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Chapter 7

Plane Electromagnetic Waves and

Wave Propagation

7.1 Preliminaries

We begin by considering the propagation of waves in a non-conducting medium. Thus J ≡ 0,

we assume ρ ≡ 0 and Maxwell’s equations reduce to

∇ ·B = 0 ,

∇× E +
∂B

∂t
= 0 ,

∇ ·D = 0 ,

∇×H− ∂D

∂t
= 0 .

In the case of plane waves, it is sufficient to consider those propagating with a definite

frequency ω, and hence time dependence exp{−iωt}; essentially this is equivalent to taking

the Fourier Transform. We have a set of linear, homogeneous equations and hence all fields

have the same harmonic behaviour. Thus we may write Maxwell’s equations as

∇ ·B = 0 ,

∇ ·D = 0 ,

∇× E− iωB = 0 ,

∇×H + iωD = 0 . (7.1.1)

We will now specialize to the case of a linear constitutive relation between the fields: D = εE

and B = µH. We will also assume ε, µ are real. Note that later we will consider the complex
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210 Chapter 7

case; taking them to be real corresponds to there being no energy losses. Then the last two

equations of Eq. (7.1.1) become

∇× E− iωB = 0 ,

∇×B + iωεµE = 0 .

The two coupled first-order differential equations for E and B can be converted into two

separate second-order differential equations for E and B. Indeed, using the first equation

above to write B = ∇×E/(iω) and substituting this result into the second equation, we get

∇× (∇× E)/(iω) + iωεµE = 0 ,

or

∇× (∇× E)− ω2εµE = 0 .

In the same way, substituting E = −∇×B/(iωεµ) into ∇× E− iωB = 0 gives

∇× (∇×B)− ω2εµB = 0 .

Using that ∇ × (∇ × E) = ∇(∇ · E) − ∇2E, and similarly for B, and also incorporating

∇ · E = 0, ∇ ·B = 0, we get

∇2E + ω2εµE = 0 ,

∇2B + ω2εµB = 0 . (7.1.2)

These are known as the Helmholtz wave equations. As is well known, they support the

plane-wave solutions

(
E

B

)
=

(
E0

B0

)
eik·x−iωt, (7.1.3)

where k = ω
√
µε. The ratio

v = ω/k = 1/
√
µε (7.1.4)

is the phase velocity.



Plane Electromagnetic Waves and Wave Propagation 211

We now recall that the velocity of light in the vacuum is given by

c = 1/
√
µ0ε0. (7.1.5)

Thus we can write

v = c/n (7.1.6)

where

n =

√
µε

µ0ε0
(7.1.7)

is the index of refraction. It is usually a function of the frequency (recall color separation

by a prism), and therefore the phase velocity is likewise frequency dependent - hence the

name.

7.2 Propagation of Monochromatic Plane Wave

We will now consider in greater detail a monochromatic plane wave of frequency ω, propagat-

ing in the direction n with wave number k. Note that complex n corresponds to dissipation.

We have seen that the solution of the Helmholtz equations are

E(x, t) = E0e
ikn·x−iωt

B(x, t) = B0e
ikn·x−iωt (7.2.1)

with

k2 = µεω2. (7.2.2)

This is actually shorthand for

E(x, t) = Re
{
E0e

ikn·x−iωt} . (7.2.3)

The imaginary part contains no physical information. It is important to remember this when

considering quantities that are quadratic or higher in the fields, such as the energy density.

7.2.1 Energy Density for Monochromatic Plane Wave

Recall the expression for the energy density

u =
1

2

[
εE2 +

1

µ
B2

]
. (7.2.4)
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The real parts of the fields B and E must be taken before evaluating the quadratic terms.

In the case of the time-averaged energy density, we have the particularly simple result

〈u〉 =
1

4

[
εE · E∗ +

1

µ
B ·B∗

]
(7.2.5)

where we use 〈. . . 〉 to denote that the time average has been taken, and the additional factor

of one half arises from the observation

〈cos2 ωt〉 = 1/2. (7.2.6)

Likewise, the time-averaged Poynting vector is

〈S〉 =
1

2
E×H∗ (7.2.7)

This quantity is called the intensity of the wave.

7.3 Polarization of a Monochromatic Plane Wave

Applying ∇ ·B = 0 and ∇ · E = 0 to the solutions

E(x, t) = E0e
ikn·x−iωt

B(x, t) = B0e
ikn·x−iωt (7.3.1)

of the Helmholtz equations, we find

n ·B0 = 0 ,

n · E0 = 0 . (7.3.2)

Thus both E and B are perpendicular to the direction of propagation. We say that we have

a transverse wave.

We now apply the remaining Maxwell equations

∇× E− iωB = 0

∇×B + iωµεE = 0,

to yield

B0 =
1

iω
ik n× E0 =

√
µεn× E0 =

1

ω
k× E0. (7.3.3)

Setting c = 1/
√
µε to be the velocity of light in the medium, we see that both cB and E

have the same magnitude, B0 = n× E0/c. We also have

E0 = − 1

iωµε
ik n×B0 = − 1

√
µε

n×B0 = −cn×B0. (7.3.4)
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NB : Had we chosen to work with H = B/µ, rather than B, then we would have

H0 =

√
ε

µ
n× E0 ≡

n× E0

Z
(7.3.5)

where Z =
√
µ/ε is the impedance

We will now specialize to the case where n is indeed real. Then B0 is perpendicular to E0,

and has the same phase.

ε

ε

n

1

2

The vectors E,B and n form an orthogonal triad, and it is usual to introduce three mutually-

orthogonal basis vectors ε1, ε2 and n and to write the electromagnetic field as

E1(x, t) = ε1E1e
i(k·x−ωt) ; cB1 = ε2E1e

i(k·x−ωt)

E2(x, t) = ε2E2e
i(k·x−ωt) ; cB2 = −ε1E2e

i(k·x−ωt) (7.3.6)

Note that E1 and E2 can be complex to take into account a phase shift between the two

plane waves.

The general solution for the wave equation is

E(x, t) = (ε1E1 + ε2E2)ei(k·x−ωt). (7.3.7)

Linear Polarization

θ

ε

ε

E

2

1

If E1 and E2 have the same phase we talk about a linearly polarized wave; the direction

of the E field is constant, with the angle given by

θ = tan−1(E2/E1) . (7.3.8)
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Elliptical and Circular Polarization

If E1 and E2 have different phases, we say the wave is elliptically polarized. The

direction of E is no longer constant.

