Solution to the beam problem

(1)

Choose the z axis in the direction of velocity of electron beam. In the lab frame

$$
\rho=-n e, \quad I=\rho v A=-n e v A
$$

The frame K_{0} moves with velocity $\vec{v}=v \hat{z}$ so in the rest rame K_{0} of electrons the density is

$$
\rho^{(0)}=\gamma_{v}\left(\rho-\frac{v}{c^{2}} J_{z}\right)=\gamma_{v}\left(n e-\frac{v}{c^{2}} n e v\right)=\frac{n e}{\gamma_{v}}
$$

Check of the current in $K_{0}: \quad J_{z}^{(0)}=J_{z}-v \rho=0$ as expected.
(2)

With respect to frame K_{0}, positron is moving with velocity

$$
-u=-\frac{v+v}{1+\frac{v^{2}}{c^{2}}}=-\frac{2 v}{1+\frac{v^{2}}{c^{2}}}
$$

Reciprocally, electron beam is moving with velocity

$$
u=\frac{2 v}{1+\frac{v^{2}}{c^{2}}}
$$

with respect to positron's frame K^{\prime}. The density of electrons in K^{\prime} frame is

$$
\rho^{\prime}=\gamma_{u} \rho^{(0)}=-\gamma_{u} \frac{n e}{\gamma_{v}}=-n e \gamma_{v}\left(1+\frac{v^{2}}{c^{2}}\right)
$$

where $\gamma_{u}=\frac{1+\frac{v^{2}}{c^{2}}}{1-\frac{v^{2}}{c^{2}}}=\left(1+\frac{v^{2}}{c^{2}}\right) \gamma_{v}^{2}$.
The electric field due to the beam can be obtained from the Gauss law. In cylindrical coordinates

$$
\vec{E}^{\prime}=\frac{\lambda / \epsilon_{0}}{2 \pi s} \hat{s}=\frac{\rho^{\prime} A}{2 \pi \epsilon_{0} s} \hat{s}=-\gamma_{v}\left(1+\frac{v^{2}}{c^{2}}\right) \frac{n e A}{2 \pi \epsilon_{0} s} \hat{s}
$$

The magnetic field in K^{\prime} frame can be obtained from the Ampere law

$$
\vec{B}^{\prime}=\mu_{0} \frac{I}{2 \pi s} \hat{\phi}=\mu_{0} \frac{\rho^{\prime} u}{2 \pi s} \hat{\phi}=-\mu_{0} \gamma_{v} v \frac{n e A}{\pi s} \hat{\phi}
$$

The Lorentz force acting on the positron in K^{\prime} frame is

$$
\vec{F}^{\prime}=e \vec{E}^{\prime}=-\gamma_{v} \frac{n e A}{2 \pi \epsilon_{0} s} \hat{s}\left(1+\frac{v^{2}}{c^{2}}\right) \hat{s}
$$

Since momentum in the transverse \hat{s} direction does not change and since $t=\gamma_{v} \tau$, transforming force to K frame we get

$$
F_{s}=\frac{d p_{s}}{d t}=\frac{1}{\gamma_{v}} \frac{d p_{s}}{d \tau}=\frac{1}{\gamma_{v}} F_{s}^{\prime}=-\frac{n e A}{2 \pi \epsilon_{0} s} \hat{s}\left(1+\frac{v^{2}}{c^{2}}\right)
$$

(3)

In lab K frame

$$
\vec{E}=\frac{\rho A}{2 \pi \epsilon_{0} s} \hat{s}=-\frac{n e A}{2 \pi \epsilon_{0} s} \hat{s}, \quad \vec{B}=-\mu_{0} v \frac{n e A}{2 \pi s} \hat{\phi}
$$

so the Lorentz force is $(\hat{z} \times \hat{\phi}=-\hat{s})$

$$
\vec{F}=e(\vec{E}+\vec{v} \times \vec{B})=e(\vec{E}-v \vec{z} \times \vec{B})=\frac{n e A}{2 \pi \epsilon_{0} s} \hat{s}\left(1+\mu_{0} \epsilon_{0} v^{2}\right)=-\frac{n e A}{2 \pi \epsilon_{0} s} \hat{s}\left(1+\frac{v^{2}}{c^{2}}\right)
$$

in accordance with part (2).
Check of Lorentz transformation

$$
\begin{aligned}
& E_{s}^{\prime}=\gamma_{v}\left(E_{s}-v(\hat{z} \times \vec{B}) \cdot \hat{s}\right)=-\gamma_{v}\left(\frac{n e A}{2 \pi \epsilon_{0} s}-\mu_{0} v^{2} \frac{n e A}{2 \pi s}(\hat{z} \times \hat{\phi}) \cdot \hat{s}\right)=-\gamma_{v} \frac{n e A}{2 \pi \epsilon_{0} s} \hat{s}\left(1+\frac{v^{2}}{c^{2}}\right) \\
& B_{\phi}^{\prime}=\gamma_{v}\left(B_{\phi}+\frac{v}{c^{2}}(\hat{z} \times \vec{E}) \cdot \hat{\phi}\right)=-\gamma_{v}\left(\mu_{0} v \frac{n e A}{2 \pi s}+\frac{v}{c^{2}} \frac{n e A}{2 \pi \epsilon_{0} s}(\hat{z} \times \hat{s}) \cdot \hat{\phi}\right)=-\mu_{0} \gamma_{v} \frac{n e A}{2 \pi s} 2 v
\end{aligned}
$$

