
Phys. 804 HW 8 Assignment.

Problem

Find power radiated by pure electric dipole ~p rotating in XY plane with
angular velocity ω.

Solution #1

The rotating dipole can be represented by the dipole moment

~p(t) = p[ê1 cos(ωt) + ê2 sin(ωt)] = <p(ê1 + iê2)e
−iωt

The electric and magnetic fields of the oscillating dipole ~p(t) = ~pe−iωt are
obtained in Lect. 12
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The time-averaged Poynting vector is
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since n̂ = r̂ = sin θ(cosφê1 + sinφê2) + cos θê3.
The radiated power is

P = r2
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Solution #2
From symmetry it is clear that radiated power does not depend on time,

so we can use formula
P =

µ0
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at t = 0. Since ~p(~r, t) = p[ê1 cos(ωt) + ê2 sin(ωt)] we get

~̈p(t = 0) = − pω2ê1 ⇒ |~̈p(t = 0)|2 = p2ω4

and the radiated power is
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