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Chapter 11

Special Theory of Relativity and

Covariant Electrodynamics

11.1 Lorentz Transformations

Central to Newtonian Mechanics is the concept of an inertial frame; a frame in which

a body, acted on by no external forces, moves with a constant velocity. A transformation

between two inertial frames is known as a Galilean Transformation.

Aside: a practical definition of an inertial frame is one moving with constant velocity relative

to the distant stars (Mach’s principle).

11.1.1 Galilean Transformations

Consider two inertial frames K, K ′, moving with a relative constant velocity v. The coor-

dinates in the two frames are related by

t′ = t ,

x′ = x− vt . (11.1.1)

Consider the interactions of an ensemble of N particles at positions xi; i = 1, . . . , N , acting

solely under the influence of a central potential Vij(|xi − xj|). Then the equation of motion

of particle i in K is

mi
dvi
dt

= −
∑
j

∇xiVij(|xi − xj|).

Suppose that we look at the equation of motion in K ′. Then we should have

mi
dv′i
dt

= −
∑
j

∇x′i
Vij(|x′i − x′j|).
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286 Chapter 11

It is evident that v′i = vi − v, and under Eq. (11.1.1),

∂

∂x′i
=

∂

∂xi
.

We also have dv′i/dt = dvi/dt and

|x′i − x′j| = |xi − xj| .

Thus, we see that the equation of motion in K ′ is of exactly the same form as that in

K – we say that classical Newtonian mechanics transforms covariantly under Galilean

Transformations.

11.1.2 Maxwellian Mechanics under Galilean Transformations

We have seen that electric and magnetic propagation in a vacuum satisfies the wave equation[
∇2 − 1

c2
∂2

∂t2

]
ψ(x, y, z; t) = 0. (11.1.2)

Let us now consider the transformation of this equation under Eq. (11.1.1). We have

∂

∂xi
=

∂x′j
∂xi

∂

∂x′j
+
∂t′

∂xi

∂

∂t′

= δij
∂

∂x′j
+ 0 =

∂

∂x′i

∂

∂t
=

∂x′j
∂t

∂

∂x′j
+
∂t′

∂t

∂

∂t′

= −vi
∂

∂x′i
+

∂

∂t′
=

∂

∂t′
− v · ∇′ .

Thus the wave equation (11.1.2) becomes[
∇′2 − 1

c2

(
∂

∂t′
− v · ∇′

)(
∂

∂t′
− v · ∇′

)]
ψ = 0

i.e.

[
∇′2 − 1

c2
∂2

∂t′2
+

2

c2
v · ∇′ ∂

∂t′
− 1

c2
(v · ∇′)(v · ∇′)

]
ψ = 0 (11.1.3)

This equation is clearly different from equation (11.1.2). The wave equation does not trans-

form covariantly under Galilean Transformations. For sound waves there is no problem;

they propagate in a medium, and it is natural to formulate the wave equation in a frame in

which the medium is at rest. Thus the natural question arose - Is there a frame in which the

“ether” is at rest”?. Of course, we all know the answer (Michelson-Morley) that the velocity

of light is the same in all frames, and the resolution of this nasty transformation property is

the Special Theory of Relativity.
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11.1.3 Postulates of Special Theory of Relativity

1. The same laws of nature hold in all inertial systems moving uniformly with respect to

one another.

2. The velocity of light has the same value in all systems moving uniformly with respect

to each other, independent of velocity of observer relative to the source.

11.1.4 Lorentz Transformations and Kinematic Results of Special

Relativity

We will now derive the relationship between coordinates in two frames K,K ′ moving with

constant velocity v relative to one another. Without a loss of generality, we will let the

origin of the coordinates coincide at t = t′ = 0.

We suppose that a flashlight is rapidly switched on and off at the origin at t = t′ = 0. Then,

by postulate 2, observers in both K and K ′ see a spherical shell of radiation expanding with

the velocity of light c. The wavefront satisfies

In K: c2t2 − (x2 + y2 + z2) = 0

In K ′: c2t′2 − (x′2 + y′2 + z′2) = 0

Thus we see that, under such a transformation, the quantity c2t2−(x2+y2+z2) = 0 remains

invariant. The emission of the light, and its subsequent absorption at some later times, are

each events. We have considered the case where the events are separated by something

traveling at the speed of light. More generally, we can define the combination

∆s2 = c2∆t2−(∆x2+∆y2+∆z2) , (11.1.4)

where ∆t = t2 − t1, ∆x = x2 − x1, etc., the interval between two events (t1, x1, y1, z1) and

(t2, x2, y2, z2). As we shall see, it is invariant under transformations between inertial frames.

To derive the form of the transformation keeping invariant the combination in Eq. (11.1.4),

we will specialize to the case where the axes in K,K ′ are parallel, and the frames are moving

with a relative velocity v = ve3. Because the transformation must reduce to the Galilean

transformation in the limit of small relative velocities, we need consider only the linear
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relations

t′ = a1t+ b1z

z′ = a2t+ b2z

x′ = x

y′ = y (11.1.5)

The transverse dimensions do not change (see the gedanken experiment of Taylor and

Wheeler discussed in Griffith’s textbook).

Because the frames are moving with relative velocity v, we have that the event z′ = 0

corresponds to z = vt, yielding

a2 = −vb2.

We now impose invariance of ∆s2:

c2t2 − (x2 + y2 + z2) = c2(a1t+ b1z)2 − x2 − y2 − (a2t+ b2z)2 ,

which we can expand as

c2t2[1− a21 + a22/c
2]− z2[1 + b21c

2 − b22] + 2zt[a2b2 − c2a1b1] = 0.

This is true ∀x, t, so equating the coefficients to zero yields

a21 − a22/c2 = 1

b22 − c2b21 = 1

a2b2 = c2a1b1.

Using a2 = −vb2 converts the system into

a21 − b22v2/c2 = 1

b22 − c2b21 = 1

b22 = −c2a1b1/v .

Excluding b22, we have

a21 + a1b1v = 1

−c2a1b1/v − c2b21 = 1 .

Substituting

b1 = (1− a21)/a1v
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into the second equation produces

− c
2

v2
(1− a21)−

c2

v2a21
(1− a21)2 = 1

or

(1− a21) +
1

a21
(1− a21)2 = −v

2

c2
,

which simplifies into

1

a21
− 1 = −v

2

c2
.

Thus,

a21 =
1

1− v2/c2
≡ γ2 .

The gamma-factor

γ ≡ 1√
1− v2/c2

.

plays important role in the coordinate transformations of special relativity.

Note, that for zero velocity v we have γ2 = 1 and hence a21 = 1. Since a1 relates t′ at the

origin z = 0 to t, choosing positive

a1 = +γ

would mean that t′ runs in the same direction as t, i.e. there is no time inversion. For the

b1 = (1/a21 − 1)a1/v coefficient this gives

b1 = − v
c2
γ ,

and hence

ct′ = γ
[
ct− v

c
z
]
.

Now,

b22 = −c2a1b1/v = γ2 .

Choosing

b2 = +γ

for the coefficient b2 relating z′ to z at the initial moment of time t = 0 means that there is

no z-axis inversion involved in our coordinate transformation. Finally, we have a2 = −vb2,
or

a2 = −vγ
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which gives

z′ = γ
[
z − v

c
ct
]
.

For completeness, we also recall the relations

x′ = x ,

y′ = y

between the remaining coordinates.

We can write these transformations in an axis-independent form as

ct′ = γ(ct− βx‖)
x′‖ = γ(x‖ − βct)

x′⊥ = x⊥

 (11.1.6)

(check: c2t′2 − x′‖
2 = γ2(c2t2 − x2‖) + γ2β2(x2‖ − c2t2) = γ2(1 − β2)(c2t2 − x2‖) = c2t2 − x2‖ )

where

β = v/c ,

γ = (1− β2)−1/2 ,

x‖ =
x · v
|v|

=
β · x
β

. (11.1.7)

In vector form, this is

ct′ = γ(ct− β · x)

x′ = x +
γ − 1

β2
(β · x)β − γβct . (11.1.8)

It is easy to derive the inverse transformation

ct = γ(ct′ + βx′‖)

x‖ = γ(x′‖ + βct)

}
(11.1.9)

Note, that it involves −β, in accordance with the fact that K moves with respect to K ′ with

the opposite velocity −v.

11.1.5 Rapidity

Let us introduce a parameter ζ, called rapidity, defined by

β ≡ tanh ζ =
sinh ζ

cosh ζ
.
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When ζ changes from 0 to ∞, β changes from 0 to 1. An inverse transformation may be

found from

β =
eζ − e−ζ

eζ + e−ζ
⇒ e2ζ =

1 + β

1− β
(11.1.10)

or

ζ =
1

2
ln

(
1 + β

1− β

)
. (11.1.11)

We also have

γ =
1√

1− β2
=

cosh ζ√
cosh2 ζ − sinh2 ζ

= cosh ζ

and

βγ = tanh ζ cosh ζ = sinh ζ .