A special case is that of circularly polarized waves. Here E1 and E2 have the same

magnitude, but differ by a phase of ±π/2. Thus we can write

E(x, t) = E0(ε1 ± iε2)ei(k·x−ωt) (7.3.9)

where E0 is real. Without loss of generality, we take ε1 and ε2 in the x and y directions

respectively. Thus taking the real (physical) part, we find

Ex = E0 cos(kz − ωt) = E0 cos(ωt− kz)
Ey = ∓E0 sin(kz − ωt) = ±E0 sin(ωt− kz).

At fixed z, this is just the equation of a circle.

k

E

x

y

θ=ω t

The different signs correspond to rotating to the left or rotating to the right ; these are more

commonly known as positive and negative helicities.

Since it is possible to use any two mutually orthogonal vectors as polarization vectors, it is

usually for circularly polarized waves to introduce

ε± =
1√
2

(ε1 ± iε2) (7.3.10)

with the properties

ε±
∗ · ε± = 1, ε±

∗ · ε∓ = 0, ε±
∗ · n = 0, (7.3.11)

so that a general plane-wave solution is

E(x, t) = (E+ε
+ + E−ε

−)ei(k·x−ωt). (7.3.12)

An important question is, given an electric field E(x, t), how can one determine its polariza-

tion properties; one way of specifying the relative importance of the different components is

through the Stokes Parameters. This is described in Jackson 7.2.
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7.4 Reflection and Refraction at Plane Interface

between Dielectrics

The laws describing the behavior of a wave at the interface between two media are well

known:

1. Angle of reflection = Angle of incidence

2. sin θi/ sin θt = n′/n (Snells’s law) where n′, n are the refractive indices of the final and

initial media respectively.

These are simple kinematic laws; we would like to determine dynamic properties - intensities

and phase changes.

k

k
k

n

T

r

i

θ

θθ

T

ri

We begin by writing

Incident wave: Ei = Ei
0 e

i(ki·x−ωt)

Bi =
1

ω
ki × Ei

Reflected wave: Er = Er
0 e

i(kr·x−ωt)

Br = =
1

ω
kr × Er

Refracted wave: Et = Et
0 e

i(kt·x−ωt)

Bt =
1

ω
kt × Et

where k2
i = k2

r = µεω2 and k2
t = µ′ε′ω2.
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Boundary Conditions at Interface

We first observe that the boundary conditions must be satisfied ∀x, y at all times t. Thus

all fields must have the same phase factor at z = 0.

N.B.: We have implicitly assumed this in saying that the frequency in z > 0 must be the

same as that in z < 0.

Thus ki · x = kr · x = kt · x at z = 0. This means that the vectors kr − ki and kt − ki

are orthogonal to any vector x on the interface plane, i.e. they should be proportional to

the unit vector n normal to this plane. In other words, we should have kr = ki + αrn and

kt = ki +αtn, where αr, αt are some numbers, which means that the vectors ki,kr,kt all lie

in the plane formed by ki and n – plane of incidence.

k

k
k

n

T

r

i

θ

θθ

T

ri

From the Figure, we see that

ki · x = |x||ki| cos(π/2− θi) = |x||ki| sin θi
kr · x = |x||kr| cos(π/2− θr) = |x||kr| sin θr

and since |ki| = |kr| we have

θi = θr (7.4.1)

Similarly,

|ki| sin θi = |kt| sin θt
=⇒ √µε sin θi =

√
µ′ε′ sin θt.

and thus

sin θi
sin θt

=

√
µ′ε′

µε
=
n′

n
(7.4.2)

Thus both laws are purely kinematic properties.
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Maxwell’s equations are

∇× E− iωB = 0 ,

∇×H + iωD = 0

∇ ·D = 0 ,

∇ ·B = 0 . (7.4.3)

Using Gauss’s box for divergence equations, and Stokes’ contour for the curl equation, we

get the boundary conditions at the interface:

E‖ is continuous

H‖ is continuous

D⊥ is continuous

B⊥ is continuous

Tangential (to the interface plane) components of fields E,H are projected by forming the

vector products E × n and H × n, while the normal components of D and B are given by

the scalar products D · n and B · n. Applying to the fields at the interface, we have

(Ei
0 + Er

0 − Et
0)× n = 0 (7.4.4)[

1

µ
(ki × Ei

0 + kr × Er
0)− 1

µ′
kt × Et

0

]
× n = 0 (7.4.5)[

ε(Ei
0 + Er

0)− ε′Et
0

]
· n = 0 (7.4.6)[

ki × Ei
0 + kr × Er

0 − kt × Et
0

]
· n = 0. (7.4.7)

We we now consider two cases; where the electric polarization vector is normal to plane of

incidence and where it is parallel to plane of incidence.
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7.4.1 Normal to Plane of Incidence

The z axis is normal to the interface (i.e. n̂ is in z-direction), and we choose the x axis to

be in the plane of incidence as shown. Thus the electric field is along the y axis. The first

boundary condition Eq. (7.4.4) yields

Ei
0 + Er

0 = Et
0 . (7.4.8)

We now turn to the second second boundary condition Eq. (7.4.5). The first term yields

1

µ

[
ki × Ei

0

]
× n =

1

µ

[
Ei

0(n · ki)− ki(n · Ei
0)
]

=
1

µ
Ei

0|ki| cos θi = ω

√
ε

µ
cos θiE

i
0

(we used (n · Ei
0) = 0). Treating the other two terms similarly, we find

(Ei
0 − Er

0)ω

√
ε

µ
cos θi − ω

√
ε′

µ′
cos θtE

t
0 = 0, (7.4.9)

yielding

cos θi

√
ε

µ

(
Ei

0 − Er
0

)
−

√
ε′

µ′
cos θtE

t
0 = 0 (7.4.10)

or

Ei
0 − Er

0 =

√
ε′µ

εµ′
cos θt
cos θi

Et
0 (7.4.11)

Since Ei
0,E

r
0 and Et

0 for this polarization are transverse to n, one of the remaining boundary

conditions (7.4.6) is satisfied trivially, while another one (7.4.7) yields no new information.

