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Solution to the beam problem

(1)
Choose the z axis in the direction of velocity of electron beam. In the lab frame

ρ = − ne, I = ρvA = − nevA

The frame K0 moves with velocity v⃗ = vẑ so in the rest rame K0 of electrons the density is
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Check of the current in K0: J
(0)
z = Jz − vρ = 0 as expected.

(2)
With respect to frame K0, positron is moving with velocity
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= − 2v
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Reciprocally, electron beam is moving with velocity

u =
2v

1 + v2

c2

with respect to positron’s frame K ′. The density of electrons in K ′ frame is

ρ′ = γuρ
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The electric field due to the beam can be obtained from the Gauss law. In cylindrical coordinates
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The magnetic field in K ′ frame can be obtained from the Ampere law

B⃗′ = µ0
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The Lorentz force acting on the positron in K ′ frame is

F⃗ ′ = eE⃗′ = − γv
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Since momentum in the transverse ŝ direction does not change and since t = γvτ , transforming force to K frame we
get
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(3)
In lab K frame
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so the Lorentz force is (ẑ × ϕ̂ = −ŝ)

F⃗ = e(E⃗ + v⃗ × B⃗) = e(E⃗ − vz⃗ × B⃗) =
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in accordance with part (2).
Check of Lorentz transformation
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