Then, for frames moving parallel to the z axis, we have

ct′ = ct cosh ζ − z sinh ζ

z′ = z cosh ζ − ct sinh ζ, (11.1.12)

which has the form of a “rotation” by a complex angle φ = iζ, namely

(ict′) = (ict) cosφ− z sinφ

z′ = z cosφ+ (ict) sinφ , (11.1.13)

or

x′4 = x4 cosφ− z sinφ

z′ = x4 sinφ+ z cosφ , (11.1.14)

with x4 ≡ ict being the imaginary “fourth” coordinate. The “Euclidean” rotation (11.1.14)

in the (x4, z) plane does not change the value of x24 + z2 = −(c2t2 − z2), i.e. the interval

between the event (x4, t) and the t = 0 event at the origin z = 0. Moreover, such a rotation

does not change the interval

∆s2 = −(x
(2)
4 − x

(1)
4 )2 − (z(2) − z(1))2 = c2∆t2 −∆z2 (11.1.15)

between any two arbitrary events (x
(1)
4 , z(1)) and (x

(2)
4 , z(2)) on the (x4, z) plane.
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11.1.6 Kinematical Properties of Lorentz Transformations

Given two events (ct1,x1) and (ct2,x2), Lorentz transformations leave the interval

∆s2 = c2(t2 − t1)2 − (x2 − x1)
2

invariant. Thus we can classify the interval by the sign of ∆s2, as follows

• ∆s2 > 0. This is timelike separation. We have c|t2 − t1| > |x2 − x1|, so that the

two points can communicate by a signal traveling at less than the speed of light, and

indeed a frame can be chosen such that |x2 − x1| = 0.

• ∆s2 = 0. This is lightlike separation. We have c|t2 − t1| = |x2 − x1|, so that the two

points can only be connected by a signal traveling at the speed of light.

• ∆s2 < 0. This is spacelike separation, with c|t2− t1| < |x1−x2|. The two space-time

points cannot communicate, and indeed a frame exists in which t1 = t2.

11.1.7 Light Cone

Points that can be connected with the space-time origin by a light signal are said to lie on

the light cone.

ct

x

Points within the light cone can be causally connected with the origin, whilst those outside

cannot. The forward (ct > 0) and backward (t < 0) cones define absolute future and absolute

past, and the ordering is preserved under Lorentz transformations.
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11.1.8 Simultaneity, Length Contraction and Time Dilation

Consider a rocket moving with constant velocity v along the x direction relative to the lab

frame K. Let us denote the rest frame of the rocket by K ′. We assume that the axes of the

frames are parallel, and the origins coincide at t = 0.

On the side of a rocket is a meter rule. We also have, in the lab. frame, a high density of

observers, each with a very accurate clock synchronized in the frame K.

��������
��������
��������

��������
��������
��������

������������������

z’

x’

y’y

z

x

v

Simultaneity

At time t, an observer in the lab frame, co-incident with one end of the meter rod, records

his position (ct,x1), and an observer coincident with the other end does likewise (ct,x2).

Thus (ct,x1) and (ct,x2) denote two events, which are simultaneous in the lab. frame.

In the rocket rest frame K ′ we have

ct′1 = γ(ct− βx1)
x′1 = γ(x1 − βct)

ct′2 = γ(ct− βx2)
x′2 = γ(x2 − βct) (11.1.16)

We immediately see that t′1 = t′2 iff x1 = x2; in general the points are not simultaneous in

the rocket rest frame.

Length Contraction

In the rocket frame, our meter rule has length x′2 − x′1. However, from Eq. (11.1.16), we see

that in the laboratory frame the length is obtained from

x′2 − x′1 = γ(x2 − x1),

i.e.
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x2 − x1 =
x′2 − x′1

γ

Since γ ≥ 1, we have that length is contracted: in a frame, in which the meter rule is

moving (lab frame), its length is smaller than in the frame where the meter rule is at rest

(rocket frame).

Time Dilation

We now imagine that the clocks in K,K ′ are synchronized at t1 = t′1 = 0 as the rocket passes

origin in frame K. An observer at some point x2 in K records the time t2 at which rocket

passes x2, and an observer in K ′ records time t′2 at which he passes the laboratory observer.

The rocket observer is always at x′2 = 0, so we have

0 = γ(x2 − βct2)
=⇒ x2 = βct2

From the third equation of (11.1.16), ct′2 = γ(ct2 − βx2), we have

ct′2 = γ(ct2 − βx2) = γ(ct2 − β2ct2) = γ ct2 (1− β2) = ct2/γ ,

or

t′2 =
t2
γ
.

Thus we see that time is dilated: a clock that is at rest (lab frame) shows a larger time

between two events than a moving clock (rocket frame) .

11.1.9 Proper Time

We now generalize the discussion to the case where the rocket is moving with a velocity v(t)

along some path relative to the lab frameK. We will now introduceK ′ as the instantaneous

rest frame of the rocket.

Consider two closely separated points on the trajectory, with coordinates in the two frames

{(ct,x), (c[t+ dt],x + dx)} and {(ct′,x′), (c[t′ + dt′],x′ + dx′)} respectively.

The interval between the points is the invariant, and we have

ds2 = c2dt′2 − dx′2 = c2dt2 − dx2.
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But dx′ = 0 in K ′, and furthermore dx2 = v2dt2, and thus

cdt′ = cdt
√

1− β2(t),

where

β(t) =
v(t)

c
.

Then the elapsed time in the rocket between two events is

t′2 − t′1 =

∫ t2

t1

dt
√

1− β2(t) < t2 − t1.

The proper time τ is the elapsed time in the frame in which the object is at rest. Thus

cdτ = ds

where ds is the interval introduced earlier. In this case we have

dτ = dt
√

1− β2(t) . (11.1.17)

Note that proper time can only be defined for time-like quantities.

11.1.10 Addition of Velocities

Suppose now that a projectile is fired with velocity u′ from the rocket, relative to the rocket.

Then the coordinates of the projectile in K ′ satisfy

u′ =
dx′

dt′
.

while in K we have

u =
dx

dt
.

Using the Lorentz transformation with v → −v, we have

x‖ = γv[x
′
‖ + βct′]

=⇒ u‖ ≡
dx‖
dt

= γv

[
dx′‖
dt′

dt′

dt
+ βc

dt′

dt

]

= γv

[
dx′‖
dt′

+ βc

]
dt′

dt
= γv[u

′
‖ + v]

dt′

dt
,
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where we use ‖ to denote the component along v. We also have

ct = γv[ct
′ + βx′‖]

=⇒ c = γv

[
c
dt′

dt
+ βu′‖

dt′

dt

]
= γv[c+ βu′‖]

dt′

dt
.

=⇒ dt′

dt
=

1

γv[1 + βu′‖/c]
.

Combinding these two results, we find

u‖ =
u′‖ + v

1 + βu′‖/c
=

u′‖ + v

1 + vu′‖/c
2
. (11.1.18)

Take u′‖ = c, then

u‖ =
c+ v

1 + v/c
= c , (11.1.19)

i.e., velocity of light is the same in both systems.

Similarly

u⊥ =
dx⊥
dt

=
dx′⊥
dt′
· dt

′

dt
,

yielding

u⊥ =
u′⊥

γ(1 + βu′‖/c)
. (11.1.20)

In vector notation, this becomes

u‖ =
u′‖ + v

1 + v · u′/c2

u⊥ =
u′⊥

γ(1 + v · u′/c2)
(11.1.21)

As expected, this reduces to the Galilean result u = u′ + v for the case u′, v � c.

Let us use the “hyperbolic” parametrization for u′‖ and v, namely

u′‖ = c tanh ζ ′ , v = c tanh ζv . (11.1.22)

Then Eq. (11.1.18) gives

u‖ = c
tanh ζ ′ + tanh ζv

1 + tanh ζ ′ tanh ζv
=c

sinh ζ ′ cosh ζv + sinh ζv cosh ζ ′

cosh ζ ′ cosh ζv + sinh ζ ′ sinh ζv

= c
sinh(ζ ′ + ζv)

cosh(ζ ′ + ζv)
= c tanh(ζ ′ + ζv) , (11.1.23)

i.e., writing u‖ = c tanh ζ we get ζ = ζ ′ + ζv: it is the ζ-parameters (rapidities) which

simply add when we relativistically add two parallel velocities.
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11.2 Special Relativity and Four Vectors

We can formulate this picture in a much more convenient fashion through the introduction

of four vectors. To see how these work, let us return briefly to Galilean transformations, and

rotations in Euclidean space.

