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604 Final Exam (34 points). 12/15/11, 15:45 - 18:45

Problem 1.

A pure electric dipole is located at a certain distance above an infinite grounded conducting plane. If the dipole is
free to rotate, in what orientation it will come to rest?

Solution

First, let us calculate the potential energy of the dipole oriented along the θ, φ direction in spherical polar coordi-
nates. The mirror image of this dipole is a dipole located a distance d below the z = 0 surface and oriented along
θ, π + φ direction. The potential energy is

U =
1

32πε0d3
[(~p1 · ~p2)− 3(~p1 · ~e3)(~p2 · ~e3)] = − p2

32πε0d3
(1 + cos2 θ)

The dipole will come to rest in θ = 0 or θ = π orientation depending whether the original angle θ was smaller or
greater than π/2.

Problem 2
A parallel plate capacitor of plate separation d1 is filled with a solid dielectric material of susceptibility χe as shown

in the figure (a) below The capacitor is charged to voltage V1. The capacitor is then disconnected from the battery
and pulled apart so that the plate separation becomes d1 + d2. The dielectric does not expand and the dielectric-free
region has size d2, see figure (b). Assuming the plates are large compared to both d1 and d2, compute the voltage V2

after the capacitor is pulled apart.

Solution
This is a capacitors-in-series setup with C1 = A ε

d1
and C2 = A ε0

d2
. Since C12 = C1C2

C1+C2
and the charge Q = C1V1

does not change,

V2 =
Q

C12
=

C1 + C2

C2
V1 =

(
1 + (1 + χe)

d2

d1

)

Problem 3
A surface (free) charge is glued over the surface of the dielectric sphere of radius R in such a way that the potential

outside the sphere is

Φout(~r) =
1

4πε0

3 cos2 θ − 1

2r3

Find (surface) charge density of free charge and densities of bound charges. Susceptibility of the dielectric is χe.
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Solution
The potential inside is

Φin(~r) =
∑
l=0

Alr
lPl(cos θ)

Since the only input is ∼ P2(cos θ) we get

Φin(~r) = A2r
2P2(cos θ) =

A2

2
r2(3 cos2 θ − 1)

The tangential component Eθ = −∂Φ
∂θ is continuous so

A2 =
1

4πε0R5
⇒ Φin(~r) =

1

4πε0

r2

R5

3 cos2 θ − 1

2

The surface charge density is proportional to discontinuity of Dr so

σf = Dout
r −Din

r = − ε0
∂φout(r, θ)

∂r

∣∣∣∣
r→R

+ ε
∂φin(r, θ)

∂r

∣∣∣∣
r→R

=
1

4πR4

(5

2
+ χe

)
(3 cos2 θ − 1)

To find bound charges, let us first write down ~E inside

~E =
r

4πε0R5

[
− (3 cos2 θ − 1)êr + 3 sin θ cos θêθ

]
Next, polarization is

~P = χeε0 ~E =
χe

4πR5
r
[
− (3 cos2 θ − 1)êr + 3 sin θ cos θêθ

]
so

σb = ~P · r̂
∣∣∣
r=R

= − χe
4πR4

(3 cos2 θ − 1), ρb = −∇ · ~P = − χe
1 + χe

~∇ · ~D = − χe
1 + χe

σf = 0

Problem 4.
Consider an infinite cylinder x2 + y2 ≤ a2 and z ≥ 0. The cylindrical surface is grounded while the potential at

z = 0 is V (r, φ). Find the potential at z > 0 (assume that the potential vanishes as z →∞).
The solution for final cylinder of length L grounded at z = L is

Φ(s, ϕ, z) =

∞∑
n=1

B0n

2
J0(k0ns) sinh

(
k0n(L− z)

)
+

∞∑
m=1

∞∑
n=1

Jm(kmns) sinh
(
kmn(L− z)

)
[Amn sinmϕ+Bmn cosmϕ].

where

Amn =
2

πa2 sinh(kmnL)[Jm+1(xmn)]2

∫ a

0

ds s

∫ 2π

0

dϕV (s, ϕ)Jm(kmns) sinmϕ

Bmn =
2

πa2 sinh(kmnL)[Jm+1(xmn)]2

∫ a

0

ds s

∫ 2π

0

dϕV (s, ϕ)Jm(kmns) cosmϕ

As L→∞ we get

Φ(s, ϕ, z) =

∞∑
n=1

b0n
2
J0(k0ns)e

−k0nz +

∞∑
m=1

∞∑
n=1

Jm(kmns)e
−kmnz [amn sinmϕ+ bmn cosmϕ].
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where

amn =
2

πa2[Jm+1(xmn)]2

∫ a

0

ds s

∫ 2π

0

dϕV (s, ϕ)Jm(kmns) sinmϕ

bmn =
2

πa2[Jm+1(xmn)]2

∫ a

0

ds s

∫ 2π

0

dϕV (s, ϕ)Jm(kmns) cosmϕ

Problem 5.

Consider the vector potential ~A(~r) = 1
2~a× ~r (~a is a constant vector).

a) What is the magnetic field?

b) Does this vector potential satisfy Coulomb gauge condition ~∇ · ~A = 0? If not, modify ~A such that the magnetic
field remains unchanged but the Coulomb condition is satisfied.

Solution

If ~A = 1
2~a× ~r

~B =
1

2
~∇× (~a× ~r) =

1

2
~a(~∇ · ~r)− 1

2
(~a · ~∇)~r =

3

2
~a− 1

2
~a = ~a

Coulomb gauge condition is satisfied:

1

2
~∇ · (~a× ~r) =

1

2
∂iεijkajxk = 0

Problem 6.

An infinitely long ferromagnetic cylinder, of radius R, carries a “frozen-in” magnetization parallel to the axis,
~M = ksê3 where k is constant and s is the distance from the axis. (There is no free current anywhere). Find

a) The magnetic field ~B inside and outside the cylinder.
b) Surface and volume bound currents

Solution

Since there is no free current we can use cylindrical symmetry to prove that ~H = 0 everywhere. For the Amperian
circle with radius s one gets ∮

~H · ~dl = H(s)2πs = (Ifree)enc = 0

⇒ ~H = 0. Using the definition ~H ≡ 1
µ0

~B − ~M we get ~B = 0 outside the cylinder and ~B = µ0
~M = kµ0sê3 inside.

The bound currents are

~Kbound = ~M × ~s = kRφ̂

~Jbound = ~∇× ~M = − kφ̂


