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Chapter 8

Wave Guides and Cavities

In this chapter we will consider propagation of waves in hollow, metal wave guides and

cavities.

• wave guide: ends are open

• cavity : ends are closed

8.1 Boundary Conditions at Surface of Conductor

Recall that at the boundary between two media, 1 and 2, we have

(H2 −H1)× n = K

(B2 −B1) · n = 0

(D2 −D1) · n = σ

(E2 − E1)× n = 0.

Inside a conductor, the electrons are completely free, with infinitely fast response, such that

B = E = 0.

Thus our boundary conditions just below the conducting surface reduce to

H× n = K

B · n = 0

D · n = σ

E× n = 0.

Thus just outside the surface of the conductor, we have that
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244 Chapter 8

• B is tangential to the surface.

• E is normal to the surface.

The case where we do not have a perfect conductor is discussed in detail in Jackson,

chapter 8.1. Note that in these cases we have energy losses associated with the absorption

at the boundary surface.

8.2 Propagation of Monochromatic Wave

We consider the propagation of monochromatic waves in a hollow cylinder, of arbitrary cross

section, which we take to be uniform along, say, the z-direction. We assume a harmonic

time dependence e−iωt, so that Maxwell’s equations become

∇× E = iωB

∇ ·B = 0

∇×B = −iµεωE

∇ · E = 0

Thus, in the usual way, these equations reduce to

(∇2 + µεω2)

{
E

B

}
= 0 (8.2.1)

Because of the cylindrical symmetry in the problem, we expect to find waves travelling in

the positive or negative direction, or standing waves. Therefore we look for solutions of the

form

E(x, t)

B(x, t)

}
=

{
E(x, y)

B(x, y)

}
e±ikz−iωt. (8.2.2)

Note: this does not mean that the propagation vector is in the z direction as such.

We now write

∇2 = ∇2
T +∇2

z (8.2.3)

where

∇2
T =

∂2

∂x2
+

∂2

∂y2

∇2
z =

∂2

∂z2
.
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Then our wave equation (8.2.1) reduces to

[∇2
T + (µεω2 − k2)]E = 0 (8.2.4)

and similarly for B.

We now write E and B in terms of components parallel and transverse to z, i.e. E = Ez+ET

etc., and show that it is only necessary to solve for the longitudinal components Ez and Bz.

We start with two of Maxwell’s equations

∇× E = iωB

∇×B = −iµεωE. (8.2.5)

Writing the first of these in terms of longitudinal and transverse components, we have

(∇T +∇z)× (ET + Ez) = iω(BT + Bz). (8.2.6)

If we now consider the transverse and longitudinal components, we find

∇T × ET = iωBz (8.2.7)

∇T × Ez +∇z × ET = iωBT . (8.2.8)

Taking the ∇z curl of the second of these equations, we find

iω∇z ×BT = ∇z × [∇T × Ez +∇z × ET ]

= ∇T [∇z · Ez]−∇2
zET .

Then, using the z-dependence of E,B, we find

iω∇z ×BT = ∇T [∇z · Ez] + k2ET . (8.2.9)

To proceed further, we use the second equation of (8.2.5), which becomes

∇T ×BT = −iµεωEz (8.2.10)

∇T ×Bz +∇z ×BT = −iµεωET . (8.2.11)

Substituting ∇z ×BT = −iµεωET −∇T ×Bz in Eq. (8.2.9), we find

iω[−iµεωET −∇T ×Bz] = k2ET +∇T [∇z · Ez] . (8.2.12)

Note that Bz = ezBz, and hence ∇T ×Bz = −ez ×∇TBz. Then we have

iω[−iµεωET + ez ×∇TBz] = k2ET +∇T [∇z · Ez] . (8.2.13)
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or

(µεω2 − k2)ET = −iωez ×∇TBz +∇T [∇z · Ez] (8.2.14)

and

ET = (µεω2 − k2)−1[∇T (∇z · Ez)− iωez ×∇TBz] . (8.2.15)

Thus we can see that we have expressed the transverse components ET entirely in terms

of longitudinal components Ez and Bz.

