdot d\vec{l} \neq 0$

24

Consider 2-D example:
$$\vec{A} \cdot d\vec{l} = A_x dx + A_y dy$$

$$\Rightarrow \qquad (\vec{A} \cdot d\vec{l} = (A_x dx + A_y dy) + (A_y dy)$$

We can show (for infinitesimal path)
$$\oint A_z dx = -\frac{\partial A_z}{\partial y} dy dx$$

$$\oint A_z dy = \frac{\partial A_z}{\partial x} dx dy$$

$$\oint \vec{A} \cdot d\vec{l} = \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_z}{\partial y}\right) dx dy$$
$$= \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_z}{\partial y}\right) da$$

We can then extend this to 3D $\oint \vec{A} \cdot d\vec{l} \ = \left(\vec{\nabla} \times \vec{A}\right) \cdot d\vec{a}$

For arbitrary path we can extend this to

$$\underbrace{ \vec{A} \cdot d\vec{l} }_{s} = \underbrace{ \int (\vec{\nabla} \times \vec{A}) \cdot d\vec{a} }_{s}$$
 surface path that bounds surface

This is known as "Stokes Theorem"

We can see that $\overline{\nabla} \times \overrightarrow{A}$ is then a measure of the twist or " $\underline{\operatorname{curl}}$ " of a vector field about a point.

Problem 1.28. Calculate the line integral of the function $\vec{v} = x^2 \hat{x} + 2yz\hat{y} + y^2 \hat{z}$ (a) $(0,0,0) \rightarrow (1,0,0) \rightarrow (1,1,0) \rightarrow (1,1,1)$ (b) $(0,0,0) \rightarrow (0,0,1) \rightarrow (0,1,1) \rightarrow (1,1,1)$

- (c) The direct straight line.
 (d) What is the line integral around the closed loop that goes out along path (a) and back along path (b).

(a) $(0,0,0) \rightarrow (1,0,0) = x: 0 \rightarrow 1, y = z = 0 \Rightarrow d\vec{l} = dx\hat{x}; \int \vec{v} \cdot d\vec{l} = \int_{0}^{1} x^{2} dx = \left(\frac{x^{3}}{2}\right)^{1} = \frac{1}{2}$ $(1,0,0) \rightarrow (1,1,0) = x = 1, y: 0 \rightarrow 1, z = 0 \Rightarrow d\vec{l} = dy\hat{y}; \vec{v} \cdot d\vec{l} = 2yzdy = 0; (\vec{v} \cdot d\vec{l} = 0)$ $(1,1,0) \rightarrow (1,1,1) = x = y = 1, z : 0 \rightarrow 1 \Rightarrow d\vec{l} = dz\hat{z}; [\vec{v} \cdot d\vec{l} = y^2 dz = (z)] = 1$ $\int \vec{v} \cdot d\vec{l} = \frac{1}{2} + 0 + 1 = \frac{4}{2}$

Problem 1.28. (Continued)

(b)
$$(0,0,0) \rightarrow (0,0,1) = x = y = 0, z : 0 \rightarrow 1; d\vec{l} = dz\hat{z}; \vec{v} \cdot d\vec{l} = y^2 dz = 0; \int \vec{v} \cdot d\vec{l} = 0$$

 $(0,0,1) \rightarrow (0,1,1) = x = 0, y : 0 \rightarrow 1, z = 1; \int \vec{v} \cdot d\vec{l} = \int_0^1 2y dy = (y^2)_0^1 = 1$
 $(0,1,1) \rightarrow (1,1,1) = x : 0 \rightarrow 1, y = z = 1; \int \vec{v} \cdot d\vec{l} = \int_0^1 x^2 dx = \left(\frac{x^3}{3}\right)_0^1 = \frac{1}{3}$
 $\int \vec{v} \cdot d\vec{l} = 0 + 1 + \frac{1}{3} = \frac{4}{3}$

- (c) $x = y = z : 0 \to 1; dx = dy = dz$ $\vec{v} \cdot d\vec{l} = x^2 dx + 2yz dy + y^2 dz = x^2 dx + 2x^2 dx + x^2 dx = 4x^2 dx$ $\int \vec{v} \cdot d\vec{l} = \int_{0}^{1} 4x^{2} dx = \left(\frac{4x^{3}}{3}\right)^{1} = \frac{4}{3}$
- (d) $\oint \vec{v} \cdot d\vec{l} = \int_{(a)} \vec{v} \cdot d\vec{l} \int_{(b)} \vec{v} \cdot d\vec{l} = \frac{4}{3} \frac{4}{3} = 0$

