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804 Final Exam (40 points). 05/07/08, 2:00 ÷ 5:00 p.m.

Problem 1.

A long cylindrical metal wire of radius a carries a uniform current of density J in the axial

direction. The conductivity of the metal is σ. Calculate the magnitude and the direction of

Poynting vector at the surface of the wire.

Solution

From Ampere’s law

~B(s)
s>a
=

µ0I

2πs
φ̂ ⇒ ~B(a) =

µ0I

2πa
φ̂ =

µ0

2
Jaφ̂

From Ohm’s law

~J = σ ~E ⇒ ~E =
1

σ
Jê3

⇒ the Poynting vector is

~S(a) =
1

µ0

~E(a)× ~B(a) =
J2a

2σ
ê3 × φ̂ = − J2a

2σ
ŝ

The sign reflects the fact that the energy is pumped into the wire (to be dissipated like the

ohmic heat).

Problem 2

In a certain gauge the magnetic vector potenial has the form

~A(t, ~r) = −t ~E

( ~E is constant) and the scalar electic potential vanishes. Find the gauge transformation

Λ(t, ~r) to another gauge where the magnetic vector potential is zero and write down the

corresponding electric potential.

Solution

The gauge transformation has the form

~A′(t, ~r) = ~A(t, ~r) + ~∇Λ(t, ~r), Φ′(t, ~r) = Φ(t, ~r)− ∂

∂t
Λ(t, ~r)

From the requirement ~A′(t, ~r) = 0 we get

~∇Λ(t, ~r) = t ~E

Let us choose OZ axis in the ~E direction so ~E = Eê3 so the above equation reduces to

∂

∂z
Λ(t, x, y, z) = tE ⇒ Λ(t, x, y, z) = ztE
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and the corresponding scalar potential takes the form

Φ′(t, ~r) = − ∂

∂t
Λ(t, ~r) = − zE

which is our usual choice for the potential corresponding to the uniform electric field Eê3.

Problem 3

A linearly polarized electromagnetic plane wave is incident at angle θ on an infinitely

large plane made from a perfect conductor. The electric field is orthogonal to the plane of

incidence. Find charge and current densities induced on the conducting plane.

Solution

Inside the perfect conductor electric and magnetic fields vanish, therefore the boundary

conditions for the fields right above the conductor’s surface are

~E‖ = 0, E⊥ =
σ

ε0
, B⊥ = 0, ~B × n̂ = µ0

~K

Let us choose the XZ plane of incidence. The wave incident on the XY plane from above

has the form (~k = k sin θê1 − k cos θê3)

~Ei = Eiê2e
ikx sin θ−ikz cos θ

The reflected wave has momentum ~kr = k sin θê1 + k cos θê3:

~Er = −Eiê2eikx sin θ+ikz cos θ

The opposite sign follows from the boundary condition at the conductor’s surface - see below.

The sum of the incident and reflected waves is

~E = − 2iEiê2e
ikx sin θ sin kz cos θ

which satisfies the boundary condition ~E‖
∣∣∣
z=0

= 0. From the second equation

σ = ε0 ~E · ê3
∣∣∣
z=0

= 0

The magnetic field for the incident wave is ~B = k̂
c
× ~Ei = k

c
(sin θê1 − cos θê3)× ~Ei ⇒

~Bi =
k

c
(ê1 cos θ + ê3 sin θ)Eie

ikx sin θ−ikz cos θ
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Similarly, for the reflected wave ~B = k̂r
c
× ~Er = k

c
(sin θê1 + cos θê3)× ~Er ⇒

~Br =
k

c
Ei(ê1 cos θ − ê3 sin θ)eikx sin θ+ikz cos θê2

and therefore the total magnetic field (above the plane) is

~B = 2
k

c
Eie

ikx sin θ
[
ê1 cos θ cos(kz cos θ)− iê3 sin θ sin(kz cos θ)

