

Magnetostatic:

Magnetic Field Fa from Current Distribution

Magnetic momen

Moving point-lik

particles

Torques and forc

PHYSICS 604

Electricity and Magnetism Lecture 21

Physics Department Old Dominion University

November 30, 2021

Outline

Lecture 21

Magnetostatic

from Current
Distribution
Levi-Civita Tensor
Magnetic moment
Planar loop
Moving point-like
particles
Torques and forces
on magnetic dipoles

Magnetostatics

- Magnetic Field Far from Current Distribution
- Levi-Civita Tensor
- Magnetic moment
- Magnetic moment of a planar loop
- Magnetic moment of moving charged point-like particles
- Torques and forces on magnetic dipoles

Levi-Civita Tensor Magnetic moment Planar loop Moving point-like particles Torques and force • Consider a localized current distribution $\mathbf{J}(\mathbf{x}')$, and the magnetic vector potential produced at a point $P(\mathbf{x})$ where $|\mathbf{x}| \gg |\mathbf{x}'|$. In the Coulomb gauge

$$\mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int d^3x' \frac{\mathbf{J}(x')}{|\mathbf{x} - \mathbf{x}'|}$$

• Expanding $\frac{1}{|\mathbf{x}-\mathbf{x}'|} = \frac{1}{|\mathbf{x}|} + \frac{\mathbf{x} \cdot \mathbf{x}'}{|\mathbf{x}|^3} + \dots$, we get

$$A_i(\mathbf{x}) = \frac{\mu_0}{4\pi} \left\{ \frac{1}{|\mathbf{x}|} \int d^3x' J_i(\mathbf{x}') + \frac{\mathbf{x}}{|\mathbf{x}|^3} \cdot \int d^3x' J_i(\mathbf{x}') \mathbf{x}' + \dots \right\}$$
$$= \frac{\mu_0}{4\pi} \left\{ \frac{1}{|\mathbf{x}|} \int d^3x' J_i(\mathbf{x}') + \frac{1}{|\mathbf{x}|^3} \sum_{i=1}^3 x_j \int d^3x' J_i(\mathbf{x}') x_j' + \dots \right\}$$

- We need to know the volume integrals of $J_i(\mathbf{x}')$ and $J_i(\mathbf{x}')$ x'_j , with $J_i(\mathbf{x}')$ in principle being an arbitrary function
- For magnetostatics, however, it satisfies $\nabla \cdot \mathbf{J}(\mathbf{x}) \equiv 0$
- Integrating $\nabla' \cdot \mathbf{J}(\mathbf{x}') \equiv 0$ with any function $F(\mathbf{x}')$, we should get zero,

$$0 = -\int d^3x' \, F(\mathbf{x}') \nabla' \cdot \mathbf{J}(\mathbf{x}') = \int d^3x' \, \mathbf{J}(\mathbf{x}') \cdot \nabla' F(\mathbf{x}')$$

 In the second step we have integrated by parts and used the fact that the surface integral vanishes for a localized current distribution

Magnetostatio

Magnetic moment
Planar loop
Moving point-like
particles
Torques and forces
on magnetic dipoles

$$\Rightarrow \int d^3x' \mathbf{J}(\mathbf{x}') \cdot \nabla' F(\mathbf{x}') = 0$$

In components, we have

$$\sum_{k=1}^{3} \int d^3x' J_k(\mathbf{x}') \nabla_k' F(\mathbf{x}') = 0$$

Consider the first term in the expansion

$$A_i(\mathbf{x}) = \frac{\mu_0}{4\pi} \left\{ \frac{1}{|\mathbf{x}|} \int d^3x' J_i(\mathbf{x}') + \frac{\mathbf{x}}{|\mathbf{x}|^3} \cdot \int d^3x' J_i(\mathbf{x}') \mathbf{x}' + \dots \right\}$$

• Take $F(\mathbf{x}') = x_i'$, which using $\nabla_k' x_i' = \delta_{ik}$ results in

$$\sum_{k=1}^{3} \int d^3x' J_k \delta_{ik} = 0 \quad \Rightarrow \quad \int d^3x' J_i = 0$$

- ⇒ the first term vanishes
- This is just a further restatement that there is no "monopole" contribution to the multipole expansion for magnetic fields

Magnetic Field Far from Current Distribution, cont.