Similarly, writing Eqs.(8.2.10),(8.2.11) as

∇T ×HT = −iεωEz , (8.2.16)

∇T ×Hz +∇z ×HT = −iεωET , (8.2.17)

and comparing these equations with Eqs.(8.2.7), (8.2.8), we obtain

HT = (µεω2 − k2)−1[∇T (∇z ·Hz) + iεωez ×∇TEz] . (8.2.18)

Again, transverse components HT are expressed entirely in terms of longitudinal compo-

nents Ez and Hz.

8.3 Classification of Modes

We have now shown that the propagation of the waves can be described solely by solving

the two-dimensional wave equation

(∇2
T + µεω2 − k2)

{
Ez(x, y)

Bz(x, y)

}
= 0, (8.3.1)

subject to suitable boundary conditions. In the case of perfectly conducting walls S, the

boundary conditions are

n× E|S = 0

n ·B|S = 0 .

It can be shown that these boundary conditions are equivalent to

Ez|S = 0 (8.3.2)

∂Bz

∂n

∣∣∣∣
S

= 0. (8.3.3)
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The first of these conditions is trivial.

To get the second we recall the Maxwell’s equation

∇×B = −iµεωE , (8.3.4)

whose transverse part is (see Eq. (8.2.11) )

∇T ×Bz +∇z ×BT = −iµεωET , (8.3.5)

or using Bz = ezBz,

−ez ×∇TBz + ez ×
∂

∂z
BT = −iµεωET .

Forming its cross-product with ez, we have

∇TBz −
∂

∂z
BT = −iµεω ez × ET . (8.3.6)

Then, taking the component of this equation along n we get

(n · ∇T )Bz −
∂

∂z
(n ·BT ) = −iµεω(ez × ET ) · n (8.3.7)

or, using the cycling property (A×B) ·C = A · (B×C) of the mixed product

∂Bz

∂n
− ∂Bn

∂z
= −iµεω ez · (ET × n) . (8.3.8)

On the conducting wall S we have Bn|S = 0 for all z, hence ∂Bn/∂z|S = 0. Also E×n|S = 0,

and we obtain ∂Bz/∂n|S = 0, i.e. the boundary condition (8.3.3).

In principle, we are simultaneously solving two boundary-value equations subject to each of

the above conditions. However, in general the eigenvalue equation (8.2.4) will have different

eigenvalues for the two different sets of boundary conditions. Hence we cannot satisfy both

simultaneously unless one is trivial. Thus we classify the solutions as

Transverse Magnetic (TM)

Here Bz = 0 everywhere, and Ez = 0 on boundary. The differential equation (8.3.1)a with

the above Dirichlet boundary condition determines Ez in the wave guide. If we know Ez,

the transverse fields can be obtained from Eq. (8.2.15),

ET = (µεω2 − k2)−1[∇T (∇z · Ez)− iωez ×∇TBz]

that gives

ET =
ik

γ2
~∇TEz, (8.3.9)
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and Eq. (8.2.18)

HT = (µεω2 − k2)−1[∇T (∇z ·Hz) + iεωez ×∇TEz] ,

that gives

HT =
iεω

γ2
ez × ~∇TEz . (8.3.10)

We introduced here the notation γ2 = µεω2 − k2.

Transverse Electric (TE)

Ez = 0 everywhere, and ∂Bz/∂n = 0 on boundary. Here we must solve Eq. (8.3.1)b with

Neumann boundary condition. The transverse fields are

ET = − iµω

γ2
ez × ~∇THz, HT =

ik

γ2
~∇THz . (8.3.11)

Finally, we must consider

Transverse Electric Magnetic (TEM)

Here we have Bz = Ez = 0 everywhere, so that the only non-trivial components are those in

the transverse direction. Then Maxwell’s equations reduce to

∇T × ETEM = 0

∇z × ETEM = iωBTEM.