Indeed, [
ki × Ei

0 + kr × Er
0 − kt × Et

0

]
· n = 0. (7.4.12)
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may be written as

(n× ki) · Ei
0 + (n× kr) · Er

0 − (n× kt) · Et
0 = 0 (7.4.13)

or

kiE
i
0 sin θi + krE

r
0 sin θi − ktEt

0 sin θt = 0 (7.4.14)

and

√
µε(Ei

0 + Er
0) sin θi =

√
µ′ε′Et

0 sin θt ⇒ Ei
0 + Er

0 = Et
0 . (7.4.15)

On the last step, we used the Snell’s law
√
ε′µ′/
√
εµ = sin θi/ sin θt.

Thus, adding and subtracting Eqs. (7.4.8) and (7.4.11) we find

Er
0

Ei
0

=
1−

√
ε′µ
εµ′

cos θt
cos θi

1 +
√

ε′µ
εµ′

cos θt
cos θi

=
1− µ

µ′
tan θi
tan θt

1 + µ
µ′

tan θi
tan θt

(7.4.16)

Et
0

Ei
0

=
2

1 +
√

ε′µ
εµ′

cos θt
cos θi

=
2

1 + µ
µ′

tan θi
tan θt

(7.4.17)

Here we used the Snell’s law again.

For visible light, we can usually put µ = µ′, giving

Er
0

Ei
0

=
sin(θt − θi)
sin(θi + θt)

Et
0

Ei
0

=
2 sin θt cos θi
sin(θt + θi)

.

This is just Fresnel’s formula for light polarized perpendicular to plane of incidence.
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7.4.2 Electric Field in Plane of Incidence

Here we use 1) boundary condition that E‖ is continuous, i.e. Eq. (7.4.4), to yield

(Ei
0 − Er

0) cos θi = Et
0 cos θt (7.4.18)

(it is x-component of E that is parallel to interface plane, hence cos θ factors), and

2) boundary condition that H‖ is continuous, i.e. Eq. (7.4.5), to give√
ε

µ

(
Ei

0 + Er
0

)
=

√
ε′

µ′
Et

0 (7.4.19)

(now all H-fields are oriented in y-direction, recall that ωH = k× E/µ). Combining

Ei
0 − Er

0 = Et
0

cos θt
cos θi

(7.4.20)

and

Ei
0 + Er

0 =

√
ε′µ

µ′ε
Et

0 (7.4.21)

gives

Er
0

Ei
0

=

√
ε′µ
εµ′
− cos θt

cos θi√
ε′µ
εµ′

+ cos θt
cos θi

=
1−

√
εµ′

ε′µ
cos θt
cos θi

1 +
√

εµ′

ε′µ
cos θt
cos θi

=
1− ε

ε′
tan θi
tan θt

1 + ε
ε′

tan θi
tan θt

(7.4.22)

Et
0

Ei
0

=
2√

ε′µ
εµ′

+ cos θt
cos θi

=
2
√

εµ′

ε′µ

1 +
√

εµ′

ε′µ
cos θt
cos θi

=
2n

′

n
ε
ε′

1 + ε
ε′

tan θi
tan θt

(7.4.23)
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If µ = µ′, then ε/ε′ = sin2 θt/ sin2 θi = n2/n′2, and we have

Er
0

Ei
0

=
1− sin2 θt

sin2 θi

tan θi
tan θt

1 + sin2 θt
sin2 θi

tan θi
tan θt

=
1− sin θt

sin θi

cos θt
cos θi

1 + sin θt
sin θi

cos θt
cos θi

=
sin 2θi − sin 2θt
sin 2θi + sin 2θt

=
tan(θi − θt)
tan(θi + θt)

(7.4.24)

and

Et
0

Ei
0

=
2 sin θt

sin θi

1 + sin2 θt
sin2 θi

tan θi
tan θt

=
2 sin θt

sin θi

1 + sin θt
sin θi

cos θt
cos θi

=
4 sin θt cos θi

sin 2θi + sin 2θt
=

2 sin θt cos θi
sin(θi + θt) cos(θi − θt)

(7.4.25)

(here we used sinα− sin β = 2 sin α−β
2

cos α+β
2

and sinα + sin β = 2 sin α+β
2

cos α−β
2

).

Incident Wave Normal to Interface

Consider the case θi = 0. A subtle point is that the k and n are parallel, so there is no

unique plane of incidence. Taking θi small but finite and assuming that the wave is polarized

perpendicular to the plane of incidence, in the limit θi → 0 we find from Eq. (7.4.16)

Er
0

Ei
0

=
1−

√
ε′µ
εµ′

1 +
√

ε′µ
εµ′

=
1− µ

µ′
n′

n

1 + µ
µ′
n′

n

−→ n− n′

n+ n′
if µ = µ′ (7.4.26)

Et
0

Ei
0

=
2

1 +
√

ε′µ
εµ′

=
2

1 + µ
µ′
n′

n

−→ 2

1 + n′/n
if µ = µ′ (7.4.27)

Note, that according to the figure that we used in this case, the positive values of both Ei
0

and Er
0 correspond to positive y-direction.

Now, taking again θi small, but finite and assuming that the wave is polarized parallel to

the plane of incidence, in the limit θi → 0 we find from Eq. (7.4.22)

Er
0

Ei
0

=
1−

√
εµ′

ε′µ

1 +
√

εµ′

ε′µ

=
1− µ′

µ
n
n′

1 + µ′

µ
n
n′

−→ n′ − n
n+ n′

if µ = µ′ ,

i.e., this ratio has an apparently opposite sign. Note, however, that according to the figure

that we used in this case, the positive value of Ei
0 corresponds to the negative x-direction,

while positive value of Er
0 corresponds to the positive x-direction.

For another ratio, we find

Et
0

Ei
0

=
2
√

εµ′

ε′µ

1 +
√

εµ′

ε′µ

=
2

1 +
√

ε′µ
εµ′

,
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the same result as in Eq. (7.4.27).

Thus we see that, if both refractive indices are equal

Er
0 = 0

Et
0 = Er

0

as expected. If the second media is a conductor, n′ −→∞ , then all of the wave is reflected,

with

Er
0 = Ei

0 (7.4.28)

(the sign convention is assumed that was used for the case of polarization in the plane of

incidence).

