Phys 425 midterm #1 (16 points).

Problem 1. (4 points)

A parallel plate capacitor of plate separation d; is filled with a solid dielectric material of permittivity €, as shown
in the figure (a) below. The capacitor is charged to voltage V;. The capacitor is then disconnected from the battery
and pulled apart so that the plate separation becomes d; + d>. The dielectric does not expand and the dielectric-free
region has size dy (see figure (b)]. Assume the plates are large compared to both dyand ds.

Find:

(I) the voltage V; after the capacitor is pulled apart.
(IT) the surface charge density at the lower surface of the dielectric in part (b)

(2) (b)

Solution
(i)The surface charge density is
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For the part (b) the electric displacement in the dielectric Dy = o so the electric field is £y = Z. The electric field in

the dielectric-free region is Fy = % so the total voltage is
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which corresponds to the capacitors with C; = édl and Cy = %dg connected in series % = C% + C%

(ii). The surface charge density on the lower surface of dielectric is
o = (Eibove . Eielow)eo — 06 — €0

Problem 2. (4 points)
Dielectric material with permittivity e fills the whole space except for the spherical cavity with radius R. A pure
dipole p is placed in the center of the cavity. Find the potential inside and outside the cavity.

Solution
A general expansion in Legendre polynomials has the form
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Since we have a dipole inside with the potential % we should allow the term with b; inside

Vin(r,0) = Z a;rtPy(cos 0) + byr~2 cos b
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From the behavior at r — 0 we see that by = -2—. We know that V (R, 6) is continuous so
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Next, there is no free charge on the surface so D, = D,. is continuous < eV = 60%—‘: and we get
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From the orthogonality of Legendre polynomials we see that a; = b; = B; = 0if [ # 1 and
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and therefore
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Problem 3. (4 points)

A disc of radius a has a hole of radius b whose center is located at the center of a larger disc. The charge @ is
spread uniformly over this disc. The disc is rotating with angular velocity w around axis perpendicular to the surface
of the disc and passing through its center. Find the magnetic field at the center of the hole.
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Solution #1
The magnetic field in the center of a circular wire of radius r carrying current I is

_ I
5 — kol

2rr

(Eq. (5.41) from Griffiths at z = 0). A stripe of the disc between r and r + dr has current dI = cvdr = wordr so
it creates
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and therefore

Solution #2
Formula (5.42) from Griffiths
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Problem 4 (4 points).
Two pure magnetic dipoles m1 = mé; and mo = moé3 are separated by distance d = dés.
m,
m,

Find
a) Energy of this setup.
b) Force between the dipoles.

Solution
The potential energy for two dipoles separated by 7= xé; + yés + zé3 is
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= the potential energy at the point 7= dés is 0 and the force is
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