(Chapter 6) Magnetic Fields in Matter

6.1  Magnetization

6.1.1. Diamagnets, Paramagnets, Ferromagnets

Just as charges can become “polarized”, currents on the microscopic
scale can be aligned to cause a “magnetic polarization” or
“magnetization”.

There are different types of magnetization:
(a) Acquired by external magnetic field
For magnetization parallel to magnetic field
(1) “paramagnets”
For magnetization opposite to magnetic field
() “diamagnets”

(b) Retained in absence of an external magnetic field

3)“ferromagnets”
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6.2 The Field of Magnetized Object

Given a material with some fixed magnetization M if we defined
a bound volume current m
and
a bound surface current D( =M xh

we could rewrite the total vector potential:

dA(F) = ,u0 (Mdr)x)? Z(F)zf—;J.M(;{)ZXR

(after several steps of calculus — see p. 264) as

()= y,,IJ(rd, cj‘K(r

j,, and k,, are the bound currents. 3

6.1.2 Torques and Forces on Magnetic Dipoles

Just like electric dipoles in an electric field, a magnetic dipole m
in a magnetic field will experience a toraue

(N:ﬁxé)

If magnetic field is uniform:

For non-uniform magnetic field .

6.1.4 Magnetization

Just as we defined a net polarization (dipole moment per unit volume)
we can define magnetization'

_ magnetic dipole moment|

‘ umt volume ‘

PROBLEM 6.8

A long circular cylinder of radius R carries a magnetization
M=ks’¢  (k=const)

. . . 2 . . .
Where § is the distance from the axis and ¢ is the azimuthal unit vector.
Find magnetic field everywhere. -
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(L0 MY ¥ Bound volume current jh =V x

IDENTIFY
relevant
concepts

SET UP

Cylindrical coordinates

A7I=M(s)¢3 M.,=M,=0

M

&z
EXECUTEJ
i? « M )- express in cylindrical coordinates
VM= (%%—‘;‘J,.(ff\i.?:)p ( < (e, ) 70}

J,,:@x/&!:li(sks:)f:y\:sé s
s 0s

Bound surface current Kb =M x

=>

Ampere’s law IE * di =My [cm'l

Z

‘-0

PROBLEM 6.8 (cont.) §xg=2
Unit vectors in cylindrical coordinates: Fxz=}
Pxi=¢

= ks’px§| =-kR’Z .

s=R px§==%

=3




m Bound currents: jl: — v X M

Find the magnetic field of a uniformly magnetized sphere. IDENTIFY [
Relevant concepts Kb =Mxn

Zt
Analogy with rotating spherical shell (Example 5.11)
SET UP & EXECUTE |
M =const=J,=VxM=0 z1
Unit vectors in spherical coordinates F, 9& b -
= M=Mz,i=Fz2xi=sinfp
K, =M xh =M sin6p Y
Ul(’{:a'a)ksine = \E\:%yua’Rw) (5.68) x/
= 2 -
7 = B = _ﬂOM -
3
6.3 The Auxiliary Field // If everywhere, the curl of # vanishes (Eq. 6.19),
6.3.1 Ampere's law in Magnetized Materials and we can express H as:
If we have both “free current” and “bound current”, then the total the qradiem’ of a scalar magnetic Do?en‘l'ial W
current is == — =
J=J,+J — = =
B .7 VxH=J,=0 > A=-VW|
Starting from Ampére's law in differential form V x B = z4,J (5.44 J
I
;—(Vx B):J =J,+Jy=J; +(©x ) According to Eq. 6.18 [;}:in-a]
0
(1. Y 9.5-0 = Vﬁ:\’?-(ié-ﬂ):—vﬁ (623)
= Vx| —B-M|=J, Hy
Fe g PR > VA=Y=V M > -VW=F.H
If we define a quantity so that E—p= > S
i p -
VxH=J Differential form of Ampére's law. p y . \ PR
S So, W obeys Poisson’s Equation (Vz,, - ﬁ\ with V- M
ﬁ . d" =T Integral form of Ampére's law £,/ as the “source”.
= 2 1 (encl) ¥ This opens up all the machinery of Chapter 3. 10

PROBLEM 6.15
Find the magnetic field inside a uniformly magnetized sphere IDENTIFY
(Example 6.1) by separation of variables. relevant

Hint: V-M =0 everywhere except at the surface (r = R), concepts :
so W satisfies Laplace's equation (V:V = o) in the regions W, (7,9) = Z Ar P,(COS 9), (" < R)

r<Randr>R. Wﬂ(,«ﬁ):Z%P,(cosB), (r>R)
r

PROBLEM 6.15

Solutions of Laplace’s equation can be expressed in
the terms of Legandre’s polynomials (Egs. 3.78,79)

