(Chapter 6) Magnetic Fields in Matter

6.1 Magnetization

6.1.1. Diamagnets, Paramagnets, Ferromagnets

Just as charges can become "polarized", currents on the microscopic scale can be aligned to cause a "magnetic polarization" or "magnetization"

There are different types of magnetization:

(a) Acquired by external magnetic field

For magnetization parallel to magnetic field

(1) "paramagnets"

For magnetization opposite to magnetic field

(2) "diamagnets"

(b) Retained in absence of an external magnetic field

(3) "ferromagnets"

6.1.2 Torques and Forces on Magnetic Dipoles

Just like electric dipoles in an electric field, a <u>magnetic dipole</u> \vec{m} in a magnetic field will experience a <u>torque</u>

$$(\vec{N} = \vec{p} \times \vec{E})$$

$$\vec{N} = \vec{m} \times \vec{B}$$

If magnetic field is uniform:

$$\vec{F} = 0$$

For <u>non-uniform</u> magnetic field $|\vec{F} = \vec{\nabla} (\vec{m} \cdot \vec{B})|$

$$\vec{F} = \vec{\nabla} (\vec{m} \cdot \vec{B})$$

6.1.4 Magnetization

Just as we defined a net polarization (dipole moment per unit volume) we can define magnetization:

$$M = \frac{magnetic dipole \ moment}{unit \ volume}$$

6.2 The Field of Magnetized Object

Given a material with some fixed magnetization \vec{M} , if we defined

a bound volume current

$$\vec{J}_b = \vec{\nabla} \times \vec{M}$$

a bound surface current
$$\vec{K}_b = \vec{M} \times \hat{n}$$

we could rewrite the total vector potential:

$$d\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{\left(\vec{M}d\tau\right) \times \vec{\Re}}{\Re^2} \implies \vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{M}(\vec{r}') \times \hat{\Re}}{\Re^2} d\tau'$$

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int_{\mathbb{R}} \frac{\vec{J}_b(\vec{r}')}{\Re} d\tau' + \oint_{\mathbb{R}} \frac{\vec{K}_b(r)}{\Re} da'$$

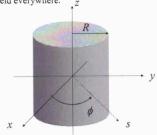
$$\vec{J}_h$$
 and \vec{K}_h are the bound currents

PROBLEM 6.8

A long circular cylinder of radius R carries a magnetization

$$\vec{M} = ks^2 \hat{\phi}$$
 $(k = const.)$

Where s is the distance from the axis and $\hat{\phi}$ is the azimuthal unit vector. Find magnetic field everywhere.



PROBLEM 6.8

Bound volume current

$$\vec{J}_b = \vec{\nabla} \times \vec{M}$$

IDENTIFY relevant concepts

Bound surface current $\vec{K}_b = \vec{M} \times \hat{n}$

$$\vec{K}_b = \vec{M} \times \hat{n}$$

Ampere's law

$$\int \vec{B} \cdot d\vec{l} = \mu_0 I_{encl}$$

SET UP

Cylindrical coordinates

$$\vec{M} = M(s)\hat{\phi}$$

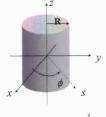
$$M_z = M_z = 0$$

$$\frac{\partial M_\phi}{\partial x} = 0$$

EXECUTE

 $(\vec{\nabla} \times \vec{M})$ - express in cylindrical coordinates $\vec{\nabla} \times \vec{M} = \left(\frac{1}{s} \frac{\partial M_s}{\partial \phi} - \frac{\partial M_s}{\partial z}\right) \hat{z} + \left(\frac{\partial M_s}{\partial z} - \frac{\partial M_s}{\partial z}\right) \hat{\phi} + \frac{1}{s} \left(\frac{\partial}{\partial z} (sM_s) - \frac{\partial M_s}{\partial \phi}\right) \hat{z}$

$$\vec{J}_b = \vec{\nabla} \times \vec{M} = \frac{1}{s} \frac{\partial}{\partial s} (sks^2) \hat{z} = 3ks\hat{z}$$



EXECUTE (cont.)