7.5 Brewster’s Angle and Total Internal Reflection

7.5.1 Brewster’s Angle

In the case of polarization in the plane of incidence, we have

Er
0

Ei
0

=
1− ε

ε′
tan θi
tan θt

1 + ε
ε′

tan θi
tan θt

. (7.5.1)

There is an angle for which no wave is reflected, given by

ε

ε′
tan θi
tan θt

= 1. (7.5.2)

Setting µ = µ′ = 1, we can also use Eq. (7.4.24) that gives

Er
0

Ei
0

=
tan(θi − θt)
tan(θi + θt)

=
sin(θi − θt) cos(θi + θt)

sin(θi + θt) cos(θi − θt)
. (7.5.3)

We find that the ratio Er
0/E

i
0 vanishes if

sin(θi − θt) cos(θi + θt) = 0 . (7.5.4)

One of the solutions of this equation, namely, θi = θt holds only if n′ = n. This corresponds

to situation, when optical properties of two substances are the same, and naturally there is

no reflection on their interface. Another solution is

θi + θt = π/2 , (7.5.5)
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in which case sin θt = cos θi. Substituting this result in Snell’s law

sin θi
sin θt

=
n′

n
, (7.5.6)

we have

tan θi =
n′

n
, (7.5.7)

or

θi = tan−1

(
n′

n

)
. (7.5.8)

This is Brewster’s Angle. If we have a plane wave of mixed polarization incident at this

angle, the reflected radiation only has a polarization component perpendicular to the plane

of incidence. It is a simple way to produce plane-polarized light.

7.5.2 Total Internal Reflection

k

k
k

n

T

r

i

θ

θθ

T

ri

i
0

According to Snell’s law,

sin θt = (n/n′) sin θi .

Thus, if light passes from a medium of higher optical density to one of lower optical density,

the angle of refraction is greater than the angle of incidence.

Hence there is an angle of incidence i0 for which θt = π/2, given by

sin i0 = n′/n . (7.5.9)

From Snell’s law, we have in general

cos θt =
√

1− sin2 θt =

√
1− n2

n′2
sin2 θi

=

√
1−

(
sin θi
sin i0

)2

.
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For θi > i0, cos θt becomes purely imaginary. Thus the refractive wave has a phase factor

eikt·x = ei(ktx sin θt+ktz cos θt)

= eiktx(n/n′) sin θie−ktz
√

(sin θi/ sin i0)2−1.

We see that the refracted wave propagates parallel to the surface, and is exponentially

attenuated with increasing z. The attenuation occurs over only a few wavelengths unless

θi ≈ i0.

Note that the time-averaged energy flux across the interface is

〈S · n〉 =
1

2
Re [n · (Et ×H∗t)] . (7.5.10)

Now Ht = (kt × Et)/µ
′ω, and thus

n · (Et ×H∗t) = n · [Et × (kt × E∗t)] /µ
′ω

= |Et|2n · kt/µ
′ω,

whence

〈S · n〉 =
1

2
Re
[
|Et|2n · kt

]
/µ′ω

=
1

2
Re
[
|Et|2kt cos θt

]
/µ′ω

= 0,

since cos θt is purely imaginary; there is no time-averaged energy flux across the interface.

The principle of total internal reflection has many applications, most notably in fibre-optic

cables. The analysis presented here assumes, of course, that the material is wide compared

to the wave length of light.

7.6 Dispersion

So far, we have been investigating the propagation of waves of a fixed frequency. The wave

number is related by

k2 = µεω2. (7.6.1)

Suppose now we consider a wave having a spread of frequencies. In general, the values of µ

and, in particular, ε are frequency dependent, and thus different frequencies have different

propagation properties. This is called dispersion.
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7.6.1 Simple Model for Dispersion

Consider an electron of mass m and charge −e, bound to a (fixed) nucleus by a harmonic

potential with resonant frequency ω0, and a damping term with damping constant γ. In

the absence of an external electric field, the electron will undergo damped simple-harmonic

motion about an equlibrium.

���
���
���

���
���
���

e -
x

E (t)

Nucleus

We now apply an external electromagnetic field (E,B). Then the force on the electron is

F(t) = −e(E(t) + v ×B(t)). (7.6.2)

Providing the velocity is small compared to that of light, the magnetic force will be negligible;

recall that c|B| ≈ |E|. Thus the equation of motion of the electron is

m

(
d2

dt2
x + γ

d

dt
x + ω2

0x

)
= −eE(t). (7.6.3)

The dipole moment of the system is given by p = −ex. We now assume that the external

field has frequency ω, so that the time dependence is

E = E0e
−iωt. (7.6.4)

Thus the displacement will have the same frequency dependence, and we have an equation

of motion

m(−ω2 − iωγ + ω2
0)x = −eE0, (7.6.5)

yielding a dipole moment

p =
e2

m
(ω2

0 − ω2 − iωγ)−1 E0 . (7.6.6)

We now consider the case of N atoms/unit volume, each having Z electrons of which fj

electrons have resonant frequency ωj. We will take this as a model for a linear medium, in

which the polarization P arises solely from the applied external field. Thus, recalling that

P = ε0χeE (7.6.7)
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and ε = ε0(1 + χe), we find

ε(ω)

ε0
= 1 + χe = 1 +

Ne2

ε0m

∑
j

fj
ω2
j − ω2 − iωγj

. (7.6.8)

with
∑

j fj = Z. We can rewrite this expression as

ε(ω)

ε0
= 1 +

Ne2

ε0m

∑
j

fj
(ω2

j − ω2) + iωγj

(ω2
j − ω2)2 + ω2γ2

j

. (7.6.9)

We have thus seen how even a simple model gives a frequency-dependent permittivity.

7.6.2 Permittivity in Resonance Region

In general, we can assume that the damping factor γ is small. From the form of Eq. (7.6.9),

it is clear that at very low frequencies, the susceptibility is positive and the relative permit-

tivity greater than one. As successive resonant frequencies are passed, more negative terms

contribute and eventually the relative permittivity is less than one.

Particularly interesting is the behavior in the neighborhood of a resonance.

ω

Re

Im

ε

ε

ω j

Here the real part of ε(ω) is peaked around ωj, and furthermore displays anomalous dispersion

in which light of higher frequency is less refracted than light of lower frequency.