11.2.1 Vectors, Tensors and Rotations in R3

Consider two co-ordinate systems P , P ′ whose origins coincide, but which are related by

rotation through an angle θ.
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x

y

z, z’

y’

θ

The coordinates of a point in the two systems are related through

x′i = Ri
jx
j, (11.2.1)

where R is a rotation matrix. Note that we have put the indices upstairs on the vectors -

we will return to this later. For the specific case of a rotation through θ about the z axis,

the rotation matrix is

R =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1


Quantities that transform as

A′i = Ri
jA

j =
∂x′i

∂xj
Aj (11.2.2)

are called vectors.

A simple example of a vector is dx, which transforms as

dx′i =
∂x′i

∂xj
dxj = Ri

jdx
j .

Scalars

A scalar is a quantity which transforms as f ′ = f .
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Co-vectors or Forms

Let us now consider how the gradient of a function transforms:

∇′if =
∂f

∂x′i
=

∂f

∂xj
∂xj

∂x′i
=
∂xj

∂x′i
∂f

∂xj
.

This is an example of the transformation property

B′i =
∂xj

∂x′i
Bj, (11.2.3)

which is different from that of Eq. (11.2.2). Quantities that transform in this way are known

as covectors or forms, and we put their indices downstairs.

Summarising, we have

Vector: A′i = ∂x′i

∂xj
Aj

Scalar: f ′ = f

Covector: B′i = ∂xj

∂x′i
Bj

 (11.2.4)

Finally, we have that a tensor is an object that transforms as a vector on each upstairs

index, and a covector on each downstairs index.

C ′i
′j′...

k′l′... =
∂x′i

′

∂xi
∂x′j

′

∂xj
. . .

∂xk

∂x′k′
∂xl

∂x′l′
. . . Cij...

kl...

Metric Tensor

The length of a vector is a bilinear, and independent of the choice of frame.

Define the inner product of two vectors by

X · Y = gijX
iY j.

We call gij the metric tensor .

In Cartesian coordinates (x, y, z), we have

(dl)2 = (dx)2 + (dy)2 + (dz)2 , (11.2.5)

hence,

gij = δij.

In spherical coordinates (r, θ, ϕ), we have

(dl)2 = (dr)2 + r2(dθ)2 + r2 sin2 θ(dϕ)2 , (11.2.6)

hence

gij = diag(1, r2, r2 sin2 θ).
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We can use the metric tensor to raise or lower indices:

Xi = gijX
j

X · Y = X iYi = XiY
i.

We only have the luxury of indentifying vectors with covectors in Cartesian coordinates in

Euclidean space, where the components of the two are numerically equal.

For instance, in spherical coordinates, taking dxi = {dr, dθ, dϕ} as a vector, we have

dxi = {dr, r2dθ, r2 sin2 θdϕ} as the corresponding co-vector.

11.2.2 Minkowski Space-Time

We will now apply the above ideas to Lorentz transformations of four-dimensional space-

time. We will introduce “ct” as the coordinate x0, and write a contravariant four vector

as

xµ ≡ (ct, x, y, z) = (x0, x1, x2, x3) (11.2.7)

The “length” of the vector is the interval left invariant under Lorentz transformations.

More generally, we define the inner product of two vectors by

x · y = gµνx
µyν , (11.2.8)

and we immediately see that

gµν = diag(1,−1,−1,−1) (11.2.9)

• Note that it is conventional to use Greek Letters for the components of a four-vector.

Four vectors are not underlined or printed in bold.

• In some areas of physics, time is introduced as the fourth component of the vector.

Furthermore, the metric can be defined such that the spatial components are positive,

and the temporal component negative. The convention we will be using is probably

the most widely used, and essentially universal amongst particle physicists.

• The summation convention is as follows:

An index can appear no more than twice. Any index appearing twice must have one

upper index and one lower index, and that index is summed over.
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The covariant four vector or form can be obtained as before by using the raising and

lowering properties of the metric tensor

xµ = gµνx
ν .

In our example we have that xµ = (ct,−x,−y,−z) – the components of a co-vector are

numerically different to those of the vector.

11.2.3 Lorentz Transformations and Four Vectors

Let us return to our two frames K and K ′. The relation between vectors (in 4-dimensional

case of special relativity, they are called contravariant vectors) in the two frames is given by

x′µ =
∂x′µ

∂xν
xν = Lµνx

ν (11.2.10)

Let us assume a similar transformation law for the 4-dimensional analogs of covectors (called

covariant vectors)

x′µ = L ν
µ xν . (11.2.11)

We require that xµxµ is invariant under the Lorentz transformation, i.e.

xµxµ = x′µx′µ = LµνL
σ
µ x

νxσ,

and since this is true for all vectors, we have

LµνL
σ
µ = δσν , (11.2.12)

where

δ σ
ν =

{
1 if ν = σ

0 if ν 6= σ
. (11.2.13)

To find L σ
µ , we note that, according to (11.2.10), we have

Lµν =
∂x′µ

∂xν
. (11.2.14)

Now, using the identity
∂xσ

∂xν
= δσν . (11.2.15)

written through the chain rule as

δσν =
∂xσ

∂xν
=
∂xσ

∂x′µ
∂x′µ

∂xν
=
∂x′µ

∂xν︸︷︷︸
Lµν

∂xσ

∂x′µ
, (11.2.16)
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and comparing with Eq. (11.2.12), LµνL
σ
µ = δσν , we conclude that

L σ
µ =

∂xσ

∂x′µ
, (11.2.17)

which corresponds to the characteristic transformation property of a form ∂/∂xµ:

∂f

∂x′µ
=

∂f

∂xν
∂xν

∂x′µ
=
∂xν

∂x′µ︸︷︷︸
L ν
µ

∂f

∂xν
.

Thus the various quantities we will encounter in the remainder of this course are

• Contravariant Vectors:

A′µ = LµνA
ν (11.2.18)

• Covariant Vectors:

B′µ = L ν
µ Bν (11.2.19)

• Tensors:

C ′µ
′ν′...
ρ′σ′... = Lµ

′

µL
ν′

ν . . . L
ρ
ρ′L

σ
σ′ . . . Cµν...

ρσ... (11.2.20)

• Scalars:

A ·B = AµB
µ = gµνA

µBν

As an excercize, let us demonstrate that gµσA
σ is indeed a covector, i.e. transforms according

to Eq. (11.2.19). We need to show that(
gµσA

σ
)′

= L ν
µ

(
gνλA

λ
)

The l.h.s. is

gµσ(Aσ)′ = gµσL
σ
λA

λ

and therefore we must prove that

gµσL
σ
λ = L ν

µ gνλ .

Multiplying this relation by L λ
ρ and using LσλL

λ
ρ = δσρ converts it into

gµρ = gνλL
ν
µ L

λ
ρ

The last equation may be shown to follow from

∂2

∂xµ∂xρ
gνλx

νxλ =
∂2

∂xµ∂xρ
gνλx

′νx′
λ
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and the definition L ν
µ ≡ ∂x′ν/∂xµ.

Indeed, we have, first, gνλx
νxλ = x2, gνλx

′νx′λ = x′2, and x′2 = x2. Then

∂2

∂xµ∂xρ
gνλx

νxλ = gνλ[δ
ν
µδ

λ
ρ + δνρδ

λ
µ] = 2gµρ ,

and

∂2

∂xµ∂xρ
gνλx

′νx′
λ

= gνλ

∂x′ν∂xµ︸︷︷︸
L ν
µ

∂x′λ

∂xρ︸︷︷︸
L λ
ρ

+{µ↔ ρ}

 = gνλ[L
ν
µ L

λ
ρ + L ν

ρ L
λ
µ ] = 2gνλL

ν
µ L

λ
ρ .

On the last step we used the fact that gνλ is a symmetric tensor.

The metric tensor with upper indices gµν defines the inner product

x · y = gµνxµyν (11.2.21)

in terms of covariant vectors. This product is invariant under Lorentz transformations if

gµνyν transforms as a contravariant vector yµ. Using yν = gνσy
σ, we conclude that

gµνgνσ = δµσ ,

i.e., the matrices gµν and gµν are inverse to each other.