]
and therefore

~K = < 1

µ0

~B × ê3
∣∣∣∣
z=0

= −2
k

µ0c
cos θEi cos(kx sin θ)ê2

Problem 4. The co-axial wave guide is closed at both ends by metal lids so the space

between two cylinders makes a resonant cavity. Show that this cavity can support a TEM

wave (Ez = Bz = 0) and find:

(a) Allowed frequencies

(b) Electric and magnetic fields in the TEM wave

L

b

a

Solution

The general form of the TEM wave is ~ETEM = ~ET (x, y)e±ikz−iωt where k = ω
c

as for the

plane wave. The function ~ET (x, y) satisfies the equations

∇× ~ET = 0, ∇ · ~ET = 0

In accordance with the first of the above equations we can describe ET by a scalar potential

~ET (x, y) = −∇Tφ(x, y)

and from the second equation we obtain

∇2
Tφ(x, y) =

( ∂2
∂x2

+
∂2

∂y2

)
φ(x, y) = 0
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which is the Laplace equation for the two-dimensional electrostatics. It is convenient to

solve it in the polar coordinates s, ϕ

∇2
Tφ(x, y) =

(1

s

∂

∂s
s
∂

∂s
+

1

s2
∂2

∂ϕ2

)
φ(s, ϕ) = 0

Let us choose the potential of the inner cylinder (of radius a) to be zero and let us denote

the potential of the outer cylinder (of radius b) by V , then the boundary conditions for the

above Laplace equation are φ(a, ϕ) = 0 and φ(b, ϕ) = V . By cylindrical symmetry, the

solution of the Laplace equation depends only on s and we easily obtain

∂

∂s
s
∂φ(s)

∂s
= 0 ⇒ s

∂φ(s)

∂s
= A ⇒ φ(s) = A ln s+B

Taking into account the boundary conditions we get

φ(s) = V
ln s/a

ln b/a
⇒ ~ET (s, ϕ) = −ŝ∂φ

∂s
= − V ŝ

s ln b/a

(cf. the problem of capacitance of the coaxial cable) and therefore

~ETEM = − V ŝ

s ln b/a
e±ikz−iωt

We have found the solution of the Laplace equation satisfying the boundary conditions at

the surface of the inner and outer cylinders. To satisfy the boundary condition n̂× ~ETEM =

ê3 × ~ET = 0 at z = 0, L we need the standing waves

~ETEM =
V ŝ

s ln b/a
e−iωnt sin knz

where kn = πn
L

as usual. Finally, we obtain

~ETEM =
V ŝ

s ln b/a
e−i

πn
L
ct sin

πn

L
z

~BTEM =
i

ω
~∇× ~ETEM = − i

c

V ϕ̂

s ln b/a
e−i

πn
L
ct cos

πn

L
z

It is easy to see that these fields satisfy boundary conditions n̂× ~E = 0 and n̂ · ~B = 0 at all

relevant surfaces. The allowe frequencies are ωn = πn
L
c.

Problem 5.

An insulated circular ring of radius b lies in the x, y plane centered at the origin. It carries

a linear charge density λ = λ0 sinφ where φ is an azimuthal angle. The ring is set spinning

at a constant angular velocity ~ω = ωẑ. Find the power radiated by the ring.
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Solution

The (electric) dipole moment of the ring is

~p =

∮
dl ~rλ(~r) = b

∫ 2π

0

dϕ b(ê1 cosφ+ ê2 sinφ)λ0 sinϕ = b2πλ0ê2

Thus, the dipole moment p0 = πb2λ0 is set spinning around the axis orthogonal to the

direction of the dipole:

~p(t) = p0ê1 sinωt+ p0ê2 cosωt

By Larmor formula

P =
µ

6πc
|
··
~p |2 =

µω4p20
6πc

=
µπω4λ20b

4

6c

Problem 5.

Is it possible for ~E and ~B at some point to be parallel in one frame and antiparallel in

some other frame?

Solution

No. The scalar product of ~E and ~B is a relativistic invariant (FµνF̃
µν = −4 ~E · ~B) and

therefore it cannot change the sign by going to another frame.