In addition, we have

∇T · ETEM = 0 . (8.3.12)

Combining the first and third of these equations, we find

∇T × (∇T × ETEM) = 0 ⇒ ∇T (∇T · ETEM)︸ ︷︷ ︸
0

−∇2
TETEM = 0 ⇒ ∇2

TETEM = 0,

(8.3.13)

and comparing with the wave equation (8.2.4), we find

k2 = µεω2. (8.3.14)

This is just the infinite-medium value. Similarly, we find

iωBTEM = ikez × ETEM ⇒ BTEM = ±√µε ez × ETEM. (8.3.15)
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Thus we essentially have plane-wave propagation.

We see that ETEM obeys Laplace’s equation. Furthermore, the walls of the wave guide are an

equipotential. Thus the only solution inside a single, hollow perfect conductor is the trivial

one.

TEM modes cannot propagate inside a single conductor

They can, however, propagate inside a coaxial cable.

8.4 Modes of a Waveguide

We begin by discussing TM modes, for which we write

Ez = φ(x, y)e±ikz−iωt. (8.4.1)

Then φ satisfies

(∇2
T + µεω2 − k2)φ = 0, (8.4.2)

subject to φ = 0 on the boundary.

We now introduce

γ2 = µεω2 − k2, (8.4.3)

so that our eigenvalue equation becomes

(∇2
T + γ2)φ = 0. (8.4.4)

In general, the boundary conditions require that γ2 be positive, yielding a discrete set of

eigenvalues {γλ}, with corresponding wave number kλ satisfying µεω2 − k2λ = γ2λ or

k2λ = µεω2 − γ2λ. (8.4.5)

If k2λ > 0, kλ is real, and the propagation is oscillatory. If it is negative, the wave number is

imaginary and the wave will not propagate.

We define the cut-off frequency ωλ by

ωλ =
γλ√
µε

. (8.4.6)

Then we deal with two cases:
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• ω < ωλ: wave cannot propagate

• ω > ωλ: wave can propagate

Finally, it is worth noting that the group velocity of the wave in the wave guide is always

smaller than the speed of light. We first note that we may write

kλ =
√
µε
√
ω2 − ω2

λ. (8.4.7)

We recall that the phase velocity

vp = ω/k

=
1
√
µε

1√
1− ω2

λ/ω
2

=
c√

1− ω2
λ/ω

2

which is always larger than the velocity of light, and diverges as ω → ωλ.

In contrast, the group velocity

vg =

(
dk

dω

)−1
= c
√

1− ω2
λ/ω

2, (8.4.8)

which is always smaller than the infinite-space velocity of light, and vanishes as ω → ωλ.

In this limit the wave no longer propagates. Note that

vpvg = c2. (8.4.9)

8.5 Modes of a Rectangular Waveguide

a

b

For the sake of illustration, we will consider the case of TE modes. In Cartesian coordinates,

we have to solve the eigenvalue equation[
∂2

∂x2
+

∂2

∂y2
+ γ2

]
ψ = 0 (8.5.1)
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subject to

∂ψ(0, y)

∂x
=
∂ψ(a, y)

∂x
= 0,

∂ψ(x, 0)

∂y
=
∂ψ(x, b)

∂y
= 0.

This clearly has eigenfunctions for Hz

ψmn(x, y) = H0 cos
(mπx

a

)
cos
(nπy

b

)
(8.5.2)

with eigenvalues

γ2mn = π2

[
m2

a2
+
n2

b2

]
. (8.5.3)

We denote the modes TEm,n. The lowest non-trivial mode is TE1,0 if a > b, with cut-off

frequency given by

γ210 = π2/a2. (8.5.4)

For this mode, for wave propagating in the positive direction, we have

Hz = H0 cos
(πx
a

)
eizk1,0−iωt. (8.5.5)

We can obtain the transverse components of the field from Eq. (8.3.11)

ET = − iµω

γ2
ez × ~∇THz, HT =

ik

γ2
~∇THz .

that gives

HT = −ika
π
H0 sin

(πx
a

)
eikz−iωtex

ET =
iωaµ

π
H0 sin

(πx
a

)
eikz−iωtey,

with k = k1,0.