5/16

Lecture 21

Magnetic Field Far

Magnetic moment Planar loop Moving point-like particles Torques and force: on magnetic dipole \bullet Consider the second term in the expansion of $\mathbf{A}(\mathbf{x})$

$$A_i(\mathbf{x}) = \frac{\mu_0}{4\pi} \left\{ \frac{\mathbf{x}}{|\mathbf{x}|^3} \cdot \int d^3 x' J_i(\mathbf{x}') \mathbf{x}' + \dots \right\}$$

and recall

$$\sum_{k=1}^{3} \int d^3x' J_k(\mathbf{x}') \nabla_k' F(\mathbf{x}') = 0$$

• To get $J_i(\mathbf{x}') x_i'$ in the integrand we take $F = x_i' x_i'$ and obtain

$$\sum_{k=1}^{3} \int d^3x' J_k \left[\frac{\partial x_i'}{\partial x_k'} x_j' + x_i' \frac{\partial x_j'}{\partial x_k'} \right] = 0$$

$$\Rightarrow \sum_{k=1}^{3} \int d^3x' J_k \left[\delta_{ik} x_j' + x_i' \delta_{jk} \right] = 0$$

$$\Rightarrow \int d^3x' \left[J_i x_j' + J_j x_i' \right] = 0$$

or

$$\int d^3x' J_i x_j' = -\int d^3x' J_j x_i' = \frac{1}{2} \int d^3x' \left[J_i x_j' - J_j x_i' \right]$$

Magnetic Field Far from Current Distribution, cont.

6/16

Lecture 21

$$\int d^3x' \, J_i x'_j = -\int d^3x' \, J_j x'_i = \frac{1}{2} \int d^3x' \, \left[J_i x'_j - J_j x'_i \right]$$

Thus, we may write Magnetic Field Far

$$\begin{split} A_i(\mathbf{x}) &= \frac{\mu_0}{4\pi} \frac{1}{|\mathbf{x}|^3} \sum_{j=1}^3 x_j \int d^3 x' \, J_i x'_j \\ &= -\frac{1}{2} \frac{\mu_0}{4\pi} \frac{1}{|\mathbf{x}|^3} \sum_{j=1}^3 x_j \int d^3 x' [x'_i J_j - x'_j J_i] \;, \end{split}$$

In vector form.

$$\mathbf{A}(\mathbf{x}) = -\frac{1}{2} \frac{\mu_0}{4\pi} \frac{1}{|\mathbf{x}|^3} \int d^3x' [\mathbf{x}'(\mathbf{x} \cdot \mathbf{J}) - (\mathbf{x}' \cdot \mathbf{x})\mathbf{J}],$$

which may be also written as

$$\mathbf{A}(\mathbf{x}) = -\frac{1}{2} \frac{\mu_0}{4\pi} \frac{1}{|\mathbf{x}|^3} \mathbf{x} \times \int d^3 x' \, \mathbf{x}' \times \mathbf{J}$$

using $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$.

7/16

Levi-Civita Tensor

Lecture 21

MagnetoStatic
Magneturelid Far
from Current
Distribution
Levi-Civita Tensor
Magnetic moment
Planar loop
Moving point-like
particles
Torques and forces

Recall the definition of the Levi-Civita tensor

$$\epsilon_{ijk} = \left\{ \begin{array}{ll} 0 & \text{if any two of } i,j,k \text{ are equal} \\ 1 & \text{if } (ijk) \text{ is an } \textit{even} \text{ permutation of } (123) \\ -1 & \text{if } (ijk) \text{ is an } \textit{odd} \text{ permutation of } (123) \end{array} \right.$$

• This tensor is isotropic, and totally anti-symmetric. In particular, we have

$$\mathbf{A} \times \mathbf{B}|_{i} = \sum_{i=1}^{3} \sum_{l=1}^{3} \epsilon_{ijk} A_{j} B_{k} \stackrel{\text{Einstein}}{\equiv} \epsilon_{ijk} A_{j} B_{k}$$

