804 Final Exam (40 points). 05/07/08, 2:00 + 5:00 p.m.

Problem 1.
A long cylindrical metal wire of radius a carries a uniform current of density J in the axial
direction. The conductivity of the metal is 0. Calculate the magnitude and the direction of

Poynting vector at the surface of the wire.

Solution

From Ampere’s law
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From Ohm’s law
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= the Poynting vector is
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The sign reflects the fact that the energy is pumped into the wire (to be dissipated like the

ohmic heat).
Problem 2
In a certain gauge the magnetic vector potenial has the form

A(t,7) = —tE

(E is constant) and the scalar electic potential vanishes. Find the gauge transformation
A(t,7) to another gauge where the magnetic vector potential is zero and write down the

corresponding electric potential.

Solution

The gauge transformation has the form

-,

Al(t,7) = A(t,7)+ VA7), &'t 7F) = Bt,7) — QA( t,7)
From the requirement A'(¢,7) = 0 we get
VA(t,7) = tE
Let us choose OZ axis in the E direction so E = Eé3 so the above equation reduces to

0
a—A(t,x,y, 2)=tFE = At,z,y,z) = ztE
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and the corresponding scalar potential takes the form

(t,7) = —%A(t,f) = —:E

which is our usual choice for the potential corresponding to the uniform electric field Eés.

Problem 3
A linearly polarized electromagnetic plane wave is incident at angle 6 on an infinitely
large plane made from a perfect conductor. The electric field is orthogonal to the plane of

incidence. Find charge and current densities induced on the conducting plane.

Solution
Inside the perfect conductor electric and magnetic fields vanish, therefore the boundary

conditions for the fields right above the conductor’s surface are
El=0, E,=—, B, =0, Bxn=uk

Let us choose the X Z plane of incidence. The wave incident on the XY plane from above

has the form (k = ksin0é; — k cos 6é5)

E' _ E‘égeikm sin @—ikz cos 8
1 — 4

The reflected wave has momentum lgr = ksinfeé, + k cos fés:

E _ —E'égeikw sin 0+ikz cos 0
r = i

The opposite sign follows from the boundary condition at the conductor’s surface - see below.

The sum of the incident and reflected waves is
E= — 2i F;60e™* 1% gin k2 cos 6

which satisfies the boundary condition El = (. From the second equation

z=0
o = Eoﬁ : ég =0
2=0
The magnetic field for the incident wave is B = % x E;, = %(sin 0é, — coshéz) x E =

—

Bi — —(61 cos 6 4 é5 sin H)EiezkmmanzkzcosB
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Similarly, for the reflected wave B = k—g X Er = %(sin 0é; + cosfégz) x ET =

—

B, = ~F;(é, cos — é3sin §)ethesindrikzcosfp,
c

and therefore the total magnetic field (above the plane) is

- k I
B = 2= Eetkwsin? [él cos 0 cos(kz cos ) — iégsin @ sin(kz cos f)
c
and therefore
= 1 5 k
K= —DBxeé; = —2— cosOF; cos(kx sin 0)é,
Ko 2=0 HoC

Problem 4. The co-axial wave guide is closed at both ends by metal lids so the space
between two cylinders makes a resonant cavity. Show that this cavity can support a TEM
wave (F, = B, =0) and find:

(a) Allowed frequencies

(b) Electric and magnetic fields in the TEM wave

Solution
The general form of the TEM wave is Erpy = ET($, y)e=F=t where k = £ as for the

plane wave. The function ET(x, y) satisfies the equations
VxEp=0, V-Ep=0

In accordance with the first of the above equations we can describe Er by a scalar potential

—

ET('Ta y) = _VT¢(x7 y)

and from the second equation we obtain

0? 0?
Vio(z,y) = (@ + a—yg) ¢(z,y) =0



which is the Laplace equation for the two-dimensional electrostatics. It is convenient to

solve it in the polar coordinates s, ¢

19 0 1 02

V(. y) = <g$5£ + 2052

)o(s, ) =0

Let us choose the potential of the inner cylinder (of radius a) to be zero and let us denote
the potential of the outer cylinder (of radius b) by V', then the boundary conditions for the
above Laplace equation are ¢(a,p) = 0 and ¢(b, ) = V. By cylindrical symmetry, the

solution of the Laplace equation depends only on s and we easily obtain

0 0¢(s) _ 99(s) _ _
555 s =0 = s 9 =A = ¢(s)=Alns+B

Taking into account the boundary conditions we get

_ . Ins/a - 09 Vs
~ Inb/a = EBrls,e) =

o(s) “Bs ~slnb/a

(cf. the problem of capacitance of the coaxial cable) and therefore

VS ikeiwt
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Etem = —

We have found the solution of the Laplace equation satisfying the boundary conditions at
the surface of the inner and outer cylinders. To satisfy the boundary condition n x Erpy =

é3 X ET =0 at z =0, L we need the standing waves

- Vs )
Erem = e “ntsink,z
slnb/a
where k, = 7 as usual. Finally, we obtain

= Vs mn ™
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BTEM = -V x ETEM = —- vt COS —~Z2

w cslnb/a L

It is easy to see that these fields satisfy boundary conditions n x E=0andn-B=0at all

relevant surfaces. The allowe frequencies are w,, = c.

Problem 5.
An insulated circular ring of radius b lies in the x, y plane centered at the origin. It carries
a linear charge density A = A\gsin ¢ where ¢ is an azimuthal angle. The ring is set spinning

at a constant angular velocity & = wz. Find the power radiated by the ring.



Solution

The (electric) dipole moment of the ring is

2
P = %dl TA(T) = b/ dip b(é1cos ¢+ é3sin @) Agsing = b*TAés
0

Thus, the dipole moment py = 7b?\, is set spinning around the axis orthogonal to the
direction of the dipole:
P(t) = poéq sinwt + pyés coswt
By Larmor formula
pwp? purw A3b?

Ho S
P = -———— p— p—
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Problem 5.
Is it possible for E and B at some point to be parallel in one frame and antiparallel in

some other frame?

Solution
No. The scalar product of E and B is a relativistic invariant (FWF w o= _4F - E) and

therefore it cannot change the sign by going to another frame.