In this particular case, magnetic field has non-zero components in z-direction, Hz 6= 0 and

in x-direction, Hx 6= 0, while Hy = 0. Using explicit expressions, it is easy to verify that
~∇ ·H = 0, and in this sense H satisfies the transversality condition. For electric field, we

have only one non-zero component, namely Ey, which is a function of x and z only, i.e.

∂Ey/∂y = 0, and hence ~∇ · E = 0.

The analysis of TM modes proceeds likewise. However, here the lowest propagating mode is

TM1,1, with a higher cut-off frequency. Wave guides are often constructed such that TE1,0

is the only propagating mode. Recalling that

kλ =
√
µε (ω2 − ω2

λ) (8.5.6)

we can show kλ/
√
µεω2 as follows:
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1

TE TE TE
1,0 0,1 1,1

TM
1,1

ω

ω

8.6 Resonant Cavities

A resonant cavity differs from a wave guide in being closed. Thus, rather than having wave

propagation, we have standing waves.

d

As before, we can have both TM and TE fields. However, now the z-dependence is of the

form, for the case of TM modes,

Ez = φ(x, y)[A sin kz +B cos kz] (8.6.1)

Hz = 0 (8.6.2)

Then the transverse part of the wave is

ET =
1

γ2
∇T (∇z · Ez) (8.6.3)

=
k

γ2
∇Tφ(x, y)[A cos kz −B sin kz]. (8.6.4)

Now the boundary condition ET = 0 at z = 0, z = d yields A = 0, k = pπ/d and thus

Ez = φ(x, y) cos
pπz

d
(8.6.5)

ET = − pπ

dγ2
sin

pπz

d
∇Tφ. (8.6.6)
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We can obtain HT similarly, yielding

HT =
iεω

γ2
ez × ~∇TEz =

iεω

γ2
cos

pπz

d
ez ×∇Tφ. (8.6.7)

A corresponding analysis for the TE modes yields

Hz = ψ(x, y)(A sin kz +B cos kz)

so

ET = − iµω

γ2
ez × ~∇THz = −iωµ

γ2
(A sin kz +B cos kz) ez ×∇Tψ .

From the boundary conditions ET |z=0,d = 0 we get

Hz = ψ(x, y) sin
pπz

d

ET = −iωµ
γ2

sin
pπz

d
ez ×∇Tψ

HT =
1

γ2
∇T (∇z ·Hz) =

pπ

dγ2
cos

pπz

d
∇Tψ. (8.6.8)

The function ψ(x, y) now satisfies the wave equation

∇2
Tψ + γ2ψ = 0 (8.6.9)

where

γ2 = µεω2 − p2π2

d2
. (8.6.10)

We can solve this eigenvalue problem as for propagation along a wave guide, but now the

eigenvalues γλ determine not the cut-off frequencies but the allowed frequencies:

ω2
λp =

1

µε

[
γ2λ +

p2π2

d2

]
(8.6.11)
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Example: cylindrical cavity, radius R

x

y

z

R

We work in cylindrical polar coords ψ(s, ϕ). Because of cylindrical symmetry, we seek

separable solutions to the two-dimensional wave equation of the form

ψ(s, ϕ) = ψ(s)e±imϕ (8.6.12)

where m = 0, 1, 2, . . . . Then we have(
∂2

∂s2
+

1

s

∂

∂s
+ γ2 − m2

s2

)
ψ(s) = 0. (8.6.13)

This is just Bessel’s equation (see last semester), with solution

ψ(s, ϕ) = Jm(γmns)e
±imϕ. (8.6.14)

In the case of a TM mode, where ψ(s, ϕ) = 0 at s = R, we have

γmnR = xmn, (8.6.15)

where xmn is the nth root of Jm(x) = 0. Thus the resonant frequencies are given by

ω2
mnp =

1

µε

[
x2mn
R2

+
p2π2

d2

]
(TM mode). (8.6.16)

The solution for TE modes is similar and the resonant frequencies are given by

ω2
mnp =

1

µε

[
x

′2
mn

R2
+
p2π2

d2

]
(TE mode), (8.6.17)

where x′mn is now the nth root of J ′m(x) = 0.