There is the following identity

$$\epsilon_{ijk}\epsilon_{ilm} \equiv \sum_{i=1}^{3} \epsilon_{ijk}\epsilon_{ilm} = \delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}$$

equivalent to $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$

Levi-Civita Tensor

Lecture 21

Magnetostation

Magnetic Field Far from Current Distribution Levi-Civita Tensor

Magnetic momen Planar loop Moving point-like particles

particles
Torques and force
on magnetic dipole

$$\epsilon_{ijk}\epsilon_{ilm} = \delta_{il}\delta_{km} - \delta_{im}\delta_{kl}$$

Using this identity we write

$$x_i'J_j - x_j'J_i = (\delta_{il}\delta_{jm} - \delta_{im}\delta_{jl})x_l'J_m$$
$$= \epsilon_{kij}\epsilon_{klm}x_l'J_m = \epsilon_{ijk}(\mathbf{x}' \times \mathbf{J})_k$$

and

$$\sum_{j=1}^{3} x_j \left[x_i' J_j - x_j' J_i \right] = x_j \epsilon_{ijk} (\mathbf{x}' \times \mathbf{J})_k = \left[\mathbf{x} \times (\mathbf{x}' \times \mathbf{J}) \right]_i$$

Thus we have

$$A_i(\mathbf{x}) = -\frac{1}{2} \frac{\mu_0}{4\pi} \frac{1}{|\mathbf{x}|^3} \left[\mathbf{x} \times \int d^3 x' \, \mathbf{x}' \times \mathbf{J} \right]_i$$

Magnetic Field Far from Current

Magnetic moment
Planar loop
Moving point-like
particles
Torques and forces

$$\mathbf{A}(\mathbf{x}) = -\frac{1}{2} \frac{\mu_0}{4\pi} \frac{1}{|\mathbf{x}|^3} \mathbf{x} \times \int d^3 x' \, \mathbf{x}' \times \mathbf{J}$$

Magnetic moment is given by the vector

$$\mathbf{m} = \frac{1}{2} \int d^3 x' \, \mathbf{x}' \times \mathbf{J}$$

Magnetic moment density

$$\mu = \frac{1}{2}\mathbf{x}' \times \mathbf{J}$$

Thus we can write

$$\mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi} \frac{1}{|\mathbf{x}|^3} \mathbf{m} \times \mathbf{x}$$

- This is the lowest non-vanishing term in the multipole expansion of the magnetic vector potential for a localized current density
- Applying $\mathbf{B} = \nabla \times \mathbf{A}$, we have

$$\mathbf{B} = \frac{\mu_0}{4\pi} \left[\frac{3(\mathbf{x} \cdot \mathbf{m})\mathbf{x} - r^2 \mathbf{m}}{r^5} \right],$$

exactly analogous to the electrostatic field due to a point dipole

Derivation of formula for $\mathbf{B}(\mathbf{x})$

Lecture 21

Magnetecteti

Magnetic Field Far from Current Distribution Levi-Civita Tensor Magnetic moment

Planar loop Moving point-like particles

particles
Torques and force
on magnetic dipole

$$A_k(\mathbf{x}) = \frac{\mu_0}{4\pi} \frac{1}{|\mathbf{x}|^3} \left[\mathbf{m} \times \mathbf{x} \right]_k = \frac{\mu_0}{4\pi} \frac{1}{|\mathbf{x}|^3} \epsilon_{ijk} m_i x_j$$

$$\left[\nabla\times(\mathbf{m}\times\mathbf{x})\frac{1}{|\mathbf{x}|^3}\right]_n=\epsilon_{nlk}\frac{\partial}{\partial x^l}\frac{1}{|\mathbf{x}|^3}\epsilon_{kij}m_ix_j$$

$$\epsilon_{nlk}\epsilon_{kij}=-\epsilon_{lnk}\epsilon_{ijk}=-\delta_{il}\delta_{jn}+\delta_{jl}\delta_{in}$$

$$\epsilon_{nlk}\epsilon_{kij}m_ix_j=(-\delta_{il}\delta_{jn}+\delta_{jl}\delta_{in})m_ix_j=-m_lx_n+m_nx_l$$

