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Magnetic Field Far from Current Distribution e

@ Consider a localized current distribution J(x’), and the magnetic vector
potential produced at a point P(x) where |x| > |x’|. In the Coulomb gauge

A(x) = @/ds ’ J(z)
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Magnetic Field Far
from Current

Distuton @ Expanding \X—71X'I = ﬁ + "‘x—"‘; + ..., we get
1
Ai(x) = al) {—/dsm/ Ji(x") + is ./d?’m/ Ji(x")x' +}
dm L [x] x|
Mo{lll/dg’x'J(x ij/de(x )z }

@ We need to know the volume integrals of J;(x’) and J;(x') m; with J; (x')
in principle being an arbitrary function

@ For magnetostatics, however, it satisfies V - J(x) = 0

@ Integrating V' - J(x’) = 0 with any function F(x’), we should get zero,

0= f/d3x’F(x’)V' I = /d3x’J(x’) V' F(x)

@ In the second step we have integrated by parts and used the fact that the
surface integral vanishes for a localized current distribution



Magnetic Field Far from Current Distribution,
cont. 4116
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= /d3w’J(x’)-V’F(x’) =0

Magnetic Fiald Far @ In components, we have
from Current
Distribution

3
Z/d3z’Jk(x’)V;€F(x') =0
k=1

@ Consider the first term in the expansion

Ai(x) = 20 {l/d%’ Ji(x’)+i-/d3x’ Ji(x')x’Jr...}

A x| x|

@ Take F(x’) = =}, which using V} z} = &;;, results in

3
Z/de’Jk(Sik =0 = /d3:c’Ji =0
k=1

= the first term vanishes

@ This is just a further restatement that there is no “monopole” contribution to
the multipole expansion for magnetic fields



Magnetic Field Far from Current Distribution,
cont.

Lecture 21 @ Consider the second term in the expansion of A (x)

Ai(x) = poy x . Bz T (X% + ...
ar | |x|3

3
Z/d3z’Jk(x’)V;€F(x') =0

@ To get J;(x') @, in the integrand we take I* ;and obtain
Z/d%’Jk Oz; = 0
— oz},
= Z/d3$ Jk mx;-i—wgéjk] = 0

= /de/ [Jixh; 4+ Jjai]

1
/d3m' Jiw;- = 7/d3x/ Jjzh = 3 /d?’x' [sz; — Jjz})

Magnetic Field Far and recall
from Current
Distribution
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@ Thus, we may write
Magnetic Field Far

from Current

Distribution

Ai(x)

@ In vector form,

A(x) =

/de' Jixh = —/dscc' Jijzi =

Magnetic Field Far from Current Distribution,

%/dS:c' [szz — J;z]

3
po 1
y \x|3 Za:]/d ' Jyx

3
1po 1
fEEWZx]/Uﬁ a'la Iy — af ],

lpo 1 3.7 /
fgﬂw/d o (x - 3) — (< - %)J]

which may be also written as

using A x (B x C) =

B(A-C)— C(A-B).




Levi-Civita Tensor
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Levi-Civita Tensor
@ Recall the definition of the Levi-Civita tensor
0 if any two of 4, 5, k are equal
€ijk = 1 if (ijk) is an even permutation of (123)
—1 if (ijk) is an odd permutation of (123)
@ This tensor is isotropic, and totally anti-symmetric. In particular, we have

3 3
Einstein
A x B|Z = Z Z eijkAjBk Ee EijkAjBk
j=1k=1
@ There is the following identity
3
€ijk€itm = D €ijk€itm = 0j10km — 0jmOhi
i=1
equivalentto A x (B x C) =B(A-C)—-C(A-B)



Levi-Civita Tensor
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€ijk€ilm = 0510km — OjmOki

@ Using this identity we write

Levi-Civita Tensor

Zé]j — IE; Ji = (5il(sjm - 6im6jl)xg‘]m

/ !
€kij€himTyIm = €35k (x" X T)p

and
/ / _ / — !
E zj [2;J; — 25 Ji] = zjeijn(x x )y = [x x (x' x J)]l

@ Thus we have

1 po / 3
Aj(x) = —=H0 = d J
(x) > an x| |: ' x x
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Magnetic moment is given by the vector
1
m = 7/d3x/x'><.]
Magnetic moment 2
@ Magnetic moment density
1

=_x'xJ
B=3
@ Thus we can write
po 1
A = ——mXXx
() 4 |x|3

@ This is the lowest non-vanishing term in the multipole expansion of the
magnetic vector potential for a localized current density
@ Applying B=V x A, we have
B_ Ho 3(x-m)x — r?m
47 rd

exactly analogous to the electrostatic field due to a point dipole

)