 $\hat{z} \times \hat{s} = \hat{\phi}$

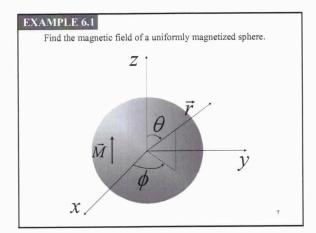
$$\vec{K}_b = \vec{M} \times \hat{n} = ks^2 \hat{\phi} \times \hat{s} \Big|_{s=R} = -kR^2 \hat{z}$$

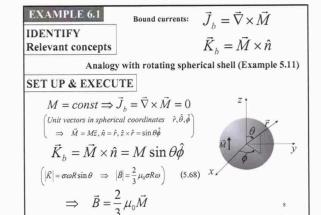
$$B(2\pi s) = \mu_0 \int_0^s \vec{J}_b \cdot d\vec{a} = \mu_0 \int_0^s (3ks) s ds \int_0^{2\pi} d\phi = \mu_0 k 2\pi s^3$$

$$\Rightarrow \vec{B} = \mu_0 k s^2 \hat{\phi} = \mu_0 \vec{M}$$

$$I_{encl} = \int_{0}^{R} \vec{J}_{b} \cdot d\vec{a} + \int_{0}^{2\pi R} \vec{K}_{b} \cdot d\vec{l} = 2\pi k R^{3} - kR^{2} 2\pi R$$

$$I_{encl} = 0 \implies B = 0$$





6.3 The Auxiliary Field \vec{H} 6.3.1 Ampere's law in Magnetized Materials If we have both "free current" and "bound current", then the total current is $\vec{J} = \vec{J}_f + \vec{J}_b$ Starting from Ampère's law in differential form $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$ (5.44) $\frac{1}{\mu_0} (\vec{\nabla} \times \vec{B}) = \vec{J} = \vec{J}_f + \vec{J}_b = \vec{J}_f + (\vec{\nabla} \times \vec{M})$ $\Rightarrow \vec{\nabla} \times \left(\frac{1}{\mu_0} \vec{B} - \vec{M} \right) = \vec{J}_f$ If we define a quantity \vec{H} so that $\vec{H} \equiv \frac{1}{\mu_0} \vec{B} - \vec{M}$ $\vec{\nabla} \times \vec{H} = \vec{J}_f$ Differential form of Ampère's law. $\vec{J} \vec{H} \cdot d\vec{l} = I_f (encl)$

If $\vec{J}_f = 0$ everywhere, the curl of \vec{H} vanishes (Eq. 6.19),

and we can express \vec{H} as:

PROBLEM 6.15

IDENTIFY

relevant concepts

PROBLEM 6.15

Find the magnetic field inside a uniformly magnetized sphere (Example 6.1) by separation of variables.

<u>Hint</u>: $\vec{\nabla} \cdot \vec{M} = 0$ everywhere except at the surface (r = R), so \vec{W} satisfies Laplace's equation $(\nabla^2 V = 0)$ in the regions r < R and r > R.

The gradient theorem (Paragraph 2.3.1, page 78)

$$W(\vec{b}) - W(\vec{a}) = \int_{\vec{a}}^{\vec{b}} \vec{\nabla} W \cdot d\vec{l}$$

Relations listed on the page 10 - scalar magnetic potential.

Solutions of Laplace's equation can be expressed in

the terms of Legandre's polynomials (Eqs. 3.78,79)

 $W_{in}(r,\theta) = \sum A_i r^l P_i(\cos\theta), \quad (r < R)$

 $\begin{cases} W_{out}(r,\theta) = \sum_{r} \frac{B_l}{r^{l+1}} P_l(\cos\theta), & (r > R) \end{cases}$

12

2

PROBLEM 6.15

Boundary conditions:

SET UP

(i)
$$W(\vec{b}) - W(\vec{a}) = \int_{\vec{a}}^{\vec{b}} \vec{\nabla} W \cdot d\vec{l} = -\int_{\vec{a}}^{\vec{b}} \vec{H} \cdot d\vec{l}$$

$$\Rightarrow \lim_{\Delta R \to 0} [W_{out}(R + \Delta R, \theta) - W_{in}(R - \Delta R, \theta)] =$$

$$= \lim_{\Delta R \to 0} \left[-\int_{R - \Delta R}^{R + \Delta R} \vec{H} \cdot d\vec{l} \right] = 0 \Rightarrow W_{in}(R, \theta) = W_{out}(R, \theta)$$
Applying this to Eqs. 3.78,79:

$$b.c.(i)$$
 $A_l R^l = \frac{B_l}{R^{l+1}} \implies B_l = R^{2l+1} A_l$

13

(ii)
$$\vec{\nabla} \cdot \vec{H} = -\vec{\nabla} \cdot \vec{M} \implies H_{above}^{\perp} - H_{below}^{\perp} = -\left(M_{above}^{\perp} - M_{below}^{\perp}\right)$$

$$\vec{H} = -\vec{\nabla}W, \quad H_{above}^{\perp} = -\frac{\partial W_{out}}{\partial r}, \dots$$

$$\Rightarrow \boxed{-\frac{\partial W_{out}}{\partial r}\Big|_{R} + \frac{\partial W_{tot}}{\partial r}\Big|_{R}} = -\left(Q - M^{\perp}\right) = M^{\perp} = M \, \hat{z} \cdot \hat{r} = M \cos \theta$$
NO magnetization outside of the sphere.

$$\begin{split} \frac{\partial W_{in}}{\partial r} &= \sum_{l} l A_{l} r^{l-1} P_{l} (\cos \theta) \\ \frac{\partial W_{out}}{\partial r} &= -\sum_{l} (l+1) \frac{B_{l}}{r^{l+2}} r^{l-1} P_{l} (\cos \theta) \end{split}$$

14

PROBLEM 6.15 EXECUTE

$$b.c.(ii) \Rightarrow -\left[-\sum (l+1)\frac{B_l}{R^{l+2}}P_l(\cos\theta)\right] + \sum lA_lR^{l-1}P_l(\cos\theta) = M\cos\theta$$
$$\Rightarrow \sum \left[(l+1)R^{l-1}A_l + lR^{l-1}A_l\right]P_l(\cos\theta) = M\cos\theta$$
$$\Rightarrow \sum (2l+1)R^{l-1}A_lP_l(\cos\theta) = M\cos\theta$$

Comparing left and right sides: $\,3\,A_{\rm l}=M\,,\quad A_{l}=0\,\left(l\neq1\right)\,$

$$\Rightarrow W_{in}(r,\theta) = \frac{M}{3}r\cos\theta = \frac{M}{3}z$$

$$\vec{H}_{in} = -\vec{\nabla}W_{in} = -\frac{M}{3}\hat{z} = -\frac{1}{3}\vec{M}$$

$$\vec{B} = \mu_0 (\vec{H} + \vec{M}) = \mu_0 \left(-\frac{1}{3} \vec{M} + \vec{M} \right) = \frac{2}{3} \mu_0 \vec{M}$$

6.4. Linear and Nonlinear Media

For many materials $\vec{M} \propto \vec{B}$ We define a magnetic **susceptibility** \mathcal{X}_m so that $\vec{M} = \chi_m \vec{H}$

Which holds for "linear media" since

$$\vec{B} = \mu_0 (\vec{H} + \vec{M})$$

$$= \mu_0 (1 + \chi_m) \vec{H}$$

We can define permeability

$$\mu \equiv \mu_0 \big(1 + \chi_m \big)$$

Ther

$$\vec{B} = \mu \vec{H}$$

16

PROBLEM 6.18

A sphere of <u>linear magnetic material</u> is placed in an otherwise uniform magnetic field. Find the new magnetic field inside the sphere.

This problem can be solved by at least two different methods:

(a) by method of scalar magnetic potential (See Problem 6.15)

or

(b) by method of successive approximations (See Problem 4.23)

7

PROBLEM 6.18 (a) By method of scalar magnetic potential

IDENTIFY relevant concepts

$$J_f = 0 \implies \vec{\nabla} \times \vec{H} = 0 \implies \vec{H} = -\vec{\nabla} W \implies \nabla^2 W = \vec{\nabla} \cdot \vec{M}$$

 W – scalar magnetic potential

(expressed in spherical polar coordinates)

SET UP & EXECUTE

For large
$$r$$
, $\vec{B}(r,\theta) \rightarrow \vec{B}_0 = B_0 \hat{z} \implies \vec{H} = \frac{\vec{B}}{\mu_0} = \frac{B_0}{\mu_0} \hat{z} = -\frac{\partial W}{\partial z} \hat{z}$

$$\implies W = \frac{-1}{\mu_0} B_0 z = -\frac{B_0}{\mu_0} r \cos \theta \quad \text{Scalar magnetic potential of the outside magnetic field}$$

Using methods of Chapter 3.3 (Eqs. 3.78.79):

$$W_{inside}(r,\theta) = \sum A_i r^i P_i(\cos \theta)$$
 $r < R$

$$W_{outside}(r,\theta) = -\frac{B_0}{\mu_0} r \cos \theta + \sum \frac{B_l}{r^{l+1}} P_l(\cos \theta) \qquad r > R$$

PROBLEM 6.18 (a) SET UP & EXECUTE (cont.)