Note that for TM modes we have p = 0, 1, 2, . . . whilst for TE modes we have p = 1, 2, 3, . . . .

However, the smallest x′mn is x′11 = 1.841... while the smallest xmn is x01 = 2.405..., and thus

for sufficiently large d the dominant mode is

TE1,1,1. (8.6.18)
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8.7 Energy Flux along Waveguide

The time-averaged energy flux is given by the real part of the Poynting Vector

S =
1

2
E×H∗. (8.7.1)

Let us evaluate this for TE modes

S =
1

2
E×H∗ = −1

2

(
H∗T × ET +H∗zez × ET

)
. (8.7.2)

Since Hz = ψ(x, y)e−iωt+ikz, using

H∗T = − ik

γ2
~∇TH

∗
z , ET = − iµω

γ2
ez × ~∇THz . (8.7.3)

(see Eq. (8.3.11)) we get

S =
ωkµ

2γ4
∇TH

∗
z × (ez ×∇THz) +

iωµ

2γ2
H∗zez × (ez ×∇THz) =

ωkµ

2γ4
ez|∇Tψ|2 − i

ωµ

2γ2
ψ∗∇Tψ

Taking the real part, we get

Re S =
ωkµ

2γ4
|∇Tψ|2ez. (8.7.4)

This is in the z-direction, and we see that energy propagation is along the waveguide.

Similarly, for the TM wave Ez = φ(x, y)e−iωt+ikz one obtains

Re S =
ωkε

2γ4
|∇Tφ|2ez. (8.7.5)

The total power transmitted by the TE wave is

P = Re

∫
A

S · ez dA =
ωkµ

2γ4

∫
dA (∇Tψ)∗ · (∇Tψ). (8.7.6)

where A is a cross-section through the wave guide. Recalling Green’s identity, we have∫
(ψ∗∇2

Tψ +∇Tψ
∗ · ∇Tψ) dA =

∮
C

ψ∗
∂ψ

∂n
dl. (8.7.7)

Because of the boundary conditions, either ∂ψ
∂n

or φ (for the TM mode) vanish on the surface.

Thus

P = −ωkµ
2γ4

∫
A

ψ∗∇2
Tψ dA

=
ωkµ

2γ4
γ2
∫
A

|ψ|2 dA ,
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using wave equation

(∇2
T + γ2)ψ = 0. (8.7.8)

Thus we have

P =
µ

2
√
µε

(
ω

ωλ

)2(
1− ω2

λ

ω2

)1/2 ∫
A

ψ∗ψ dA, (8.7.9)

where we represented k as ω
√
µε

√
1− ω2

λ

ω2 and γ2 as µεω2
λ.

Similarly, for the TM modes we get

P =
ε

2
√
µε

(
ω

ωλ

)2(
1− ω2

λ

ω2

)1/2 ∫
A

φ∗φ dA, (8.7.10)

From Chapter 7, we have that the field energy per unit length is given by (for TE modes)

〈U〉 =
1

4

∫
[εE · E∗ + µH ·H∗] dA =

1

4

∫
[εET · E∗T + µHT ·H∗T + µHz ·H∗z ] dA

=
µ

4

∫ [
µεω2 + k2

γ4
|∇Tψ|2 + |ψ|2

]
dA =

µ

4γ2
(µεω2 + k2 + γ2)

∫
|ψ|2 dA

where we have used the fact that
∫
|∇Tψ|2 = γ2

∫
|ψ|2 since ∇2

Tψ = −γ2ψ. Finally, we

obtain

〈U〉 =
µ2εω2

2γ2

∫
|ψ|2dA =

µ

2

ω2

ω2
λ

∫
|ψ|2 dA. (8.7.11)

Using Eqs. (8.7.9) and (8.7.11), we find

P/U =
1
√
µε

(
1− ω2

λ

ω2

)1/2

≡ vg (8.7.12)

Thus we see that the energy propagates with the group velocity.

N.B. you should convince yourself that this expression has the correct dimension.