28

Problem 1.30. Calculate the volume integral of the function over the tetrahedron with corners at (0,0,0), (1,0,0), (0,1,0), and (0,0,1) $\int_{V} T d\tau = \int_{V} z^{2} dx dy dz = \int_{V} z^{2} \left[\int_{V} (\int_{V} dx) dy \right] dz$ Tetrahedron: x + y + z = 1 $\Rightarrow x: 0 \rightarrow (1-y-z), y: 0 \rightarrow (1-z), z: 0 \rightarrow 1$ $\int dx = \int_{0}^{1-y-z} dx = 1-y-z$ $\int \left(\int dx \right) dy = \int_{z}^{1-z} (1-y-z) dy = \int_{z}^{1-z} (1-z) dy - \int_{z}^{1-z} y dy = (1-z)^2 - \frac{(1-z)^2}{2} = \frac{1}{2} - z + \frac{z^2}{2}$ $\int z^2 \left[\int \left(\int dx \right) dy \right] dz = \int_0^1 z^2 \left(\frac{1}{2} - z + \frac{z^2}{2} \right) dz = \int_0^1 \left(\frac{z^2}{2} - z^3 + \frac{z^4}{2} \right) dz = \frac{1}{6} - \frac{1}{4} + \frac{1}{10} = \frac{1}{60}$

The gradient $(\vec{\nabla} f)$, divergence $(\vec{\nabla} \cdot \vec{A})$, and curl $(\vec{\nabla} \times \vec{A})$ are the first derivatives.

Divergence of a gradient

$$\begin{split} \bar{\nabla} \cdot \left(\bar{\nabla} f \right) &= \left(\hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z} \right) \cdot \left(\frac{\partial f}{\partial x} \hat{x} + \frac{\partial f}{\partial y} \hat{y} + \frac{\partial f}{\partial z} \hat{z} \right) \\ &= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \end{split}$$

This is called the "Laplacian" and is usually written

Laplacian of the scalar function

Curl of the gradient

 $\vec{\nabla} \times (\vec{\nabla} f) = 0$

30

Gradient of the divergence

$$\vec{\nabla} (\vec{\nabla} \cdot \vec{A})$$

(not the Laplacian)

Divergence of curi

$$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$$

Curl of the curl
$$\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \nabla^2 \vec{A}$$

Cylindrical and Spherical coordinates

We have been working in Cartesian coordinates where the expressions are fairly simple. In other systems, the expressions are more cumbersome.

For example, the <u>curl operator in spherical</u> coordinates is:

$$\vec{\nabla} \times \vec{A} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta A_{\Phi}) - \frac{\partial A_{\theta}}{\partial \Phi} \right] \hat{r}$$

$$+ \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial A_r}{\partial \Phi} - \frac{\partial}{\partial r} (r A_{\Phi}) \right] \hat{\theta}$$

$$+ \frac{1}{r} \left[\frac{\partial}{\partial r} (r A_{\theta}) - \frac{\partial A_r}{\partial \theta} \right] \hat{\Phi}$$

Use coordinates which exploit the symmetry of the problem!

Dirac Delta Function

Divergence of $\frac{\hat{r}}{r^2}$

Consider
$$\vec{v} = \frac{\hat{r}}{2}$$

By definition, should have large positive divergence.

Yet, divergence in spherical coordinates:

$$\vec{\nabla} \cdot \vec{v} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 |\vec{v}| \right) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{1}{r^2} \right) = \frac{1}{r^2} \frac{\partial}{\partial r} (1) = 0 \quad \begin{array}{c} \text{Paradox!} \\ \text{Outgoing flux per unit volume} \neq 0 \\ \text{Recall divergence theorem: } \oint \vec{y} \cdot d\vec{a} = \int \vec{\nabla} \cdot \vec{v} d\tau \end{array}$$

Recall divergence theorem: $\oint \vec{v} \cdot d\vec{a} = \int \vec{\nabla} \cdot \vec{v} d\tau$

Evaluate separately right and left side:

Right side:
$$\int_{volume} \vec{\nabla} \cdot \vec{v} d\tau = \int_{volume} 0 \cdot d\tau = 0$$

33

Left side ≠ Right side ?!

$$r^2 \cdot \frac{1}{r^2} \neq 1$$
 when $r = 0$

To resolve this problem, one can introduce

"Dirac Delta Function"
$$f(r) = 0$$
 in whole space
$$\int_{-\infty}^{\infty} f(r) dr = finite \quad number$$

One-Dimensional Dirac Delta Function

$$\delta(x) = \begin{cases} 0 & x \neq 0 \\ \infty & x = 0 \end{cases}$$

 $\int \delta(x) dx = 1$

Properties:

$$f(x)\delta(x) = f(0)\delta(x)$$

$$\int f(x)\delta(x)dx = \int f(0)\delta(x)dx$$

$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = f(0)\int_{-\infty}^{\infty} \delta(x)dx = f(0)$$

$$\int_{0}^{\infty} f(x)\delta(x-a)dx = f(a)$$

35

Three-Dimensional Dirac Delta Function

$$\delta^3(\vec{r}) = \delta(x)\delta(y)\delta(z)$$

$$\int_{\it all space} \delta^3(\vec{r}) d\tau = 1$$

$$\vec{\nabla} \cdot \left(\frac{\hat{r}}{r^2} \right) = 4\pi \delta^3 (\vec{r})$$

$$\vec{\nabla} \cdot \left(\frac{\hat{\Re}}{\Re^2} \right) = 4\pi \delta^3 \left(\vec{\Re} \right)$$