11.2.4 Derivatives

As we have noted earlier, these transform as covectors

∂α =
∂

∂xα
=

(
∂

∂x0
,∇
)

∂α =
∂

∂xα
=

(
∂

∂x0
,−∇

)
. (11.2.22)

Suppose now that we have a four vector Aµ. Then

∂αAα = ∂αA
α =

∂A0

∂x0
+∇ ·A. (11.2.23)

The 4D generalization of Laplacian (d’Alembertian) is defined by

2 = ∂α∂
α =

∂2

∂x02
−∇2. (11.2.24)
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11.3 Relativistic Dynamics

11.3.1 Four Velocity

If we define the velocity in a usual way as vi = dxi/dt, and use that t = x0/c, we immediately

see that vi cannot transform as a vector under Lorentz transformations. A formal reason

is that such a derivative is a 0i component of a 4-tensor which does not transform as an i

component of a 4-vector.

Indeed, let us assume that the object

Vµ ≡ dxµ

dt
=

d

dt
{x0,x} =

d

dt
{ct,x} = {c,v}

transforms as a 4-vector. As usual, we consider two frames, the original K, and another,

K ′, moving with velocity V with respect to K. Taking V along the x3 axis and separating

components parallel and transverse to V, we write

Vµ ={c,0⊥,V3}

V ′µ ≡dx
′µ

dt′
= {c,0⊥,V ′3} . (11.3.1)

If Vµ is a 4-vector, then, according to the Lorentz transformation, we should have

V ′3 =γV

(
V3 − V

c
V0

)
= γV

(
V3 − V

)
, (11.3.2)

where γV = 1/
√

1− V 2/c2. This gives

V ′3 =
(
V3 − V

)
/
√

1− V 2/c2

instead of the correct result that the velocity in the K ′ frame should be given by the formula

v′‖ =
v‖ − V

1− v‖V/c2
(11.3.3)

that follows from Eq. (11.1.18) for the relativistic velocity addition (in which we should take

into account that K frame moves with respect to K ′ frame with the velocity −V. )

So, the question is whether it is possible to find a definition of a velocity that does indeed

transform covariantly under Lorentz transformations, yet reduces to a Galilean transforma-

tion for v � c?

In order to construct a four velocity, we need to take the derivative of the 4-vector xµ

with respect to some time that, unlike dt or dt′, is the same in all frames, i.e. is a Lorentz

Scalar. Such a scalar is provided by the Proper Time dτ , or time measured in the frame
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that moves together with the particle, i.e. that has velocity v in the K frame. It is defined

by

c2dτ 2 = ds2,

where ds is the Lorentz-invariant interval. The proper time is clearly a scalar, and therefore

a natural definition of the four velocity is

vα =
dxα

dτ
(11.3.4)

Recalling that the proper time is related to the K frame time by

dτ = dt
√

1− β2(t)

we have

vα =
1√

1− β2

d

dt
(ct,x) = γ(c,v),

or

vα = (γc, γv) . (11.3.5)

The spatial components of vµ clearly reduce to our familiar definition of velocity in the

non-relativistic (NR) limit. Note that vαvα = c2.

Let us take now the component of v parallel to the relative velocity V and check that

applying the Lorentz transformation to vµ, namely

v′
3

=γV

(
v3 − V

c
v0
)

v′
0

=γV

(
v0 − V

c
v3
)

(11.3.6)

leads to the correct relativistic velocity addition formula (11.3.3).

Indeed, substituting

v0 = γvc , v3 = γvv‖

(where γv = 1/
√

1− v2/c2) and

v′
0

= γv′c , v′
3

= γv′v
′
‖

(where γv′ = 1/
√

1− v′2/c2), we rewrite (11.3.6) as

v′‖γv′ = γV γv
(
v‖ − V

)
cγv′ = γV γv

(
c− V

c
v‖

)
. (11.3.7)
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It is easy to see that dividing the first of these equations by the second one gives

v′‖
c

=
v‖ − V
c− V

c
v‖

or v′‖ =
v‖ − V

1− V
c2
v‖

, (11.3.8)

i.e., Eq. (11.3.3).

11.3.2 Four Momentum

The definition of a Lorentz-covariant 4-momentum is now straightforward:

pµ = mvµ = (mγc,mγv), (11.3.9)

where m is a Lorentz scalar that we will call the rest mass.

The spatial components of pµ clearly reduce to our usual definition of momentum. To

interpret the temporal component, we will look at its NR limit:

p0 = mγc = mc
{

1− v2/c2
}−1/2

=
1

c

{
mc2 +

1

2
mv2 +O(v4/c2)

}
.

The second term in braces is clearly the kinetic energy. The first term we identify as the

rest energy, and write

p0 = E/c

where E is the energy. Thus the four momentum contains both the energy and the three

momentum.

The “length” of pµ is a Lorentz scalar

pµpµ = m2γ2c2 −m2γ2v2 = m2γ2c2
[
1− v2/c2

]
= m2γ2c2γ−2 = m2c2.

Thus we have

pµpµ = p2 = m2c2 (11.3.10)

confirming that the rest mass is a (frame-independent) scalar.

Finally, if we now go back and write Eq. (11.3.10) in terms of our old-fashioned three vectors

we have

1

c2
E2 − p2 = m2c2

=⇒ E2 = m2c4 + c2p2. (11.3.11)
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For a particle at rest, we have perhaps the most famous equation in physics

E = mc2 .

The use of four-vectors is essential to solve problems in special (and general. . . ) relativity.

Whilst simple kinematical problems can be solved using three vectors, it is very clumsy

indeed.

11.3.3 Energy-momentum conservation in application to 1 → 2

decay process

Consider a particle of mass M that decays at rest into two particles of masses m1 and m2.

Energy momentum conservation requires that in any frame

P = p1 + p2 , (11.3.12)

where P µ is 4-momentum of the initial particle, P 2 = M2, and p1,2 are 4-momenta of final

particles, p21,2 = m2
1,2. In the rest frame of the decaying particle we have

P = (M,0) , p1 = (E1,p1) , p2 = (E2,p2) .

Hence,

E1 + E2 = M , p1 = −p2 ≡ p . (11.3.13)

Let us find first the energies of the final particles. Writing p2 = P − p1, we have

p22 = P 2 − 2(Pp1) + p21 , (11.3.14)

or

m2
2 = M2 − 2(ME1 − 0 · p1) +m2

1 ⇒ m2
2 = M2 − 2ME1 +m2

1 , (11.3.15)

which gives

E1 =
M2 +m2

1 −m2
2

2M
=

1

2
M +

m2
1 −m2

2

2M
. (11.3.16)

In a similar way,

E2 =
M2 +m2

2 −m2
1

2M
=

1

2
M − m2

1 −m2
2

2M
. (11.3.17)
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Here E1,2 are relativistic energies that include the rest mass term. The kinetic energy of the

first final particle is given by

Ekin
1 =

M2 +m2
1 −m2

2

2M
−m1 =

M2 − 2Mm1 +m2
1 −m2

2

2M
=

(M −m1)
2 −m2

2

2M

=
(M −m1 −m2)(M −m1 +m2)

2M
=

∆M

2

[
1− m1 −m2

M

]
= ∆M

[
1− ∆M

2M
− m1

M

]
, (11.3.18)

where ∆M is the energy release. Similarly,

Ekin
2 =

∆M

2

[
1 +

m1 −m2

M

]
= ∆M

[
1− ∆M

2M
− m2

M

]
. (11.3.19)

The magnitude of final particles’ 3-momentum |p1| = |p2| ≡ |p| may be calculated

from

|p|2 =E2
1 −m2

1 =

(
M2 +m2

1 −m2
2

2M

)2

−m2
1

=
M4 +m4

1 +m4
2 − 2m2

1m
2
2 − 2M2m2

1 − 2M2m2
2

4M2

≡ λ(M2,m2
1,m

2
2)

4M2
, (11.3.20)

where

λ(a, b, c) ≡ (a+ b− c)2 − 4ab

is a symmetric function of all its three arguments. Thus, |p| =
√
λ(M2,m2

1,m
2
2)/2M .