$$\frac{\partial}{\partial x^l} \frac{1}{|\mathbf{x}|^3} (-m_l x_n + m_n x_l) = 3 \frac{x_l}{|\mathbf{x}|^5} (m_l x_n - m_n x_l) + \frac{1}{|\mathbf{x}|^3} (-m_l \delta_{ln} + m_n)$$

$$= 3 \frac{x_n (\mathbf{x} \cdot \mathbf{m}) - m_n |\mathbf{x}|^2}{|\mathbf{x}|^5} + \frac{-m_n + 3m_n}{|\mathbf{x}|^3} = \frac{3x_n (\mathbf{x} \cdot \mathbf{m}) - m_n |\mathbf{x}|^2}{|\mathbf{x}|^5}$$

Magnetic moment of a planar loop

Lecture 21

Magnetostatio

Magnetic Field Fa from Current Distribution Levi-Civita Tensor Magnetic momen Planar loop Moving point-like

Planar loop
Moving point-like
particles
Torques and forces
on magnetic dipoles

For the case of a current confined to a loop, we have

$$\mathbf{m} = \frac{I}{2} \oint \mathbf{x} \times \mathbf{dl}$$

 \bullet If we have a planar loop, $\mathbf{x}\times\mathbf{dl}$ is normal to the plane of the loop, and we have

$$\frac{1}{2}\mathbf{x} \times \mathbf{dl} = \mathbf{n} \frac{1}{2} x \, dl \, \sin \xi = da \, \mathbf{n}$$

As a result,

$$\mathbf{m} = IA \mathbf{n}$$

lacktriangledown is a normal to the plane of the loop, and A is the total area of the loop

Magnetic moment of moving charged point-like particles 12/16

Lecture 21

Consider the case where the current distribution arises from the motion of a number of charged point-like particles:

$$\mathbf{J} = \sum_{i} q_i \mathbf{v}_i \delta(\mathbf{x} - \mathbf{x}_i)$$

 \bullet \mathbf{v}_i is the velocity of the i^{th} particle, which we assume is much less than the velocity of light. Then we have

$$\mathbf{m} = \frac{1}{2} \sum_{i} q_i \mathbf{x}_i \times \mathbf{v}_i$$

The orbital angular momentum of a particle is given by

$$\mathbf{L}_i = M_i \mathbf{x}_i \times \mathbf{v}_i$$

where M_i is the mass of the $i^{\rm th}$ particle. Thus, we may write

$$\mathbf{m} = \sum_{i} \frac{q_i}{2M_i} \mathbf{L}_i$$

• When all the particles have equal q_i/M_i ratio, the magnetic moment is proportional to the total angular momentum

Moving point-like

13/16

Torques and forces on magnetic dipoles

Lecture 21

Magnetostatic Magnetic Field Far from Current Distribution Levi-Civita Tensor

Magnetic moment
Planar loop
Moving point-like
particles
Torques and forces
on magnetic dipoles

- Consider a magnetic dipole in the uniform magnetic field **B** and take **m** due to wire loop with area a carrying current I such as m = Ia
- $lackbox{ }$ Force on a current element $I\mathbf{dl}$ at \mathbf{x} in a magnetic field $\mathbf{B}(\mathbf{x})$ is

$$d\mathbf{F} = Id\mathbf{l} \times \mathbf{B}$$

The total force acting on the loop is zero:

$$\mathbf{F} = I \oint \mathbf{dl} \times \mathbf{B} = -I\mathbf{B} \times \oint \mathbf{dl} = 0$$

• The torque acting on the loop is $\mathbf{m} \times \mathbf{B}$ Proof: using $\mathbf{dx}' \equiv \mathbf{dl}$, we start with

$$\mathbf{N} = \oint \mathbf{x}' \times d\mathbf{F} = \oint \mathbf{x}' \times (I \mathbf{dx}' \times \mathbf{B})$$
$$= I \oint \mathbf{dx}' (\mathbf{x}' \cdot \mathbf{B}) - \frac{1}{2} \mathbf{B} I \oint d(x'^2) = I \oint \mathbf{dx}' (\mathbf{x}' \cdot \mathbf{B})$$

Torques and forces on magnetic dipoles, cont.