Boundary Conditions:

(i)
$$W_{in}(R,\theta) = W_{out}(R,\theta)$$
 at the surface of the sphere.

$$\begin{split} (ii) &- \mu_0 \left. \frac{\partial \mathcal{W}_{out}}{\partial r} \right|_R + \mu \frac{\partial \mathcal{W}_{in}}{\partial r} \right|_R = 0 \qquad \left(B_{above}^+ - B_{below}^+ = 0 - Eq. \, 6.26 \right) \\ \Rightarrow & \mu_0 \left[\frac{1}{\mu_0} B_0 \cos\theta + \sum (l+1) \frac{B_l}{R^{l+2}} P_l(\cos\theta) \right] + \mu \sum l A_l r^{l-1} P_l(\cos\theta) = 0 \end{split}$$

For
$$l \neq 1$$

(i)
$$B_1 = R^{2l+1}A$$

(ii)
$$[\mu_0(l+1) + \mu l]A_l R^{l-1} = 0 \implies A_l = 0$$

$$A_l = 0$$

PROBLEM 6.18 (a) SET UP & EXECUTE (cont.)

For
$$l=1$$

(i)
$$\rightarrow A_1 R = -\frac{B_0 R}{\mu_0} + \frac{B_1}{R^2}$$

(ii)
$$\rightarrow B_0 + \frac{2\mu_0 B_1}{R^3} + \mu A_1 = 0$$

$$\implies W_{in}(r,\theta) = \frac{-3B_0}{(2\mu_0 + \mu)} r \cos \theta$$

$$\vec{H}_{in} = -\vec{\nabla}W_{in} = -\frac{\partial W_{in}}{\partial z}\hat{z} = \frac{3B_0}{(2\mu_0 + \mu)}\hat{z} = \frac{3\vec{B}_0}{(2\mu_0 + \mu)}$$

$$\vec{B} = \mu \vec{H} = \frac{3\mu B_0}{(2\mu_0 + \mu)} = \left(\frac{1 + \chi_m}{1 + \chi_m / 3}\right) \vec{B}_0$$

PROBLEM 6.18 (b) By method of successive approximations (See Problem 4.23)

Step 1: B_0 magnetizes the sphere

$$\vec{M}_{0} = \chi_{m} \vec{H}_{0} = \chi_{m} \frac{\vec{B}_{0}}{\mu_{0} (1 + \chi_{m})}$$

This magnetization sets up a field inside the sphere

$$\vec{B}_1 = \frac{2}{3} \mu_0 \vec{M}_0$$

$$= \frac{2}{3} \mu_0 \frac{\chi_m}{\mu_0 (1 + \chi_m)} B_0 = \frac{2}{3} k B_0$$

 $k = \frac{\chi_m}{(1 + \chi_m)}$

21

PROBLEM 6.18 (b)

Step 2: B_1 magnetizes the sphere an additional amount \vec{M}_1

$$\vec{M}_1 = \frac{k}{\mu_0} \vec{B}_1$$

but this sets up an additional field in the sphere

$$\vec{B}_2 = \frac{2}{3} \mu_0 \vec{M}_1 = \frac{2}{3} k \vec{B}_1 = \left(\frac{2}{3} k\right)^2 \vec{B}_0$$

Step 3: B_2 magnetizes the sphere an additional amount \vec{M}_2

$$\Rightarrow \vec{B} = \vec{B}_0 + \vec{B}_1 + \vec{B}_2 + \dots$$

PROBLEM 6.18 (b)

$$\vec{B} = \vec{B}_0 + \frac{2k}{3}\vec{B}_0 + \left(\frac{2k}{3}\right)^2\vec{B}_0 + \dots$$

$$= \left[1 + \left(\frac{2k}{3}\right) + \left(\frac{2k}{3}\right)^2 + \dots\right] \vec{B}_0 = \frac{\vec{B}_0}{1 - \frac{2k}{3}}$$

Recall: $k = \frac{\chi_m}{(1 + \chi_m)}$

$$\Rightarrow \qquad \vec{B} = \frac{1 + \chi_m}{1 + \chi_m / 3} \vec{B}_0$$