If the decay occurs in flight, then we can use

P 2 = p21 + p22 + 2(p1p2) (11.3.21)

or

M2 = m2
1 +m2

2 + 2E1E2 − 2|p1||p2| cos θ , (11.3.22)

where and θ is the angle between p1 and p2 (see Problem 11.20 in Jackson, assigned for

home work).
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11.3.4 Energy-momentum conservation in application to 2 → 2

scattering process

Consider a process in which two initial particles with 4-momenta p1, p2 and masses m1,m2

convert into two final particles with 4-momenta p3, p4 and masses m3,m4. Using the mo-

menta involved in this process, one can form several Lorentz invariants. First, we have four

invariants involving one of the momenta: p21 = m2
1, p

2
2 = m2

2, p
2
3 = m2

3, p
2
4 = m2

4. Combining

momenta in pairs (and using the conservation law p1 + p2 = p3 + p4), we can form three

Mandelstam invariants

(p1 + p2)
2 ≡ s ≡ (p3 + p4)

2 , (11.3.23)

(p1 − p3)2 ≡ t ≡ (p2 − p4)2 , (11.3.24)

(p1 − p4)2 ≡ u ≡ (p2 − p3)2 . (11.3.25)

In fact, these invariants are not independent. There exists a linear relation

s+ t+ u =
4∑
i=1

m2
i (11.3.26)

between them. Indeed,

s+ t+ u = (p1 + p2)
2 + (p1 − p3)2 + (p1 − p4)2

= m2
1 +m2

2 + 2(p1p2)

+m2
1 +m2

3 − 2(p1p3)

+m2
1 +m2

4 − 2(p1p4)

= 3m2
1 +m2

2 +m2
3 +m2

4

+ 2p1 · (p2 − p3 − p4)︸ ︷︷ ︸
−p1

= 3m2
1 +m2

2 +m2
3 +m2

4 − 2m2
1

= m2
1 +m2

2 +m2
3 +m2

4 . (11.3.27)

There are two natural frames to study this process. In the laboratory frame, the first par-

ticle is a projectile, p1 = (EL,pL) and the second one is a target, p2 = (m2,0). In the

center of mass frame, the total 3-momentum of colliding particles is zero, i.e., p1 = (E1,p),

p2 = (E2,−p). Since s = (p1 + p2)
2 is Lorentz invariant, we may write it in both systems.

In particular, in laboratory frame we have

s = (p1 + p2)
2 = m2

1 +m2
2 + 2(p1p2) = m2

1 +m2
2 + 2m2EL . (11.3.28)
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This formula can be also obtained from

s = (m2 + EL)2 − p2
L . (11.3.29)

In the center of mass frame, we have

s = (E1 + E2)
2 ≡ W 2 , (11.3.30)

where W ≡
√
s is the total c.m. energy. Thus,

W 2 = m2
1 +m2

2 + 2m2EL . (11.3.31)

To get relation between the values of 3-momenta in these two frames, consider the scalar

product (p1p2). Then

(p1p2) = m2EL = p2 + E1E2 = p2 +
√

(m2
1 + p2)(m2

2 + p2) (11.3.32)

or

(m2EL − p2)2 = (m2
1 + p2)(m2

2 + p2) , (11.3.33)

which gives

p2(m2
1 +m2

2 + 2m2EL) = m2
2(E

2
L −m2

1) , (11.3.34)

or

p2W 2 = m2
2p

2
L . (11.3.35)

Thus, |p| = |pL|m2/W , and since p has the same direction as pL, we obtain

p = pL
m2

W
. (11.3.36)

The magnitude of |p|, c.m. 3-momentum of colliding particles, may be easily found by

observation that the two initial particles with masses m1, m2 combine into a “particle” with

mass W =
√
s, which is at rest in the c.m. frame. Hence, using Eq. (11.3.20), we get

|p| =
√
λ(s,m2

1,m
2
2)

2
√
s

=

√
(s−m2

1 −m2
2)

2 − 4m2
1m

2
2

2
√
s

. (11.3.37)

In the final state, we have two particles with masses m3,m4 which originated from a “particle”

with mass
√
s. Hence, the final particles in c.m. frame have opposite 3-momenta p′, −p′

whose magnitude is given by

|p′| =
√
λ(s,m2

3,m
2
4)

2
√
s

=

√
(s−m2

3 −m2
4)

2 − 4m2
3m

2
4

2
√
s

. (11.3.38)
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In general, there is an angle θ between the directions of p and p′ (scattering angle in c.m.

frame).

In particular case of elastic scattering of identical particles, when mi = m, all c.m.

energies Ei in this case are given by W/2 =
√
s/2, and

|p| = |p′| =
√

(s− 2m2)2 − 4m4

2
√
s

=

√
s− 4m2

2
. (11.3.39)

In the laboratory frame, we have

s = 2m(EL +m) (11.3.40)

and |pL| = |p|
√
s/m or

|pL| =
√
s(s− 4m2)

2m
. (11.3.41)

The invariants t and u in c.m. variables in this case may be written as

t = (p1 − p3)2 = −(p1 − p3)
2 = −2p2(1− cos θ) = −4p2 sin2(θ/2) (11.3.42)

and

u = (p1 − p4)2 = −(p1 + p3)
2 = −2p2(1 + cos θ) = −4p2 cos2(θ/2) . (11.3.43)
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11.4 Covariant Formulation of Maxwell’s Equation

Before considering Maxwell’s equations in totality, we will return to the charge conservation.

11.4.1 Continuity Equation and Four Current

Charge conservation is expressed through the continuity equation

∂ρ

∂t
+∇ · J = 0. (11.4.1)

We can write this in a more manifestly covariant form as

1

c

∂

∂t
(ρc) +∇ · J = 0.

It is therefore tempting to try to introduce a four-current

Jµ = (ρc,J) (11.4.2)

in terms of which Eq. (11.4.1) can be formally written as

∂µJ
µ = 0.

However, it remains to be shown that the Jµ thus constructed does indeed transform as a

four vector.

Consider Jµ defined through Eq. (11.4.2) under a transformation to a frame K ′ moving with

velocity v along the x axis. Then, if Jµ is indeed a four vector we would have

ρ′c = γ
[
ρc− v

c
Jx

]
J ′x = γ [Jx − vρ]

J ′y = Jy

J ′z = Jz.

In the non-relativistic limit
J′ = J− ρv
ρ′ = ρ

}
,

as expected.

Consider now the case Jx = 0. Then we have

J ′x = −γvρ
ρ′ = γρ

}
.
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The second equation would appear to violate charge conservation. However, let us consider

what happens to a volume element under this transformation. In the frame K, we have

dV = dx dy dz.

However

dx = γ(dx′ + v dt′)

dt = γ(dt′ +
v

c2
dx′)

dy = dy′

dz = dz′.

Thus for measurements made at the same time (dt′ = 0)

dV = dx dy dz = γdx′dy′dz′ = γdV ′,

and the total charge in dV ′ is

ρ′dV ′ = ρ′γ−1dV = γργ−1dV = ρ dV

Thus both the charge densities and volumes are not separately conserved under this Lorentz

transformation, but the charge itself is.

There is much experimental evidence that ρ′ = γρ, and we will postulate that Jµ in

Eq. (11.4.2) is indeed a four vector, and that

∂µJ
µ = 0 (11.4.3)

11.4.2 Units

At this point, Jackson changes from SI to Gaussian units – the aim being to avoid carrying

superfluous factors of c.

Gaussian Units

Below we present Maxwell’s equations and relation between fields in Gaussian units:

∇ ·D = 4πρ (11.4.4)

∇× E +
1

c

∂B

∂t
= 0 (11.4.5)

∇×H =
4π

c
J +

1

c

∂D

∂t
(11.4.6)

∇ ·B = 0 (11.4.7)

D = εE = E + 4πP (11.4.8)

H = B/µ = B− 4πM (11.4.9)
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You will notice that in these units ∂/∂t has an associated factor of 1/c, corresponding to

our definition of a four vector. Also, ε and µ are the relative permittivity and permeability

respectively.

11.4.3 Potentials as Four Vectors

We introduce vector and scalar potentials so as to satisfy the homogeneous Maxwell equations

B = ∇×A

E = −∇φ− 1

c

∂A

∂t
(11.4.10)

In a vacuum (ε = µ = 1), the inhomogeneous equations become:

∇2φ+
1

c

∂∇ ·A
∂t

= −4πρ

∇2A− 1

c2
∂2A

∂t2
−∇

[
∇ ·A +

1

c

∂φ

∂t

]
= −4π

c
J.

In the Lorentz gauge, we have

∇ ·A +
1

c

∂φ

∂t
= 0,

and the dynamical equations become

∇2φ− 1

c2
∂2φ

∂t2
= −4πρ

∇2A− 1

c2
∂2A

∂t2
= −4π

c
J. (11.4.11)

We now recognize the operator on the l.h.s. of these equations as the four-dimensional Lapla-

cian introduced in Eq. (11.2.24), and the r.h.s. as the temporal and spatial components of

the current Jµ of Eq. (11.4.2). We will therefore introduce a four-vector potential

Aµ = (φ,A), (11.4.12)

so that both equations in (11.4.11) can be unified in the manifestly covariant form

2Aµ =
4π

c
Jµ , (11.4.13)

with

2 ≡ ∂α∂α =
1

c2
∂2

∂t2
−∇2 .

Furthermore, the Lorentz gauge condition is also manifestly covariant:

∂µAµ = 0. (11.4.14)
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11.4.4 Field-Strength Tensor

In order to formulate the full Maxwell’s equations in covariant form, we need to return to

the relation between the fields (E,B) and the potentials

B = ∇×A

E = −∇φ− 1

c

∂A

∂t
.

