Phys 425 midterm \#1 (16 points).

Problem 1. (4 points)
A parallel plate capacitor of plate separation d_{1} is filled with a solid dielectric material of permittivity ϵ, as shown in the figure (a) below. The capacitor is charged to voltage V_{1}. The capacitor is then disconnected from the battery and pulled apart so that the plate separation becomes $d_{1}+d_{2}$. The dielectric does not expand and the dielectric-free region has size d_{2} (see figure (b)]. Assume the plates are large compared to both d_{1} and d_{2}.

Find:
(I) the voltage V_{2} after the capacitor is pulled apart.
(II) the surface charge density at the lower surface of the dielectric in part (b)

Solution

(i)The surface charge density is

$$
\sigma=\frac{C_{1} V_{0}}{A}=\frac{\epsilon}{d_{1}} V_{0}
$$

For the part (b) the electric displacement in the dielectric $D_{1}=\sigma$ so the electric field is $E_{1}=\frac{\sigma}{\epsilon}$. The electric field in the dielectric-free region is $E_{2}=\frac{\sigma}{\epsilon_{0}}$ so the total voltage is

$$
V_{2}=\frac{\sigma}{\epsilon} d_{1}+\frac{\sigma}{\epsilon_{0}} d_{2}=\frac{Q}{\frac{A}{\epsilon} d_{1}}+\frac{Q}{\frac{A}{\epsilon_{0}} d_{2}}=V_{0}\left(1+\frac{\epsilon_{0} d_{2}}{\epsilon d_{1}}\right)
$$

which corresponds to the capacitors with $C_{1}=\frac{A}{\epsilon} d_{1}$ and $C_{2}=\frac{A}{\epsilon_{0}} d_{2}$ connected in series $\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$.
(ii). The surface charge density on the lower surface of dielectric is

$$
\sigma=\left(E_{\perp}^{\text {above }}-E_{\perp}^{\text {below }}\right) \epsilon_{0}=-\sigma \frac{\epsilon-\epsilon_{0}}{\epsilon}
$$

Problem 2. (4 points)
Dielectric material with permittivity ϵ fills the whole space except for the spherical cavity with radius R. A pure dipole p is placed in the center of the cavity. Find the potential inside and outside the cavity.

Solution

A general expansion in Legendre polynomials has the form

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+B_{l} r^{-l-1}\right) P_{l}(\cos \theta)
$$

At $r>R$

$$
\left.V_{\text {out }}(r, \theta)=\sum_{l=0}^{\infty} B_{l} r^{-l-1}\right) P_{l}(\cos \theta)
$$

Since we have a dipole inside with the potential $\frac{p \cos \theta}{4 \pi \epsilon_{0} r^{2}}$ we should allow the term with b_{1} inside

$$
V_{\mathrm{in}}(r, \theta)=\sum_{l=0}^{\infty} a_{l} r^{l} P_{l}(\cos \theta)+b_{1} r^{-2} \cos \theta
$$

From the behavior at $r \rightarrow 0$ we see that $b_{1}=\frac{p}{4 \pi \epsilon_{0}}$. We know that $V(R, \theta)$ is continuous so

$$
\sum_{l=0}^{\infty} B_{l} R^{-l-1} P_{l}(\cos \theta)=\sum_{l=0}^{\infty} a_{l} R^{l} P_{l}(\cos \theta)+b_{1} R^{-2} \cos \theta
$$

Next, there is no free charge on the surface so $D_{\perp}=D_{r}$ is continuous $\left.\Leftrightarrow \epsilon \frac{\partial V}{\partial r}\right|_{r \rightarrow R+}=\left.\epsilon_{0} \frac{\partial V}{\partial r}\right|_{r \rightarrow R-}$ and we get

$$
\frac{\epsilon}{\epsilon_{0}} \sum_{l=0}^{\infty}\left(-(l+1) B_{l}\right) R^{-l-2} P_{l}(\cos \theta)=\sum_{l=0}^{\infty} l a_{l} R^{l-1} P_{l}(\cos \theta)-2 b_{1} R^{-3} \cos \theta
$$

From the orthogonality of Legendre polynomials we see that $a_{i}=b_{i}=B_{i}=0$ if $l \neq 1$ and

$$
B_{1}=a_{1} R^{3}+b_{1}, \quad-2 \frac{\epsilon}{\epsilon_{0}} B_{1}=a_{1} R^{3}-2 b_{1} \quad \Rightarrow \quad a_{1}=\frac{2\left(\epsilon_{0}-\epsilon\right)}{2 \epsilon+\epsilon_{0}} \frac{p}{4 \pi \epsilon_{0}}, \quad B_{1}=\frac{3 \epsilon_{0}}{2 \epsilon+\epsilon_{0}} \frac{p}{4 \pi \epsilon_{0}}
$$

and therefore

$$
V_{\text {out }}(r, \theta)=\frac{3 \epsilon_{0}}{2 \epsilon+\epsilon_{0}} \frac{p \cos \theta}{4 \pi \epsilon_{0} r^{2}}, \quad V_{\mathrm{in}}(r, \theta)=\frac{2\left(\epsilon_{0}-\epsilon\right)}{2 \epsilon+\epsilon_{0}} \frac{p R \cos \theta}{4 \pi \epsilon_{0} R^{3}}+\frac{p \cos \theta}{4 \pi \epsilon_{0} r^{2}},
$$

