Midterm 1 solutions.

Problem 1. (3 points)

A parallel plate capacitor of plate separation d and area A is charged to voltage V. How much work is required to pull the plates apart so that the plates' separation becomes 2d? Consider two cases:

(a) After initial charging to voltage V, the capacitor is disconnected from the battery,

and

(b) Capacitor is connected to battery so the voltage is always V.

Solution (a)

The electric field between plates is $E = \frac{\sigma}{\epsilon_0} = \frac{Q}{A\epsilon_0}$ where A is the area Half of this electric field is due to upper plate and half due to lower. The force acting on the upper plate of the capacitor is $F = QE_{due to lower plate} = Q\frac{\sigma}{2\epsilon_0} = \frac{Q^2}{2A\epsilon_0}$ and when you (slowly) move the plate a distance d the work is

$$W = Fd = \frac{Q^2}{2A\epsilon_0}d$$

It can also be obtained from conservation of energy. Since $C = \frac{A}{d} \epsilon_0$

$$W = \frac{Q^2}{2C_2} - \frac{Q^2}{2C_1} = Q^2 \frac{2d}{2A\epsilon_0} - Q^2 \frac{d}{2A\epsilon_0} = Q^2 \frac{d}{2A\epsilon_0}$$

(b)

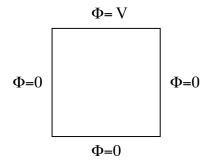
If the distance between plates is z the electric field is $E = \frac{V}{z}$ so the force is $F = \frac{QV}{2z}$ and the work to double the plates' separation is

$$W = \int_{d}^{2d} F(z)dz = \int_{d}^{2d} dz \frac{QV}{2z} = QV \frac{\ln 2}{2}$$

The second method is not applicable for this case since the battery is attached so the energy is not conserved.

Problem 2. (4 points)

Find the solution of Laplace equation in a 2-dimensional square well of size a where three sides are kept at zero potential and the fourth side at constant potential V.



Solution

Similarly to Examples 3.3 and 3.4 we need to solve Laplace equation $\frac{\partial^2}{\partial x^2}V(x,y) + \frac{\partial^2}{\partial y^2}V(x,y) = 0$ with boundary conditions

$$V(0, y) = 0, \quad V(a, y) = 0, \quad V(x, 0) = 0, \quad V(x, a) = V_0,$$

Separation of variables V(x, y) = f(x)g(y) gives

$$\frac{\partial}{\partial x^2} f(x) = \mp k^2 f(x), \quad \frac{\partial}{\partial y^2} f(x) = \pm k^2 f(x)$$

Looking at the boundary conditions f(0) = f(a) = 0 we see that we need $\frac{\partial}{\partial x^2} f(x) = -k_n^2 f(x)$ with $k_n = \frac{\pi n}{a}$. Consequently, the function $g(y) = a \sinh k_n y + b \cosh k_n y$. From boundary condition g(0) = 0 we get b = 0 so

$$f(x) = \sin \frac{\pi n}{a} x, \quad g(y) = \sinh \frac{\pi n}{a} y$$

The general solution is given by the sum over n

$$V(x,y) = \sim_{n=1}^{\infty} C_n \sin \frac{\pi n}{a} x \sinh \frac{\pi n}{a} y$$

To satisfy last boundary condition $V(x, a) = V_0$ we need

$$V(x,a) = V_0 = \sum_{n=1}^{\infty} C_n \sin \frac{\pi n}{a} x \sinh \pi n$$

Using orthogonality property (3.33) we get

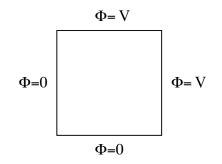
$$C_n = \frac{1}{\sinh \pi n} \frac{2V_0}{a} \int_0^a dx \, \sin \frac{\pi nx}{a} = \frac{2V}{n \sinh \pi n} \left[1 - (-1)^n \right]$$

and the solution takes the form

$$V(x,y) = \frac{4V_0}{\pi} \sum_{n=\text{odd}} \frac{1}{n \sinh \pi n} \sin \frac{\pi n x}{a} \sinh \frac{\pi n y}{a} \tag{1}$$

Extra credit - 1 points.