We need to find a covariant relation between electric and magnetic fields, and the four vector

Aµ, and indeed express the fields themselves in covariant form. Let us write out a couple of

these components explicitly

Bx =
∂Az

∂y
− ∂Ay

∂z
=
∂A3

∂x2
− ∂A2

∂x3
=
∂A2

∂x3
− ∂A3

∂x2

Ex = −∂φ
∂x
− 1

c

∂Ax

∂t
= −∂A

0

∂x1
− ∂A1

∂x0
=
∂A0

∂x1
− ∂A1

∂x0

or

B1 = ∂3A2 − ∂2A3 = −(∂2A3 − ∂3A2) = −ε123(∂2A3 − ∂3A2) → −ε123F 23

E1 = ∂1A0 − ∂0A1 → F 10 .

N.B.: We are using here a slightly confusing notation: Ei denotes the ith component of a

three vector, where we do not need to distinguish between covariant and contravariant

vectors. The equivalent four-vector components are given by

Ei = Ei

Ei = −Ei.

We can see that (E,B) are related to a second-rank tensor F µν = ∂µAν − ∂νAµ, and there

are six independent components of the two fields.

For a general second-rank tensor T µν , we can write

T µν = T µνsym + T µνanti−sym.

The symmetric part has ten components, but the anti-symmetric part has six independent

components that we could associate with fields E and B. Thus we introduce the anti-

symmetric Maxwell Field-Strength Tensor

F µν = ∂µAν − ∂νAµ (11.4.15)
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Writing out the components of F µν explicitly, we have (µ numbers rows, from 0 to 3, and ν

numbers columns)

F µν =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 , (11.4.16)

or

F i0 = Ei ; F 0i = −Ei

(i = 1, 2, 3) and

F ij = −εijkBk ,

(i, j, k = 1, 2, 3) with εijk being the 3-dimensional Levi-Civita tensor (note that, with chosen

non-equal i, j, there is only one possibility for k in εijk). We see that E and B are not

components of four vectors, but rather of an anti-symmetric, second-rank tensor. Note that

we can lower the indices in the usual way

Fµν = gµαgνβF
αβ,

so that the components corresponding to E change sign, Fi0 = −Ei, whilst those correspond-

ing to B are unaltered:

Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 . (11.4.17)

Inverting the relation involving Bk gives

Bk = −1

2
εijkFij .

Here, the summation over both i and j index is implied. Note that, with a chosen k, there

are two possibilities for non-equal i, j in εijk.

Finally, we will introduce the dual field-strength tensor. But as a precursor we will return

to the Levi-Civita tensor.

Levi-Civita Tensor in 4 dimensions

This is the four-dimensional version of the εijk encountered in 3-D Euclidean space. It is

defined by

εµνρσ =


1 if µ, ν, ρ, σ is an even perm of 0, 1, 2, 3

−1 if µ, ν, ρ, σ is an odd perm of 0, 1, 2, 3

0 if any two indices are equal

(11.4.18)
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Figure 11.1: Visualizations of 3D Levi-Civita symbol

Lowering the indices in the usual way, we immediately see that

εµνρσ = −εµνρσ.

Note a very useful relation

εαβµνεαβρσ = −2
(
δµρδ

ν
σ − δ µ

σ δ
ν
ρ

)
. (11.4.19)

If we take µ = 0, then other components of εµνρσ are space-like, and

ε0ijk = εijk .

As an exercise, let us assume all indices µ, ν, ρ, σ in Eq. (11.4.19) correspond to space

components m,n, r, s. Then one of the α, β indices corresponds to the time component, i.e.

either α = 0 or β = 0, and the remaining one corresponds to a space component. Then the

left side is

εαβmnεαβrs = ε0bmnε0brs + εa0mnεa0rs = −εbmnεbrs − εamnεars = −2εbmnεbrs = −2εmnbεbrs .

(11.4.20)

The right side:

−2
(
δµρδ

ν
σ − δ µ

σ δ
ν
ρ

)
⇒ −2 (δmrδns − δsmδrn) . (11.4.21)

Thus, Eq. (11.4.19) gives

εmnbεbrs = δmrδns − δsmδrn . (11.4.22)

Multiplying by AnBrCs gives

εmnbAn εbrsBrCs︸ ︷︷ ︸
(B×C)b

=εmnbAn(B×C)b = [A× (B×C]m

= [δmrδns − δsmδrn]AnBrCs = Bm(A ·C)− Cm(A ·B) , (11.4.23)

i.e. the A× (B×C) = B(A ·C)−C(A ·B) formula.
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11.4.5 Dual Field-Strength Tensor

The dual field-strength tensor is defined by

F̃ µν =
1

2
εµνρσFρσ. (11.4.24)

Take µ = 0, then

F̃ 0i =
1

2
ε0ijkFjk =

1

2
εijkFjk = −Bi ,

or Bi = F̃ i0. Similarly, taking both µ and ν space-like, we have

F̃ ij =
1

2

[
εij0kF0k + εijk0Fk0

]
= εijkF0k = εijkEk .

Thus, the elements of F̃ µν are related to those of F µν through the substitution

E→ B

B→ −E,

so that

F̃ µν =


0 −Bx −By −Bz

Bx 0 Ez −Ey
By −Ez 0 Ex

Bz Ey −Ex 0

 .

Thus transition from F µν to F̃ µν reverses the roles of the electric and magnetic fields.

Lowering the indices converts B→ −B, E→ E, and we have

F̃µν =


0 Bx By Bz

−Bx 0 Ez −Ey
−By −Ez 0 Ex

−Bz Ey −Ex 0

 .

11.4.6 Maxwell’s Equations

Let us return to Maxwell’s equation in a vacuum

∇ · E = 4πρ (11.4.25)

∇× E +
1

c

∂B

∂t
= 0 (11.4.26)

∇×B =
4π

c
J +

1

c

∂E

∂t
(11.4.27)

∇ ·B = 0. (11.4.28)
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These are all first-order differential equations expressed in terms of E and B. Thus we might

suspect that the covariant form of Maxwell’s equations will contain terms of the form ∂µFνρ .

To convert equations written for the fields E,B into equations for the tensor Fνρ, we will use

the relations Ei = F i0 = −F 0i, F ij = −εijkBk, Bk = −1
2
εijkFij and Bi = F̃ i0, F̃ ij = εijkEk

found earlier.

Looking at Eq. (11.4.25), we see that it may be written as

∂

∂xi
Ei = 4π

J0

c
.

Using Ei = F i0, and noting that F 00 vanishes, we can rewrite (11.4.25) as

∂µF
µ0 =

4π

c
J0. (11.4.29)

Turning now to the second inhomogeneous equation, Eq. (11.4.27), we see that it may be

written as

εijk
∂

∂xj
Bk =

4π

c
J i +

1

c

∂

∂t
Ei .

Using εijkBk = −F ij = F ji and Ei = −F 0i gives

∂

∂xj
F ji =

4π

c
J i − 1

c

∂

∂t
F 0i .

Thus Eq. (11.4.27) can be written as

∂

∂xj
F ji +

∂

∂x0
F 0i =

4π

c
J i (11.4.30)

=⇒ ∂µF
µi =

4π

c
J i. (11.4.31)

Thus we see that the two inhomogeneous Maxwell equations can be written in the unified

form

∂µF
µν =

4π

c
Jν . (11.4.32)

Turning now to the homogeneous equations, we see that Eq. (11.4.28) can be written as

∂

∂xi
F̃ i0 = 0

=⇒ ∂µF̃
µ0 = 0.

Eq. (11.4.26) takes the form

εijk
∂

∂xj
Ek +

1

c

∂

∂t
Bi = 0
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Using εijkEk = F̃ ij and Bi = F̃ i0 we obtain

∂

∂xj
F̃ ij +

∂

∂x0
F̃ i0 = 0

=⇒ ∂µF̃
µi = 0.

Thus the two homogeneous Maxwell equations can be written in the unified form

∂µF̃
µν = 0 . (11.4.33)

Eqns. (11.4.32) and (11.4.33) constitute the covariant formulation of Maxwell’s

equations.

Note that we can rewrite Eq. (11.4.33) as

1

2
∂µε

µνρσFρσ = 0

=⇒ εµνρσ∂µFρσ = 0,

which we can express as

∂µFρσ + ∂ρFσµ + ∂σFµρ = 0. (11.4.34)

This is known as the Jacobi Identity.

11.4.7 Energy and Momentum Law

The Lorentz force law in Gaussian units is

dp

dt
= q

{
E +

1

c
v ×B

}
.