The gradient theorem (Paragraph 2.3.1, page 78)

w(6)-w(@)=[w-df

Relations listed on the page 10 — scalar magnetic potential.
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PROBLEM 6.15 Boundary conditions:
SET UP ] ]

@ wb)-w@)= jvw.di = -f[F/ dl

= lim ,,u,(R+aAR,9) .,,(R AR,0))=

ﬂim[- R].V;:I'd[‘}=0 ‘: I/Vin (R’H) out (R Q)J
B Applying this to Egs. 3.78,79:
beli) AR = leil = B =R"4

@) V-A=-YM = Hi.-Hip=-Mb.~ M)
H=-VWw, H.,.=- Mo ..
or
= |- Wou| W, =_(Q_M;)=MA:M5.;
or [ or x| 1\
NO

outside of the sphere

3
——bgf" = Z [, P(cos )

W _ —Z(l + 1)—’-r/ 'P(cosb)
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: TE|
be(ii)= —[—Z([«» l)%!’,(cos@)]+ZIA,R"1F;(0059): M cos@

= 2[(1 +1)R"'4, +IR"’A,}",(cos @)= M cos 6
=Y (I +1)R 4P (cos )= M cos &
Comparing left and right sides: 34 =M, A4,=0 (1 # 1)

w,,(r, 9)-—rc059—£;—»

6.4. Linear and Nonlinear Media

For many materials M o B

We define a magnetic SUSC ep‘hblllu‘ )’,,, so thal M ){m

Which holds for “linear media” since
B= ,u(,(H +M)
[= 2, = Hy 1+,(”,)H
We can define permeability
4=+ 2,)

PROBLEM 6.18

A sphere of linear magnetic material is placed in an otherwise
uniform magnetic field. Find the new magnetic field inside the
sphere.

This problem can be solved by at least two different
methods:

(a) by method of scalar magnetic potential (See Problem 6.15)
or

(b) by method of successive approximations (See Problem 4.23)

(2000 BN WS BN EN Y By method of scalar magnetic potential

(See Problem 6.15 and also Example 4.7)
IDENTIFY o o S
relevant Jp=0 = VxH=0 = H=-VGW = VW=V.M
concepts W - scalar magnetic potential

(expressed in spherical polar coordinates)
SET UP & EXECUTE

For large 7, é(r,a)—>1§“=335 = [—‘[;E:&f:_awf
S B | My Hy oz
_= |_B,
= |W=— B“.. =——"rcosé ‘ Scalar magnetic potential

| S b ,u“ of the outside magnetic ficld

Using methods of Chapter 3.3 (Egs. 3.78.79).

Woia (r0)="3 4,r'P,(cos 8) r<R

W pisiae (’ 0)=- rcos9+z P(coa&) r>R it




ROV EREREN | SET UP & EXECUTE (cont.)|

Boundary Conditions:
@ W,(R,6)=W,,(R,6) attne surface of the sphere.

M| O
i) =5 | T

=0 (Bin.—Blu =0 Eq.626)
R

= A[Mi a,cos@tl) }f B(cose)J+yZI4r"‘e(cosa)=o

T R(costhy=condl, =
For [ #1 eost=eos, 1=1 Y o not consider

—_— =2 00022 ploosi)f this term it {1
to i

@) B/ _ R:MAI
@ [ +1)+ pll4R" =0 = AI:6

PROBLEM 6.18 (b) I8 meth
(See Problem 4.23)
Step1: B, magnetizes the sphere

= 2By = =
41+ 7,,)

This magnetization sets up a field inside the sphere
B = 3%,17/ (Equation 6.16, Example 6.1)
1 3 ]

2 Z 2
=Sy —An _p kB
39 %0+z) 3

K
(1+ 7,

where k=

~

PROBLEM 6.18 (b)

[T EREREV] | SET UP & EXECUTE (cont.) |

Eor |/ =1
o = AIR=—M+£’; —
Ho e = A1— '_3Bu
iy = Bn+%+y.4‘=0 (ZM.*’/‘L
N —E
= Pi’i"(r.ﬁ):i—rcosg
@uy + 1
A=W, =Ty 0y b0

z T Quetu) Quetn)

s = 3uB, 1+%, )z
B=ydl =250 =_|B
= R+ ) [Hzm/SJ ‘

PROBLEM 6.18 (b)

Step 2: B, magnetizes the sphere an additional amount M 1
- k =
M = Bl
Hy

but this sets up an additional field in the sphere:

A 1 =(3k] B,
- 3 3 3

Step 3 32 magnetizes the sphere an additional amount M,...

So, the total field is:
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