Same for setup shown below



Solution

The result for the setup with V = 0 at y = 0, a, x = 0 and $V = V_0$ at x = a is the same with trivial substitution $x \leftrightarrow y$

$$V(x,y) = \frac{4V}{\pi} \sum_{n = \text{odd}} \frac{1}{n \sinh \pi n} \sin \frac{\pi n y}{a} \sinh \frac{\pi n x}{a}$$
(2)

By superposition principle, the result for V = 0 at y = 0, x = 0 and $V = V_0$ at x = a, y = a is the sum of Eqs. (1) and (2)

$$V(x,y) = \frac{4V}{\pi} \sum_{n=\text{odd}} \frac{1}{n \sinh \pi n} \sin \frac{\pi n x}{a} \sinh \frac{\pi n y}{a} + (x \leftrightarrow y)$$

Problem 3. (3 points).

A pure dipole is located at distance d from the infinite conducting plane and is aligned with the normal to the plane. What is the force between the dipole and the conducting plane? Is it attractive or repulsive?

Solution

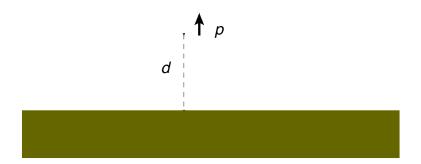
It is easy to see that the image dipole is equal to the original dipole and is located at distance -d. Let us assume that the conducting plane lies at z = 0. The field due to the image dipole art the point z, 0, 0 is

$$\vec{E} = \frac{3(\vec{p} \cdot \hat{e}_3)\hat{e}_3 - \vec{p}}{|z+d|^3} = \frac{2p}{(z+d)^3}\hat{e}_3$$

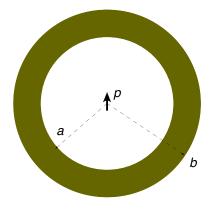
and the force on the original diple due to image dipole is

$$\vec{F} = (\vec{p} \cdot \vec{\nabla})\vec{E} = p \frac{\partial}{\partial z} E_z \Big|_{z=d} \hat{e}_3 = p \frac{\partial}{\partial z} \frac{2p}{(z+d)^3} \Big|_{z=d} \hat{e}_3 = -\frac{3p^2}{4d^3} \hat{e}_3$$

The force is attractive



Problem 4. A pure dipole is located at the center of the conducting spherical shell of inner radius a and outer radius b.



- (a) What is the electric field outside the shell? (2 points)
- (b) What is the potential inside (at r < a)? (4 points)

Solution

(a)

From the solution of Example (2.10)

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r} = 0$$

since the total charge inside the cavity Q = 0.

(b)

Expansion in Legendre polynomials has the form

$$V(r,\theta) = \sum_{l=0}^{\infty} (A_l r^l + B_l r^{-l-1}) P_l(\cos \theta)$$

Since we have a dipole inside with the potential $\frac{p\cos\theta}{4\pi\epsilon_0 r^2}$ we should allow the term with B_1

$$V(r,\theta) = \sum_{l=0}^{\infty} A_l r^l P_l(\cos\theta) + B_1 r^{-2} \cos\theta$$

From the behavior at $r \to 0$ we see that $B_1 = \frac{p}{4\epsilon_0}$. We know that $V(a, \theta) = 0$ so

$$V(a,\theta) = \sum_{l=0}^{\infty} A_l r^l P_l(\cos\theta) + B_1 r^{-2} \cos\theta = 0$$

From the orthogonality of Legendre polynomials we see that $A_i = 0$ if $l \neq 1$ and $A_1 = \frac{B_1}{a^3}$ so

$$V(r,\theta) = \frac{p\cos\theta}{4\pi\epsilon_0} \Big[\frac{1}{r^2} - \frac{r}{a^3} \Big]$$

Extra credit - 1 point. What method you would use if the dipole is not at the center? If dipole is not at the center, the problem can be solved by method of images.