In order to write this in a covariant form, we introduce the proper time

dτ = γ−1dt,

and write
dpi

dt
=
dpi

dτ

dτ

dt
=

1

γ

dpi

dτ
.

Thus the force law may be expressed as

dpi

dτ
= γq

{
Ei +

1

c
εijkvjBk

}
.
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We now introduce the four-velocity V µ = (γc, γv), yielding

dpi

dτ
=

q

c
{V 0F i0 + εijkV jBk}

=
q

c
{V 0F i0 − V jF ij}

=
q

c
{V0F i0 + VjF

ij} .

Thus the Lorentz force law becomes

dpi

dτ
=
q

c
VµF

iµ. (11.4.35)

The analogous equation for the energy is

d

dt
Emech = qE · v.

Thus, writing
d

dt
Emech =

dτ

dt

d

dτ
Emech =

1

γ

d

dτ
Emech

we have

dEmech

dτ
= γqF i0vi

= qF 0iVi,

yielding
d

dτ

(
Emech

c

)
=
q

c
VµF

0µ.

Identifying Emech/c with the component p0, we see that both this equation and the Lorentz

law, Eq. (11.4.35), can be expressed as

dpµ

dτ
=
q

c
VνF

µν (11.4.36)

and Newton’s second law is in a manifestly covariant form.
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11.4.8 Lorentz Invariants

There are two invariants we can construct from the field-strength tensor

1.

FµνF
µν = F0iF

0i + Fi0F
i0 + FijF

ij

= 2(B2 − E2) .

On the last step, we used explicit forms of F µν and Fµν :

F µν =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 , Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 .

(11.4.37)

Thus

B2 − E2 =
1

2
FµνF

µν (11.4.38)

is a Lorentz Scalar.

2. The second invariant is given by

FµνF̃
µν =F0iF̃

0i + Fi0F̃
i0 + FijF̃

ij = −2E ·B− εijkBkεijlE
l

= −2E ·B− 2δklB
kEl = −4E ·B , (11.4.39)

where we used εijkεijl = 2δkl. The result can be checked by using explicit form of F̃ µν :

F̃ µν =


0 −Bx −By −Bz

Bx 0 Ez −Ey
By −Ez 0 Ex

Bz Ey −Ex 0

 .

Thus

E ·B = −1

4
FµνF̃

µν (11.4.40)

is also a Lorentz Scalar (more precisely, a pseudoscalar).

These are the only Lorentz invariants built from electromagnetic fields.
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11.5 Transformation Properties of EM Field

Since F µν is a second-rank tensor, we can immediately say it transforms according to

F ′µν =
∂x′µ

∂xα
Fαβ ∂x

′ν

∂xβ
,

which we can write as

F ′ = ΛFΛT , (11.5.1)

where

Λµ
ν =

∂x′µ

∂xν
.

Specifically, let us consider a boost from K to K ′ where K ′ has velocity v in x-direction

w.r.t. K, and origins coincide at t = t′ = 0. Then

Λ =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

 ,

where β = v/c and γ = (1− β2)−1/2. Using this expression in Eq. (11.5.1), we find

F ′ =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1




0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0




γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1



=


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1




γβE1 −γE1 −E2 −E3

γE1 −γβE1 −B3 B2

γ(E2 − βB3) γ(B3 − βE2) 0 −B1

γ(E3 + βB2) −γ(B2 + βE3) B1 0

 (11.5.2)

=


0 −E1 −γ(E2 − βB3) −γ(E3 + βB2)

E1 0 −γ(B3 − βE2) γ(B2 + βE3)

γ(E2 − βB3) γ(B3 − βE2) 0 −B1

γ(E3 + βB2) −γ(B2 + βE3) B1 0

 .

Writing out the individual vector components, we find

E ′1 = E1 ; B′1 = B1

E ′2 = γ(E2 − βB3) ; B′2 = γ(B2 + βE3)

E ′3 = γ(E3 + βB2) ; B′3 = γ(B3 − βE2)

 (11.5.3)
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Thus the E and B fields mix under a Lorentz transformation.

We can express this in (three) vector form as

E′ = γ[E + β ×B]− γ2

γ + 1
β(β · E)

B′ = γ(B− β × E)− γ2

γ + 1
β(β ·B), (11.5.4)

where β = v/c.

In particular, take the component of E′ parallel to v. This gives

E ′1 = γE1 − γ2β2/(γ + 1)E1 =
γ2 + γ − γ2β2

γ + 1
E1 =

1 + γ

γ + 1
E1 = E1

since γ2 − γ2β2 = 1.

11.5.1 Electric and magnetic fields of relativistically moving point

charge.

Consider a charge q moving along a line at velocity (in K) v = ve1. The charge is at rest in

the frame K ′.
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vP
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b
θ

At t = t′ = 0, the origins of the two frames coincide. We have an observer P at impact

parameter b (i.e. distance of closest approach) as shown above.

We will begin by looking at electric and magnetic fields at point P in frame K ′ at time t′.

P has coordinates

x′ = −vt′

y′ = b

z′ = 0.
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Thus, from Coulomb’s law

E ′1 = −qvt′/r′3 ; E ′2 = qb/r′3 ; E ′3 = 0

B′1 = 0 ; B′2 = 0 ; B′3 = 0.

In order to express this in terms of coordinates in K, we note that r′2 = b2 + v2t′2. But we

have

ct′ = γ(ct− βx) = γct.

Thus

r′2 = b2 + v2γ2t2

and we have

E ′1 = − qγvt

(b2 + v2γ2t2)3/2

E ′2 =
qb

(b2 + v2γ2t2)3/2

E ′3 = 0.

We now use our transformation laws Eq. (11.5.3) changing there β → −β:

E1 = E ′1 ; B1 = B′1
E2 = γ(E ′2 + βB′3) ; B2 = γ(B′2 − βE ′3)
E3 = γ(E ′3 − βB′2) ; B3 = γ(B′3 + βE ′2)

 (11.5.5)

to write

E1 = E ′1 = − qγvt

(b2 + v2γ2t2)3/2

E2 = γE ′2 =
γqb

(b2 + v2γ2t2)3/2

E3 = γE ′3 = 0

B1 = 0;B2 = γB′2 = 0

B3 = γβE ′2 = βE2

Thus in the laboratory frame we see a magnetic induction.

Note that in the limit v → c, we have β → 1 and the magnetic induction equals the transverse

electric field. In the Galilean limit v → 0,

B3 =
v

c

γqb

(b2 + v2γ2t2)3/2
−→ vqb

c(b2 + v2t2)3/2

=⇒ B ∼ q

c

v × r

r3
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where we have used vb = vr sin θ, which we observe is just the Biot-Savart Law.

Finally, let us look at the field lines. We have that

E2

E1

= − b

vt
,

so that the electric field is still a central field in the frame K. If we now look at the magnitude

of the field, however, we find

|E| = γq

(b2 + v2γ2t2)3/2
(b2 + v2t2)1/2.

Setting b = r sin θ, vt = r cos θ, we have

|E| = γqr

r3(sin2 θ + γ2 cos2 θ)3/2
=

q

r2γ2(sin2 θ/γ2 + cos2 θ)3/2
=

q

γ2r2
(1− β2 sin2 θ)−3/2.

So the lines of force, whilst central, are no longer isotropic.

11.5.2 Plane Electromagnetic Radiation and Doppler Shift

Let us look at the propagation of a plane wave in vacuum. Our starting point is the Jacobi

identity Eq. (11.4.34). Applying ∂α we find

∂α∂αFβγ + ∂β∂
αFγα + ∂γ∂

αFαβ = 0. (11.5.6)

In the absence of sources,

∂µFµν =
4π

c
Jν = 0.

Thus the last two terms on the r.h.s. of Eq. (11.5.6) vanish, and we have the plane e.m.

waves satisfy

∂α∂αFµν ≡ 2Fµν = 0 , (11.5.7)

with

2 ≡ ∂α∂α =
1

c2
∂2

∂t2
−∇2

being the differential operator of the wave equation. In complete analogy to the three-

dimensional NR formulations, we note that this admits the solution

Fµν = fµνe
ikαxα (11.5.8)

where kαk
α = k2 = 0. Writing kα = (ω/c,k), we see that k2 = 0 is just k2 = ω2/c2 which is

our usual relation between wave number and frequency.
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We will now look at the transformation properties of the solution. We will let the solution

in frame K be

Fµν = fµνe
ik·x

whilst that in K ′ be

F ′µν = f ′µνe
ik′·x′ .

The solutions in the two frames are related by

F ′µν = Λ ρ
µ Λ σ

ν Fρσ.

