807 Midterm (20 points). 10/25/16, 10:50 a.m. - 12:20 p.m.

Problem 1.

A particle of mass m; moving from infinity with velocity vg and impact parameter
b scatters off a target particle of mass msy initially at rest. Find the minimum distance
between the particles for the repulsive interaction potential
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Solution
The problem is equivalent to the scattering of a particle with effective mass m = 7;?;";‘52
in the central field with U(r) = 3.
The kinetic energy of the “effective particle” is “TTQ and the effective potential is
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where L = pwb is the angular momentum. At minimal distance 7, there is no kinetic
energy so the conservation of energy gives
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Solution #2
Let us solve this problem in c.m. frame mqr; + maors = 0, ¥ = ¥ — 5. We have a

scattering of two particles: particle “1” at impact parameter by = 52b with velocity at oo
vio = JFvo and particle “2” with by = — T and vy = — Ffvo
- mi7] + mof: mi7 . miv
B oo MmN 22 _ 171 o 1
mi + meo mi + meo mi1 + msg

where M = m1 + mo. Conservation of energy reads
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Let us express it in terms of p and 7 (and ¥ = F) Since
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Conservation of angular momentum reads
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so we get
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At rmin we have 77 = 0 which again results in
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Problem 2.

Imagine that you are on a large rotating disk, with the angular velocity & perpendicular
to the disk. Assume that you know that the center of the disk is fixed, no real forces act
on anything on the disk, and & changes only in magnitude. Suppose that at time t = 0
you release a point mass m and observe that it moves away in the radial direction. If the
angular velocity at t = 0 was wg, what is the magnitude and direction of Coriolis force at
a later time ¢?7

Solution # 1
If the point mass is moving radially the sum of forces in ¢ direction is zero:

2m(& X 7) + m(d x 7)
Since & L 7
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so Newton’s 2nd law (2.28) turns to
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At t =07 =0 so const — w8a2 and
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and the Coriolis force at time ¢ is
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Solution # 2

In the inertial frame the point mass moves with constant velocity v = wpa. Suppose
at t = 0 the point was at x = a,y = 0, then at later time t it will be at the coordinates
T = a,y = woat in Cartesian or r = a/1 + w%tQ, ¢ = arccos ————. Since the disk moves
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in such a way that the point is always moving in radial direction, the angular velocity of

the disk is p )
w(t) = ¢(t) = — arccos = 0
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and the Coriolis force at time ¢ is
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Problem 3.

Two point masses M and m are connected by the (massless) rope of length [. Th rope
is suspended from a small hole in the frictionless table as shown below. The mass M can
move (freely) only up or down while the mass m is free to move on the table surface.

1. Write the Lagrangian and Euler-Lagrange equations for this system.

2. At time t = 0 the mass m is at distance rg < [ from the hole and its velocity is vg
in the direction orthogonal to the rope. Find at which vy the motion is circular
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Figure 1. Projectile motion.

Solution

1. Let us choose r and ¢ as generalized coordinates. The kinetic and potential energies
are

. M
T = 2427 + 5% V= Mg(r—1)

o M
L =T=V = 2%+ + 5+ Mg(l 1)



The generalized momenta are
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Since %—f = mrq.SQ — Mgy, % = 0 the Euler-Lagrange equations take the form

pr = mrg® — Mg = (m+ M)# mr¢® — Mg
Py = 0

3. From the last equation we see that ps = mr2<z5 = L is constant = gb = # and the
first Euler-Lagrange eqn. takes the form
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Thus, in the radial direction the particle moves under the influence of the “effective force”
F. = mL—; — Mg which corresponds to the “effective potential”
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The condition for the circular orbit is F, = Wf—; —Mg=0= vy =4/ %