Derivation of formula for B(x)
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1 1o 1
Ap(x) = ———=[m x x|, = —— € i kMG
k( ) An |X|3 [ }k ‘ |3 gk L
1 0
VXx(mXxx)—= = €hiiMGX
(mx 05| = oot pemenimin
Magnetic moment
€nlk€kij = —€ink€ijk = —0i10jn + 6510in
Enik€kijMiT; = (—0;10n + 0510in)Mizj = —MyTn + mpx;

thl 1
Tl i3 (TuEn + mna) = | =P (mMuzn — mnay) + W(—mﬁm +mn)
Tn(x-m) —mn|x|2  —mp 4 3mp _ 3zn(x-m) — mp|x|?

x> x[? - x>




Magnetic moment of a planar loop
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@ For the case of a current confined to a loop, we have

I
m:77§x><dl
2

@ If we have a planar loop, x x dlis normal to the plane of
the loop, and we have

Planar loop

1 1
—xxdl = n-zdlsin{ =dan
2 2

@ As aresult,

m=IAn

@ n is a normal to the plane of the loop, and A is the total area of the loop



Magnetic moment of moving charged point-like
particles 12/16

Lecture 21 @ Consider the case where the current distribution arises from the motion of a
number of charged point-like particles:

J = Z qivid(x — x;)

@ v, is the velocity of the it particle, which we assume is much less than the
velocity of light. Then we have

Moving point-like
particles

1
m=3 Z qiXi X Vi
i
@ The orbital angular momentum of a particle is given by
Li = Mixi X Vv;
where M; is the mass of the t" particle. Thus, we may write

i
= L;
"

@ When all the particles have equal ¢; /M; ratio, the magnetic moment is
proportional to the total angular momentum




Torques and forces on magnetic dipoles 13/16
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Consider a magnetic dipole in the uniform magnetic field B and take m due
to wire loop with area a carrying current I such as m = Ia

@ Force on a current element Idl at x in a magnetic field B(x) is

dF =I1dl x B

@ The total force acting on the loop is zero:

Torques and forces
on magnetic dipoles

F = I%dle = —IBX%dle

@ The torque acting on the loop is m x B
Proof: using dx’ = dl, we start with

N :?{x'XdF :?{x'x([dx'XB)

= Iifdx’(x’ ‘B) — %Blfd(xﬂ) = I]{dx’(x’ -B)



Torques and forces on magnetic dipoles, cont.
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Lecture 21 For an arbitrary constant vector a
%dx’(x/ -a) = —%a X]{(x/ x dx’)
@ Proof:
a x P x dx') = fix'(a-dx') - dx'(a-x)],
furthermore
Fx'(aax) = fde (@ x) - dx'(a-x)) = - §ax(a-x).

and therefore

Torques and forces
on magnetic dipoles

a xf(x' x dx') = —Zfdx'(a-x’)
@ Taking a = B we get

I I
N:—§B><7{(x’><dx’) = (5?{x’xdx')><B = mxB

@ The torque in a uniform external field is a cross product of the magnetic
moment and the field



Torques and forces on magnetic dipoles, cont.
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Lecture 21 @ Consider a small dipole in the non-uniform external field
(the size of the dipole <« characteristic size of the field)
@ The formula for the torque remains the same: N =m x B
(the magnetic field should be taken at the position of the dipole)
@ However, the total force is no longer zero,

F = I%dle #£0

Since our dipole is small we can expand B(x’) in powers of x'.
Suppose that the dipole is located at the origin. We get

B(x') = B(0) + (x' - V) B(0) + ... and using dl’ = dx’

Torques and forces
on magnetic dipoles

F = Iy{dl’ xB(0)+17§d1' x (x' - V)B+ 0(a'?)
= Ifdx'(x’ V) x B+0(z'?)

@ Next we use 1
?{dxl(xl -a) = 5%(XI x dx’) x a
with a = V and obtain

I}{dx’(x’~V)><B = (g?{(x/de/)Xv) xB = (mxV)xB



Torques and forces on magnetic dipoles, cont.
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@ Finally (incorporating V - B = 0)
F=(mxV)xB =V(m-B)—m(V-B) = V(m-B)

Torques and forces @ Since F = —VU we see that the potential energy of a (small) magnetic
on magnete dpoles dipole in the external magnetic field is

U= -m-B

@ Relation is similar to U = —p - E for the electric dipole
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