The presence of an appreciable imaginary part of ε(ω) near ω = ωj represents absorption;

energy dissipated in the medium. To see how this arises, consider a wave propagating in the

z-direction. We will write the wave number as

k = β + iα/2; amplitude ≈ e−αz/2. (7.6.10)
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Thus α clearly represents absorption of the wave. Setting µ = µ0, and recalling k =
√
µεω,

we have

(β2 − α2/4) + iαβ = (
√
µ0ε0)2ω2ε/ε0 (7.6.11)

which gives

β2 − α2/4 = ω2

c2
Re ε/ε0

αβ = ω2

c2
Im ε/ε0

}
. (7.6.12)

Note that if α� β, we have

α =
Im ε(ω)

Re ε(ω)
β ,

where

β =
ω

c

√
Re ε/ε0 .

7.6.3 Low Frequency behavior and Electrical Conductivity

In a conductor, some of the electrons can move freely. Thus there are some electrons with

resonant frequency ω0 = 0, whose contribution to the permittivity is

ε(ω) = ε̃(ω) + i
Ne2f0

mω(γ0 − iω)
, (7.6.13)

where ε̃ represents the background permittivity coming from all the other modes. We see

from this that ε(ω) is singular as ω −→ 0, and we will now relate this property to electrical

conductivity.

Our starting point is the Maxwell-Ampère law (ME3):

∇×H = J +
∂D

∂t
. (7.6.14)

We will now impose that J and E are related through Ohm’s law

J = σE , (7.6.15)

where σ is the conductivity. If we assume the usual frequency behavior exp(−iωt), and

assume the background permittivity is a constant ε̃(ω) = εb, Eq. (7.6.14) becomes

∇×H = −iω
[
εb + i

σ

ω

]
E. (7.6.16)
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An alternative procedure is to ascribe all properties, including current flow, to the di-

electric properties of the medium. In that case we have

∇×H = −iωD = −iω
[
εb + i

Ne2f0

mω(γ − iω)

]
E. (7.6.17)

Comparing Eqs. (7.6.16) and (7.6.17), we find

i
σ

ω
= i

Ne2f0

mω(γ0 − iω)
, (7.6.18)

i.e.

σ =
Ne2f0

m(γ0 − iω)
. (7.6.19)

Note that we can rewrite this expression as

σ =
σ0

1− iωτ
, (7.6.20)

where

σ0 =
Nf0e

2

mγ0

, (7.6.21)

and τ = γ−1
0 . Essentially, we have

• Nf0 is number of free electrons per unit volume.

• γ0/f0 is damping constant, determined experimentally.

For good conductors γ0/f0 ' 4 × 1013 s−1. If we assume f0 ' 1, then ωτ is small till the

microwave region ω ' 1011 s−1; σ is real.

Note that if ω/γ0 � 1, then σ is purely imaginary, and we have a phase shift between

E and J.
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7.7 High-Frequency behavior and Plasma Frequency

Suppose that ω is much larger than the highest resonance frequency. Then we have

ε

ε0
= 1 +

Ne2

ε0m

∑
j

fj
(ω2

j − ω2) + iωγj

(ω2
j − ω2)2 + ω2γ2

j

ω/ωj�1−→ 1− Ne2

ε0m

∑
j

fj
ω2

ω4

= 1− ω2
P/ω

2 , (7.7.1)

where

ω2
P =

NZe2

ε0m
(7.7.2)

is the plasma frequency , so called because all the electrons essentially behave as if free.

Recalling that

k =
√
µεω|µ=µ0 =

1

c

√
ε

ε0
ω , (7.7.3)

where c is the velocity of light in vacuum, we have

ck =
√
ω2 − ω2

P (7.7.4)

whence

ω2(k) = ω2
P + c2k2. (7.7.5)

Such an expression, describing the relationship between wave number and frequency, is

known as a dispersion relation . Similar expressions occur in many places in physics,

including special relativity and sound propagation.

In a typical dielectric, when ω2 � ω2
P , the dielectric constant is slightly less than, but close

to, unity.

In a true plasma, such as the ionosphere, all the electrons are essentially free, and the

expression Eq. (7.7.1) is valid for a range of frequencies, including ω < ωP . The wave

number k is purely imaginary for frequencies less than the plasma frequency. Thus a wave

incident on a plasma is attenuated in the direction of propagation, with intensity

I ∝ e−2
√
ω2
P−ω2z/c ω→0−→ e−2ωP z/c. (7.7.6)
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7.7.1 Model of Wave Propagation in the Atmosphere

The above plasma model for the ionosphere is modified considerably through the presence of

the earth’s magnetic field. In the model we now construct, we assume propagation parallel

to the earth’s field B0. We assume that there is a force acting on the charges due to a

propagating electric field, but that the only magnetic force is that arising from the earth’s

field; recall once again that c|B| ' |E|.
Thus the equation of motion for an electron of charge −e and mass m is

m
d2x

dt2
= −ev ×B0 − eE. (7.7.7)

Once again, we consider a monochromatic plane wave with time dependence

e−iωt. (7.7.8)

It is convenient to consider the case of circularly polarized waves, for which we introduce the

complex polarization vectors

ε± =
1√
2

(ε1 ± iε2)

ε3 = k̂ (Normal in direction of k).

Thus we have

x = x+ε+ + x−ε− + x3ε3, (7.7.9)

so that the equation of motion becomes

m

[
d2x+

dt2
ε+ +

d2x−
dt2

ε− +
d2x3

dt2
ε3

]
−eB0ε3 ×

[
dx+

dt
ε+ +

dx−
dt

ε− +
dx3

dt
ε3

]
= −e [E+ε+ + E−ε−] e−iωt. (7.7.10)

First, it is easy to see that since ε3 × ε3 = 0, the motion along the Z direction is free:

x3 = x30 + v3t. Since the forces acting in XY plane are periodic, the motion of the charges

in the XY plane will be periodic, too: x+(t) = x+e
−iωt, x−(t) = x−e

−iωt.

Now

ε3 × ε+ =
1√
2

(ε3 × ε1 + iε3 × ε2) =
1√
2

(ε2 − iε1) =

= − i√
2

(ε1 + iε2),
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and

ε3 × ε− =
1√
2

(ε3 × ε1 − iε3 × ε2) =
1√
2

(ε2 + iε1) =

=
i√
2

(ε1 − iε2),

yielding

ε3 × ε+ = −iε+

ε3 × ε− = iε− (7.7.11)

and thus

−ω2m[x+ε+ + x−ε−] + iωeB0[−ix+ε+ + ix−ε−] = −e[E+ε+ + E−ε−]. (7.7.12)

Looking at the individual components, we find

−ω2mx+ + ωeB0x+ = −eE+

−ω2mx− − ωeB0x− = −eE−

which we may write

x± =
e

mω(ω ∓ eB0/m)
E± =

e

mω(ω ∓ ωB)
E±, (7.7.13)

where we have introduced

ωB ≡ eB0/m, (7.7.14)

the frequency of precession of a charged particle in a magnetic field.