For the TM wave, we get

〈U〉 =
ε

2

ω2

ω2
λ

∫
|φ|2 dA.

yielding the same result (8.7.12) for group velocity.
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8.8 Boundary Conditions at Surface of Good Conduc-

tor

At surface of infinitely good conductor, we have

n ·B = 0

n× E = 0

n ·D = Σ

n×H = K (8.8.1)

where Σ is the surface charge density, and K is the surface current density. These surface

densities reflect the fact that there is no electric or magnetic field inside a conductor. The

fields are nonzero outside a conductor, but quickly vanish inside a thin layer within a perfect

conductor.

conductor

n

ξ
H, E

H  , E
c c

In the case of a conductor of finite conductivity σ, we have

J = σE, (8.8.2)

and the width of the layer is finite. To study the behavior of the fields inside the layer, we

should take

n× (H−Hc) = 0, (8.8.3)

where we use the subscript c to denote fields inside the conductor. (As σ →∞, we recover

our surface current as a volume current over the thin layer close to the boundary).

We obtain the results for finite conductivity by successive approximation. We assume that

initially E is perpendicular, and H parallel, to the surface just outside the conductor. Then

Hc|surface ' H‖, and Maxwell’s equations within the conductor become

∇× Ec + µc
∂Hc

∂t
= 0

∇×Hc = J +
∂Dc

∂t
.
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If we assume harmonic time dependence, these reduce to

Hc = − i

µcω
∇× Ec

∇×Hc = σEc − iωεEc.

Thus if σ is sufficiently large, these reduce to

Hc = − i

µcω
∇× Ec

Ec =
1

σ
∇×Hc.

We now assume all variation to be normal to the surface. (Spatial variation of the fields on

the normal direction is much more rapid than in the parallel direction so we can neglect ∇‖
in comparison to ∇T ). Then we have

∇ = −n
∂

∂ξ
(8.8.4)

and our equations become

Hc =
i

µcω
n× ∂Ec

∂ξ

Ec = − 1

σ
n× ∂Hc

∂ξ
.

We immediately see that n·Hc = 0, consistent with our boundary assumptions. Furthermore,

combining these two equations we obtain

Hc = − i

µcωσ
n×

[
n× ∂2Hc

∂ξ2

]
, (8.8.5)

yielding

∂2

∂ξ2
Hc +

2i

δ2
Hc = 0, (8.8.6)

where

δ ≡
(

2

µcωσ

)1/2

, (8.8.7)

is the skin depth. Thus, combining this with the condition n ·Hc = 0, we find

Hc = H‖e
(i−1)ξ/δ. (8.8.8)
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Thus the magnetic field is tangential and falls off exponentially as we go into the con-

ductor. We can differentiate this, to obtain

Ec =

√
µω

2σ
(1− i)(n×H‖)e

−ξ/δeiξ/δ. (8.8.9)

Thus Ec is also tangential to the surface, but of much smaller magnitude.

We now go back to our boundary condition

n× (E− Ec) = 0. (8.8.10)

Since Ec has a small tangential component, so does E just outside the conductor.

E‖ =

√
µcω

2σ
(1− i)(n×H‖) =

1

σδ
(1− i)(n×H‖).

Thus there is a non-zero component of the Poynting vector into the conductor, and hence a

net flow of energy, given by 〈
dP

da

〉
=

1

2
Re [E×H∗] · (−n)

=
1

2σδ
|H‖|2

=
µcωδ

4
|H‖|2 .

It can be demonstrated that this power is dissipated into heat as ohmic losses in the skin of

the conductor.

Applying this to our wave guide, we see that we have an energy loss/unit length given by

dP

dz
= − 1

2σδ

∮
C

dl |H‖|2 = − 1

2σδ

∮
C

dl |n×H|2

=
1

2σδ

(
ω

ωλ

)2 ∮
C

dl


1

µ2ω2
λ

∣∣∂φ
∂n

∣∣2 (TM)

1
µεω2

λ

(
1− ω2

λ

ω2

)
|n×∇Tψ|2 +

ω2
λ

ω2 |ψ|2 (TE)