Problem 3. (4 points)
A disc of radius a has a hole of radius b whose center is located at the center of a larger disc. The charge Q is spread uniformly over this disc. The disc is rotating with angular velocity ω around axis perpendicular to the surface of the disc and passing through its center. Find the magnetic field at the center of the hole.

Solution \#1

The magnetic field in the center of a circular wire of radius r carrying current I is

$$
\vec{B}=\frac{\mu_{0} I}{2 \pi r} \hat{e}_{3}
$$

(Eq. (5.41) from Griffiths at $z=0$). A stripe of the disc between r and $r+d r$ has current $d I=\sigma v d r=\omega \sigma r d r$ so it creates

$$
d \vec{B}=\frac{\mu_{0} d I}{2 \pi r} \hat{e}_{3}=\frac{\mu_{0} \sigma \omega}{2 \pi} \hat{e}_{3} d r
$$

and therefore

$$
\vec{B}=\frac{\mu_{0} \omega \sigma}{2 \pi} \hat{e}_{3} \int_{b}^{a} d r=\frac{\mu_{0} \omega \sigma(a-b)}{2 \pi} \hat{e}_{3}
$$

Solution \#2

Formula (5.42) from Griffiths

$$
\vec{B}=\frac{\mu_{0}}{4 \pi} \int d a^{\prime} \vec{K}\left(\overrightarrow{r^{\prime}}\right) \times \frac{\left(\vec{r}-\overrightarrow{r^{\prime}}\right)}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|^{3}} \stackrel{\vec{r} \equiv 0}{=}-\frac{\mu_{0}}{4 \pi} \int d a^{\prime} \vec{K}\left(\overrightarrow{r^{\prime}}\right) \times \frac{\overrightarrow{r^{\prime}}}{\left|\overrightarrow{r^{\prime}}\right|^{3}}
$$

For the rotating disc $\vec{K}=\sigma \vec{v}=\sigma \vec{\omega} \times \overrightarrow{r^{\prime}}$ so

$$
\vec{B}=\frac{\mu_{0}}{4 \pi} \int d a^{\prime}=-\frac{\mu_{0} \sigma}{4 \pi} \int d a^{\prime}\left(\vec{\omega} \times \overrightarrow{r^{\prime}}\right) \times \frac{\overrightarrow{r^{\prime}}}{\mid \overrightarrow{\left.r^{\prime}\right|^{3}}}=\frac{\mu_{0} \sigma \vec{\omega}}{4 \pi} \int \frac{d a^{\prime}}{r^{\prime}}=\frac{\mu_{0} \sigma \vec{\omega}}{2} \int_{b}^{a} d r^{\prime}=\frac{\mu_{0} \omega \sigma(a-b)}{2 \pi} \hat{e}_{3}
$$

Problem 4 (4 points).
Two pure magnetic dipoles $\vec{m}_{1}=m \hat{e}_{1}$ and $\vec{m}_{2}=m_{2} \hat{e}_{3}$ are separated by distance $\vec{d}=d \hat{e}_{3}$.

Find
a) Energy of this setup.
b) Force between the dipoles.

Solution

The potential energy for two dipoles separated by $\vec{r}=x \hat{e}_{1}+y \hat{e}_{2}+z \hat{e}_{3}$ is

$$
U=-\left(\vec{m}_{2} \cdot \vec{B}_{(1)}(\vec{r})=\frac{\mu_{0}}{4 \pi r^{4}}\left[\left(\vec{m}_{1} \cdot \vec{m}_{2}\right) r^{2}-3\left(\vec{m}_{1} \cdot \vec{r}\right)\left(\vec{m}_{2} \cdot \vec{r}\right)\right]=-\frac{\mu_{0}}{4 \pi} \frac{3 m_{1} m_{2} x z}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right.
$$

\Rightarrow the potential energy at the point $\vec{r}=d \hat{e}_{3}$ is 0 and the force is

$$
\vec{F}=-\vec{\nabla} U=-\frac{\mu_{0}}{4 \pi} \frac{3 m_{1} m_{2} z}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} \hat{e}_{1}=-\frac{\mu_{0}}{4 \pi} \frac{3 m_{1} m_{2} z}{d^{3}} \hat{e}_{1}
$$