Note, that in the absence of the electromagnetic wave, we will have

−ω2x+ + ωωBx+ = 0 ,

ω2x− + ωωBx− = 0 .

For x+, we have a nontrivial solution ω = ωB that results in e−iωBt time dependence of

x+(t). In case of x−, we have a trivial solution x− = 0 only. Thus, x⊥(t) = ε+e
−iωBtx0

+,

which corresponds to a counterclockwise rotation of electron around the z-axis, i.e. around

the magnetic field B0.

Now, recalling that p = −ex, we have a dipole moment of the particle

p± =
−e2

mω(ω ∓ ωB)
E±. (7.7.15)
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Thus, using the expression for the plasma frequency Eq. (7.7.2), the polarization may be

written

P± = −ε0
ω2
P

ω(ω ∓ ωB)
E± (7.7.16)

whence

ε±/ε0 = 1− ω2
P

ω(ω ∓ ωB)
(7.7.17)

−
ε

ω/ω
B

ε

1

+

ε
+

Thus, in this highly simplified model, we see that the permittivity depends on the polariza-

tion of the incident wave. Indeed, for certain ranges of ω we find that the permittivity can

be negative, and hence one or both polarizations no longer propagate.

Note also a resonance-type behavior in the vicinity of ω = ωB that occurs for ε+, i.e. for

EM waves whose circular polarization coincides with the direction of rotation of an electron

in the earth’s magnetic field.
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7.8 Superposition of Waves and Group Velocity

So far we have considered monochromatic waves, but have seen that, if the medium is

dispersive, different frequencies will travel with different velocities. In the section, we will

describe how, for a general plane wave, the rate of energy flow is in general different from the

phase velocity, or velocity of propagation of a particular frequency component. To simplify

the discussion, we will consider the problem in one dimension.

We will write a general wave in terms of its physical components. The dispersive properties

are encompassed in the dispersion relation

ω ≡ ω(k) (7.8.1)

where ω(−k) = ω(k). The general solution is then

u(x, t) =

∫ ∞
−∞

dk

2π
A(k)eikx−iω(k)t, (7.8.2)

where the amplitudes A(k) are given by

A(k) =

∫ ∞
−∞

u(x, 0)e−ikxdx . (7.8.3)

For a monochromatic wave, of wave number k0, we have

u(x, 0) = eik0x (7.8.4)

yielding

A(k) = 2πδ(k − k0). (7.8.5)

In practice we virtually never deal with pure monochromatic plane waves of fixed frequency

k0, but rather with pulses, centered about a frequency k0. In particular, we will consider the

propagation of a Gaussian wave packet, of width ∆x, centered at x = 0. Then

u(x, 0) =

(
1

2π∆x2

)1/4

e−x
2/4∆x2eik0x. (7.8.6)

∆x
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This satisfies ∫
dx |u(x, 0)|2 =

(
1

2π∆x2

)1/2 ∫
dx e−x

2/2∆x2

=

(
1

2π∆x2

)1/2√
π

1/2∆x2
= 1

and

〈x2〉 =

∫
dx |u(x, 0)|2x2 =

(
1

2π∆x2

)1/2 ∫
dxe−x

2/2∆x2x2

=

(
1

2π∆x2

)1/2

(−2)
d

d(1/∆x2)

∫
dx e−x

2/2∆x2 =

(
1

2π∆x2

)1/2

(−2)
d

d(1/∆x2)

√
π

1/2∆x2

= (−2)

(
−1

2

)
1

1/∆x2
= ∆x2 ,

showing that the width is indeed ∆x.

The amplitudes of the various components are given by

A(k) =

∫ ∞
−∞

u(x, 0)e−ikxdx ∼
∫
dx e−x

2/(2∆x)2ei(k0−k)x

∼ e−(k0−k)2/4(1/2∆x)2 ≡ e−(k0−k)2/4∆k2 .

By analogy with the width of the wave packet, we see that the amplitude A(k) is centered

at k = k0, with width

∆k =
1

2∆x
. (7.8.7)

In fact, more generally we have

∆x∆k ≥ 1/2 . (7.8.8)

Thus we have the important observation that a short pulse, even of “fixed” frequency k0,

contains a spread of monochromatic components. This expression, of course, is more familiar

from Heisenberg’s Uncertainty Principle.

7.8.1 Group Velocity

To see how this spread of frequencies effects the propagation of a wave, we consider the simple

case of two monochromatic waves, of the same amplitude and of neighboring frequencies

(k1, ω1) and (k2, ω2), where k1, k2 ∼ k0. Then the resulting “wave packet” propagates as

U(x, t) = A
[
ei(k1x−ω1t) + ei(k2x−ω2t)

]
= Aei[(k1+k2)x/2−(ω1+ω2)t/2]

{
ei[(k1−k2)x/2−(ω1−ω2)t/2] + ei[(k2−k1)x/2−(ω2−ω1)t/2]

}
= 2A cos

[
k1 − k2

2
x− ω1 − ω2

2
t

]
ei[(k1+k2)x/2−(ω1+ω2)t/2]
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We have written the wave as a slowly oscillating amplitude factor with velocity

vg =
ω1 − ω2

k1 − k2

−→ dω

dk

∣∣∣∣
k0

as k2 → k1, (7.8.9)

known as the group velocity, and a rapidly oscillating “phase” with velocity

vp =
ω1 + ω2

k1 + k2

−→ ω

k
as k2 → k1 = k. (7.8.10)

Since the energy density is associated with the amplitude of the wave, we see that, in this

approximation, energy is transmitted with the group velocity, given by Eq. (7.8.9) with k0

the central value of the wave number.