This can be satisfied ∀x iff k′ · x′ = k · x showing that k and k′ are indeed four vectors.

Because of this, we know that kµ and k′µ are related by

k′‖ = γ[k‖ − βk0]
k′0 = γ[k0 − βk‖]
k′⊥ = k⊥ (11.5.9)

Introducing θ as the angle between k and v, we can use the second equation of (11.5.9) to

compute the Doppler shift:

ω′

c
= γ

[ω
c
− v

c
|k| cos θ

]
= γ

[ω
c
− v

c

ω

c
cos θ

]
.

Thus we have the Doppler Shift formula

ω′ = γω(1− β cos θ) (11.5.10)

where β = v/c. This is modified from the usual Galilean formula through the factor of γ.

11.5.3 Aberration

This is the change in direction of a wave vector between the two frames.

θ θ’

k

v

k’

v
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We can calculate this from

tan θ′ =
|k′⊥|
k′‖

=
|k⊥|
k′‖

.

By our Lorentz transformation formula

k′‖ = γ
[
k‖ − β

ω

c

]
= γ

[ω
c

cos θ − βω
c

]
= γ

ω

c
(cos θ − β)

Also we have

k2
⊥ = k20 − k2‖ =

(ω
c

)2
(1− cos2 θ) =

(ω
c

sin θ
)2
,

and thus

|k⊥| =
ω

c
sin θ.

Thus, taking the ratio, we find

tan θ′ =
sin θ

γ(cos θ − β)
(11.5.11)
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11.6 Motion of Particles in Electromagnetic Fields

In this section we will discuss several examples of motion in electric and/or magnetic fields.

11.6.1 Motion in a constant homogeneous electric field

Consider a constant uniform electric field E. The equation of motion

dp

dt
= eE (11.6.1)

will be simplified if we take E in x-direction. Then

ṗx = eE , ṗy = 0 , (11.6.2)

which, assuming px = 0, py = p0 for t = 0, gives

px = eEt, py = p0 . (11.6.3)

The energy of the particle is then

E = c
√
m2c2 + p2 =

√
m2c4 + c2p20 + (ceEt)2 =

√
E20 + (ceEt)2 , (11.6.4)

where E is energy at t = 0. For velocity of the particle, we have

v = p
c2

E
(11.6.5)

or

dx

dt
=
pxc

2

E
=

c2eEt√
E20 + (ceEt)2

. (11.6.6)

Integrating this equation over time we obtain

x− x0 = c2eE

∫ t

0

tdt√
E20 + (ceEt)2

. (11.6.7)

Introducing variable ξ = (ceEt)2, we have

x− x0 = c2eE
1

2(ceE)2

∫ (ceEt)2

0

dξ√
E20 + ξ

=
1

eE

(√
E20 + (ceEt)2 − E0

)
. (11.6.8)

For motion in y-direction, we have

dy

dt
=
pyc

2

E
=

p0c
2√

E20 + (ceEt)2
, (11.6.9)
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which gives

y − y0 = p0c
2

∫ t

0

dt√
E20 + (ceEt)2

=
p0c

2

ceE

∫ ceEt

0

dη√
E20 + η2

=
p0c

eE
sinh−1

(
ceEt

E0

)
. (11.6.10)

Inverting this relation we arrive at

ceEt = E0 sinh

(
eE(y − y0)

p0c

)
. (11.6.11)

As a result, we have equation for the trajectory

x− x0 =
E0
eE

[
cosh

(
eE(y − y0)

p0c

)
− 1

]
. (11.6.12)

In the nonrelativistic limit c→∞ it may be written as

x− x0 =
E0
eE

[
1

2

(
eE(y − y0)

p0c

)2

+O(1/c4)

]

=
eE(y − y0)2

2mv20
+O(1/c2) , (11.6.13)

i.e. the motion curve is represented by a parabola.

11.6.2 Motion in a uniform static magnetic field

Consider now a constant uniform magnetic field B. When both electric and magnetic fields

are present, the equations of motion are

dp

dt
=e
[
E +

v

c
×B

]
(11.6.14)

dE
dt

=ev · E . (11.6.15)

In a purely magnetic field,

dp

dt
=
e

c
v ×B ,

dE
dt

= 0 . (11.6.16)

Thus, the energy does not change with time, i.e. velocity is constant, and so is

γ = 1/
√

1− v2/c2. We can use p = γmv and write the momentum equation as

dv

dt
= v × ωB , (11.6.17)
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where

ωB =
eB

γmc
(11.6.18)

is the gyration or precession frequency. For small velocities, γ ≈ 1 and ω = eB/mc.

Taking the magnetic field in z-direction, we write the equation in components:

v̇x = ωvy , v̇y = −ωvx , v̇z = 0 . (11.6.19)

Thus, vz = const = v‖.

For motion in the plane normal to the field, introducing a complex combination V = vx+ivy,

we can write the coupled x, y equations as

V̇ = −iωV .

Its solution is

V (t) = V (0) e−iωt , (11.6.20)

where V (0) = vx0 + ivy0. Taking initial velocity in x-direction, i.e. vx0 = v, vy0 = 0 gives

vx = v cos(ωt) , vy = −v sin(ωt) . (11.6.21)

The solution for coordinates is

R(t) ≡ x(t) + iy(t) = R(0) + i
v

ω
e−iωt , (11.6.22)

or

x(t) = x0 + a sin(ωt) , (11.6.23)

y(t) = y0 + a cos(ωt) , (11.6.24)

where a = v/ω is gyration radius. Thus, we deal with a circular motion in the plane

perpendicular to B. The rotation is counterclockwise (for a positive charge) when viewed in

the direction of magnetic field. Combining it with a uniform motion in the direction parallel

to B results in a helix trajectory with radius a and pitch angle α = tan−1(v‖/ωBa). The

magnitude of a is determined by B and transverse momentum of the particle: cp⊥ = eBa.
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11.6.3 Motion in combined uniform, static electric and magnetic

fields

Consider a situation when E and B are not parallel and, furthermore, take the simplest

case when they are perpendicular. The equation is still complicated, since the energy is not

conserved. In attempt to simplify the treatment, let us switch to a coordinate frame K ′

moving with velocity u with respect to the original frame K. Then, in K ′-frame

dp′

dt
=e

[
E′ +

v′

c
×B′

]
, (11.6.25)

where

E′ =γ (E + β ×B)− γ2

γ + 1
β(β · E) (11.6.26)

B′ =γ (B− β × E)− γ2

γ + 1
β(β ·B) (11.6.27)

with β = u/c. The terms β ·E and β ·B will be eliminated if u is chosen to be orthogonal

to both E and B. Suppose that |E| < |B|. Then we take

u = c
E×B

|B|2
or β =

E×B

|B|2
with γ =

1√
1− |E|2/|B|2

. (11.6.28)

As a result

E′ = γ (E + β ×B) = γ

(
E− B× (E×B)

|B|2

)
=γ

(
E− E|B|2 −B(E ·B)

|B|2

)
= γB

(E ·B)

|B|2
= 0 . (11.6.29)

At the last step we used (E ·B) = 0. For the magnetic field, we obtain

B′ =γ (B− β × E) = γ

(
B +

E× (E×B)

|B|2

)
= γ

(
B +

E(E ·B)−B|E|2

|B|2

)
= γB

(
1− |E|

2

|B|2

)
= γB

1

γ2
=

1

γ
B (11.6.30)

So, in the frame K ′ the only field acting on the particle is a static magnetic field which points

in the same direction as B, but weaker than B due to the 1/γ factor. Thus the motion of

the particle in the K ′ frame is spiraling around the line of (magnetic) force.

As viewed from the original system K, the gyration is accompanied by a uniform drift in

the direction u perpendicular to E and B. The direction of the drift does not depend on the

charge of the particle.
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If |E| > |B|, the electric field is so strong that the particle is continually accelerated in the

direction of E.

Consider a Lorentz transformation to the frame moving with velocity u′ = c(E × B)/|E|2

corresponding to γ′ =
√

1− |B|2/|E|2. In this frame

E′ = γ′ (E + β′ ×B) =γ′
(

E− B× (E×B)

|E|2

)
= γ′

(
E− E|B|2 −B(E ·B)

|E|2

)
= γ′E

|E|2 − |B|2

|E|2
= γ′E

(
1− |B|

2

|E|2

)
=

1

γ′
E (11.6.31)

and

B′ =γ′
(

B− u′ × E

c

)
= γ′

(
B +

E× (E×B)

|E|2

)
= γ′

(
B +

E(E ·B)−B|E|2

|E|2

)
= 0 . (11.6.32)

Thus, we have only electric field in frame K ′, and the particle is continually accelerated in

the direction of E.