Lecture 21

from Current Distribution Levi-Civita Tensol Magnetic momen Planar loop Moving point-like

particles
Torques and forces
on magnetic dipoles

For an arbitrary constant vector a

$$\oint d\mathbf{x}'(\mathbf{x}' \cdot \mathbf{a}) = -\frac{1}{2}\mathbf{a} \times \oint (\mathbf{x}' \times d\mathbf{x}')$$

Proof:

$$\mathbf{a}\times \oint (\mathbf{x}'\times \mathbf{d}\mathbf{x}') = \oint [\mathbf{x}'(\mathbf{a}\cdot \mathbf{d}\mathbf{x}') - \mathbf{d}\mathbf{x}'(\mathbf{a}\cdot \mathbf{x}')] \; ,$$

furthermore

and therefore

$$\mathbf{a} \times \phi(\mathbf{x}' \times \mathbf{dx}') = -2 \phi \mathbf{dx}' (\mathbf{a} \cdot \mathbf{x}')$$

• Taking a = B we get

$$\mathbf{N} = -\frac{I}{2}\mathbf{B} \times \phi(\mathbf{x}' \times \mathbf{dx}') = \left(\frac{I}{2}\phi \mathbf{x}' \times \mathbf{dx}'\right) \times \mathbf{B} = \mathbf{m} \times \mathbf{B}$$

 The torque in a uniform external field is a cross product of the magnetic moment and the field

Torques and forces on magnetic dipoles

- Consider a small dipole in the non-uniform external field (the size of the dipole ≪ characteristic size of the field)
 - The formula for the torque remains the same: $N = m \times B$ (the magnetic field should be taken at the position of the dipole)
 - However, the total force is no longer zero,

$$\mathbf{F} \ = \ I \oint \mathbf{dl} \times \mathbf{B} \ \neq 0$$

Since our dipole is small we can expand B(x') in powers of x'. Suppose that the dipole is located at the origin. We get

$$\mathbf{B}(\mathbf{x}') = \mathbf{B}(0) + (\mathbf{x}' \cdot \nabla) \mathbf{B}(0) + \dots \text{ and using } \mathbf{dl}' \equiv \mathbf{dx}'$$

$$\mathbf{F} = I \oint \mathbf{dl}' \times \mathbf{B}(0) + I \oint \mathbf{dl}' \times (\mathbf{x}' \cdot \nabla) \mathbf{B} + O(x'^{2})$$

$$= I \oint \mathbf{dx}' (\mathbf{x}' \cdot \nabla) \times \mathbf{B} + O(x'^{2})$$

Next we use

$$\oint d\mathbf{x}'(\mathbf{x}' \cdot \mathbf{a}) = \frac{1}{2} \oint (\mathbf{x}' \times d\mathbf{x}') \times \mathbf{a}$$

with $\mathbf{a} = \nabla$ and obtain

$$I \oint d\mathbf{x}'(\mathbf{x}' \cdot \nabla) \times \mathbf{B} = \left(\frac{I}{2} \oint (\mathbf{x}' \times d\mathbf{x}') \times \nabla\right) \times \mathbf{B} = (\mathbf{m} \times \nabla) \times \mathbf{B}$$

Magnetostatio

Distribution
Levi-Civita Tensor
Magnetic moment
Planar loop
Moving point-like
particles

particles
Torques and forces
on magnetic dipoles

• Finally (incorporating $\nabla \cdot \mathbf{B} = 0$)

$$\mathbf{F} \; = \; (\mathbf{m} \times \nabla) \times \mathbf{B} \; = \; \nabla(\mathbf{m} \cdot \mathbf{B}) - \mathbf{m}(\nabla \cdot \mathbf{B}) \; = \; \nabla(\mathbf{m} \cdot \mathbf{B})$$

• Since ${\bf F}=-\nabla U$ we see that the potential energy of a (small) magnetic dipole in the external magnetic field is

$$U = -\mathbf{m} \cdot \mathbf{B}$$

• Relation is similar to $U = -\mathbf{p} \cdot \mathbf{E}$ for the electric dipole