We now recall the relationship between ω and k

ω(k) =
ck

n(k)
, (7.8.11)

where n(k) is the index of refraction, and c is the velocity of light in a vacuum. The phase

velocity can then be written

vp =
ω(k)

k
=

c

n(k)
. (7.8.12)

This can be either less than or greater than the speed of light; for most media at optical

frequencies, n(k) > 1. We can rewrite the group velocity using Eq. (7.8.11), regarding

k = k(ω):

ck(ω) = ωn(ω)

and find

c
dk

dω
= n(ω) + ω

dn

dω

=⇒ vg =
dω

dk

∣∣∣∣
k0

=
c

n(ω) + ωdn/dω
.

Providing dn/dω > 0, we have vg < vp. However, if dn/dω < 0 (anomalous refraction), vg

can be greater than vp.
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7.8.2 Propagation of a Gaussian wave packet

in the dispersive medium

As we discussed, the general solution of the wave equation is

u(x, t) =

∫ ∞
−∞

dk

2π
A(k)eikx−iω(k)t , (7.8.13)

where the amplitudes A(k) can be found from the initial shape u(x, 0) ≡ u0(x) at t = 0:

A(k) =

∫ ∞
−∞

u(x, 0)e−ikxdx . (7.8.14)

If ω(k) is just a linear function of k, i.e. ω = vk, with v being the phase velocity (equal in

this case to the group velocity), then

u(x, t) =

∫ ∞
−∞

dk

2π
A(k)eikx−ivkt =

∫ ∞
−∞

dk

2π
A(k)eik(x−vt) = u0(x− vt) , (7.8.15)

i.e., the wave packet moves as a whole with velocity v. Assume now that at the initial

moment of time t = 0 we have a Gaussian pulse

u(x, 0) =
( 1

πL2

)1/4

exp

{
− x2

2L2
+ ik0x

}
(7.8.16)

normalized by ∫ ∞
∞
|u(x, 0)|2 dx = 1 . (7.8.17)

The parameter L here is related by L =
√

2∆x to the width ∆x of the Gaussian wave packet

introduced earlier. As shown above, in a linear medium the pulse propagates as a whole

with velocity v = c/n ≡ ω0/k0:

u(x, t) =
( 1

πL2

)1/4

exp

{
− (x− vt)2

2L2
+ ik0(x− vt)

}
. (7.8.18)

Suppose at t = 0 we switch on the dispersion so that ω = ω(k) (some non-linear function).

What will happen with the pulse? To this end, we will use the general solution given above

u(x, t) =

∫
dk

2π
A(k) e−iω(k)t+ikx
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with the function A(k) extracted from the initial condition u(x, 0) corresponding to Gaussian

pulse (7.8.18) at t = 0. This gives

A(k) =

∫ ∞
−∞

u(x, 0)e−ikxdx =

∫ ∞
−∞

( 1

πL2

)1/4

exp

{
− x2

2L2
+ ik0x

}
e−ikx dx

=
( 1

πL2

)1/4
∫ ∞
−∞

exp

{
− [x− i(k0 − k)L2]2

2L2
− 1

2
(k − k0)2L2

}
dx

=
( 1

πL2

)1/4√
2πL2︸ ︷︷ ︸

(4πL2)1/4

exp

{
−1

2
(k − k0)2L2

}
. (7.8.19)

A typical behavior of ω(k) is given by Eq. (7.7.5): ω2 = ω2
P + c2k2. For simplicity, we will

consider an approximate model of the behavior of frequency in the vicinity of ω0 in the form

ω(k) = ω0

(
1 +

a2k2

2

)
, (7.8.20)

where ω0 is a constant, so that the frequency ω(k0) corresponding to the center k0 of the

k-space Gaussian wave packet is given by

ω(k0) = ω0

(
1 +

a2k2
0

2

)
.

Substituting these expressions for A(k) and ω(k), we obtain

u(x, t) =
(

4πL2
)1/4

∫
dk

2π
exp

{
−1

2
(k − k0)2L2

}
exp

{
−iω0t

(
1 +

a2k2

2

)
+ ikx

}
.

Writing k = k0 + k′, we get kx = k0x+ k′x and k2 = k2
0 + 2k0k

′ + (k′)2, thus

u(x, t) =
(

4πL2
)1/4

exp

{
−iω0t

(
1 +

a2k2
0

2

)
+ ik0x

}
×
∫
dk

2π
exp

{
−1

2
(k′)2(L2 + iω0a

2t)

}
eik

′(x−ω0a2k0t) . (7.8.21)

Taking the Gaussian integral over k′ gives

u(x, t) =
(4πL2)1/4/

√
2π√

L2 + iω0a2t
e
−iω0t

(
1+

a2k20
2

)
+ik0x

exp

{
− (x− ω0a

2k0t)
2

2L2(1 + iω0
a2t
L2

)} . (7.8.22)

Note that ω0(1 +
a2k20

2
) = ω(k0). The peak of the pulse (7.8.22) is located at x = ω0a

2k0t ⇒
it moves with the group velocity vg = ω0a

2k0 = ∂ωk

∂k

∣∣
k=k0

. Thus, we may write

u(x, t) =
( 1

πL2

)1/4 e−iω(k0)t+ik0x√
1 + ivgt/k0L2

exp

{
− (x− vgt)2

2(L2 + ivgt/k0)

}
. (7.8.23)
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Note also that the phase factor here may be written as eik0(x−vpt), where vp ≡ ω(k0)/k0 is

the phase velocity. Writing the modulating wave as

exp

{
− (x− vgt)2

2(L2 + ivgt/k0)

}
= exp

{
− (x− vgt)2 [L2 − ivgt/k0]

2[L4 + (vgt/k0)2]

}

and taking the absolute value, we see that the wave packet spreads as it moves:

√
2∆x(t) ≡ L(t) =

√
L2 +

(vgt/k0)2

L2
=

√
L2 +

a4ω2
0t

2

L2
.

This is a general feature of non-linear Gaussian wave packets: for the same reason

(ωk =
√

(m2c4/~2) + k2) wave packets corresponding to relativistic particles broaden with

time.

7.9 Causality between E and D

and Kramers-Kronig Relations

When ε(ω) is frequency dependent, there is a non-local temporal relation between D and E.

To exhibit this, we write D and E in terms of their temporal Fourier components

D(x, t) =

∫ ∞
−∞

dω

2π
D̃(x, ω)e−iωt. (7.9.1)

For a linear medium

D̃(x, ω) = ε(ω)Ẽ(x, ω), (7.9.2)

and thus

D(x, t) =

∫ ∞
−∞

dω

2π
ε(ω)Ẽ(x, ω)e−iωt. (7.9.3)

We now use

Ẽ(x, ω) =

∫ ∞
−∞

dt′E(x, t′)e+iωt′ (7.9.4)

to get

D(x, t) =
1

2π

∫ ∞
−∞

dω ε(ω)e−iωt
∫ ∞
−∞

dt′ eiωt
′
E(x, t′). (7.9.5)
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To display the non-locality, we write

ε(ω) = ε0

[(
ε(ω)

ε0
− 1

)
+ 1

]
= ε0[χe(ω) + 1] (7.9.6)

and thus

D(x, t) = ε0

{
E(x, t) +

1

2π

∫ ∞
−∞

dω dt′ eiω(t′−t)χe(ω)E(x, t′)

}
. (7.9.7)

Next step is to write χe(ω) in Fourier representation

χe(ω) =

∫ ∞
−∞

dτ G(τ)eiωτ . (7.9.8)

The inverse transformation is

G(τ) =
1

2π

∫ ∞
−∞

dω χe(ω)e−iωτ . (7.9.9)

As a result, we have

D(x, t) = ε0E(x, t) + ε0
1

2π

∫ ∞
−∞

dτ G(τ)

∫ ∞
−∞

dt′E(x, t′)

∫ ∞
−∞

dω eiω(t′−t)eiωτ︸ ︷︷ ︸
2πδ(t′−t+τ)︸ ︷︷ ︸

2πE(x,t−τ)

. (7.9.10)

Integration over ω gives 2πδ(t′−t+τ). After the next integration over t′ (which sets t′ = t−τ
in E(x, t′)) we get

D(x, t) = ε0

{
E(x, t) +

∫ ∞
−∞

dτ G(τ)E(x, t− τ)

}
. (7.9.11)

We have essentially re-derived here the convolution theorem of Fourier transforms, and have

exhibited the non-local connection between D and E.

To explore the nature of this connection, we consider a simple one-resonance model for χe(ω)

χe(ω) =
ω2
P

ω2
0 − ω2 − iγω

= − ω2
P

(ω + iγ/2 + ν0)(ω + iγ/2− ν0)
, (7.9.12)

where ωP is the plasma frequency and

ν2
0 = ω2

0 − γ2/4 . (7.9.13)

This function has poles in the lower half plane at

ω = −i γ
2
± ν0 . (7.9.14)
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To evaluate G(τ) we use contour integration, noting that there are two cases

1. τ > 0: integral over semicircle at |τ | =∞ vanishes in lower half plane.

2. τ < 0: integral over semicircle at |τ | =∞ vanishes in upper half plane.

Thus G(τ) vanishes for τ < 0. By the residue theorem

G(τ > 0) = −ω
2
P

2π
× (−2πi)×

∑
residues

. . .

= iω2
P

[
e−iτ(−iγ/2+ν0)

2ν0

+
e−iτ(−iγ/2−ν0)

−2ν0

]
= ω2

P e
−γτ/2 sin ν0τ

ν0

, (7.9.15)

and thus

G(τ) = ω2
P e
−γτ/2 sin ν0τ

ν0

θ(τ). (7.9.16)

We can make two observations

• There is an oscillatory frequency ν0 ≈ ω0.

• The damping factor 1/γ is that of the oscillators.

Thus non-locality is confined to a region τ ≈ γ−1.

7.9.1 Causality

Because G(τ) vanishes for τ < 0, D only depends on the values of E at earlier times, i.e.

D(x, t) = ε0

[
E(x, t) +

∫ ∞
0

dτ G(τ)E(x, t− τ)

]
. (7.9.17)
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We can thus write the dielectric constant as

ε(ω)/ε0 = 1 +

∫ ∞
0

dτG(τ)eiωτ . (7.9.18)

Since G(τ) is real, we have

ε(−ω) = ε∗(ω∗). (7.9.19)

Furthermore, if G(τ) is finite ∀τ , ε(ω)/ε0 is analytic in the upper half plane, since integral

is convergent there. We can therefore apply Cauchy’s theorem for any z in the upper half

plane

ε(z)/ε0 − 1 =
1

2πi

∮
dω′

ε(ω′)/ε0 − 1

ω′ − z
. (7.9.20)

If we assume that [ε(ω)/ε0 − 1] vanishes as |ω| → ∞ (in fact, in Jackson it is argued that

[ε(ω)/ε0 − 1] ∼ 1/ω2 for large ω), the contribution from the semi-circle at infinity vanishes,

and we have

ε(z)/ε0 − 1 =
1

2πi

∫ ∞
−∞

dω′
ε(ω′)/ε0 − 1

ω′ − z
. (7.9.21)

We now consider a point just above the ω′-axis, by writing z = ω + iδ. Then

1

ω′ − ω − iδ
= P

(
1

ω′ − ω

)
+ iπδ(ω′ − ω) (7.9.22)

whence

ε(ω)/ε0 − 1 =
1

πi
P

∫ ∞
−∞

dω′
ε(ω′)/ε0 − 1

ω′ − ω
. (7.9.23)
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Thus taking the real and imaginary parts, we find

Re ε(ω)/ε0 = 1 +
1

π
P

∫ ∞
−∞

dω′
Im ε(ω′)/ε0
ω′ − ω

Im ε(ω)/ε0 = − 1

π
P

∫ ∞
−∞

dω′
Re ε(ω′)/ε0 − 1

ω′ − ω
(7.9.24)

These are the Kronig-Kramers relations; they relate absorption (imaginary part of ε) to

dispersion (real part of ε) through analyticity.

In fact, on the real axis, the real part of ε(ω) is an even function of (ω), while its imaginary

part is an odd function of (ω). Indeed, for real ω, the relation ε(−ω) = ε∗(ω∗) converts into

Re ε(−ω) + i Im ε(−ω) = Re ε(ω)− i Im ε(ω) , (7.9.25)

which gives Re ε(−ω) = Re ε(ω) and Im ε(−ω) = −Im ε(−ω). This observation allows one

to write the KK relations in terms of integrals over positive ω′ only

Re ε/ε0 = 1 +
2

π
P

∫ ∞
0

dω′
ω′ Im ε(ω′)/ε0
ω′2 − ω2

Im ε/ε0 = −2ω

π
P

∫ ∞
0

dω′
Re ε(ω′)/ε0 − 1

ω′2 − ω2
. (7.9.26)


