804 Midterm (16 points). 02/14/20

Problem 1.

An iron sphere of radius R carries a charge Q and has a uniform magnetization $\vec{M}=M \hat{e}_{3}$. It is initially at rest. Find
(a) Angular momentum stored in the fields
(b) If the sphere is demagnetized by heating (keeping \vec{M} uniform), by use of Faraday's law find the induced electric field, then find the torque induced by \vec{E} on the sphere, and finally the angular momentum imparted to sphere as M goes to zero.

Hint: The magnetic field outside the sphere is equal to the magnetic field of a pure dipole with $\vec{m}=\frac{4}{3} \pi R^{3} \vec{M}$

Solution

(a)

The electric and magnetic fields (at $r>R$) are:

$$
\vec{E}=\frac{Q}{4 \pi \epsilon_{0} r^{2}} \hat{r}, \quad \vec{B}=\frac{\mu_{0}}{4 \pi r^{3}}(3 \hat{r}(\vec{m} \cdot \hat{r})-\vec{m}) \quad \Rightarrow \quad \vec{E} \times \vec{B}=\frac{Q \mu_{0} m}{16 \pi^{2} \epsilon_{0} r^{5}} \hat{e}_{3} \times \vec{r}
$$

where $\vec{m}=\frac{4}{3} \pi R^{3} \vec{M}$.
The angular momentum stored in the fields is

$$
\int_{R}^{\infty} d r r^{2} \int_{0}^{\pi} d \theta \sin \theta \int_{0}^{2 \pi} d \phi \epsilon_{0} \vec{r} \times(\vec{E} \times \vec{B})=\int_{R}^{\infty} d r r^{2} \int_{0}^{\pi} d \theta \sin \theta \int_{0}^{2 \pi} d \phi \frac{\mu_{0} m Q}{16 \pi^{2} r^{4}}\left(\hat{e}_{3}-\left(\hat{e}_{3} \cdot \hat{r}\right) \hat{r}\right)
$$

By symmetry, the angular momentum \vec{L} is collinear to \hat{e}_{3} so

$$
\vec{L}=\hat{e}_{3} \int_{R}^{\infty} d r r^{2} \int_{0}^{\pi} d \theta \int_{0}^{2 \pi} d \phi \frac{\mu_{0} m Q}{16 \pi^{2} r^{4}} \sin ^{3} \theta=\frac{\mu_{0} Q}{6 \pi R} \vec{m}=\frac{2}{9} \mu_{0} Q R^{2} M
$$

(b)

If $\vec{m}=m(t) \hat{e}_{3}$ the induced electric field takes the form

$$
\vec{E}=-\frac{\partial \vec{A}}{\partial t}=-\frac{\partial}{\partial t} \frac{\mu_{0} m(t) \hat{e}_{3} \times \hat{r}}{4 \pi r^{2}}=-\frac{\mu_{0}}{4 \pi r^{2}} \hat{e}_{3} \times \hat{r} \frac{d m}{d t}=-\frac{\mu_{0}}{4 \pi r^{2}} \hat{\phi} \sin \theta \frac{d m}{d t}
$$

The torque for the charge $d q$ on the surface is

$$
d \vec{\tau}=d q \vec{r} \times \vec{E}=d q \frac{\mu_{0}}{4 \pi R} \hat{\theta} \sin \theta \frac{d m}{d t}, \quad \hat{r} \times \hat{\phi}=-\hat{\theta}
$$

Again, from symmetry we know that $\vec{\tau} \| \hat{e}_{3}$ so

$$
d \tau_{3}=-d q \frac{\mu_{0}}{4 \pi R} \sin ^{2} \theta \frac{d m}{d t}
$$

Since the charge is distributed uniformly over the surface of the sphere $d q=\frac{Q}{4 \pi R^{2}} R^{2} \sin \theta d \theta d \phi$ and the total torque is

$$
\tau_{3}=-\int_{0}^{\pi} d \theta \sin \theta \int_{0}^{2 \pi} d \phi \sin ^{2} \theta \frac{\mu_{0} Q}{16 \pi^{2} R} \frac{d m}{d t}=-\frac{\mu_{0} Q}{6 \pi R} \frac{d m}{d t}
$$

The angular momentum imparted to sphere is

$$
\vec{m}=\hat{e}_{3} \int_{0}^{\infty} \tau_{3}(t) d t=-\frac{\mu_{0} Q}{6 \pi R} \hat{e}_{3} \int_{0}^{\infty} \frac{d m}{d t} d t=\frac{\mu_{0} Q}{6 \pi R} m \hat{e}_{3}=\frac{2}{9} \mu_{0} Q R^{2} M \hat{e}_{3}
$$

Problem 2 (6 points)

A circular wire of radius a lies in x, y plane with the center at the origin. It carries current

$$
I(t)=I_{0} \theta(t)=\left\{\begin{array}{cc}
0 & t<0 \\
I_{0} & t \geq 0
\end{array}\right.
$$

Find the magnetic field on the z axis (at $x, y=0$).

Solution:

Generalization of Bio-Savart law for time-dependent currents has the form (formula (6.56) from Jackson or (6.3.23) from Chapter 6 of lecture notes))

$$
\vec{B}(\vec{x}, t)=\frac{\mu_{0}}{4 \pi} \int d^{3} x^{\prime}\left[\frac{\vec{J}\left(\overrightarrow{x^{\prime}}, t_{\mathrm{ret}}\right)}{R^{2}}+\frac{\dot{\vec{J}}\left(\vec{x}^{\prime}, t_{\mathrm{ret}}\right)}{c R}\right] \times \hat{e}_{R}
$$

where $t_{\text {ret }}=t-\frac{R}{c}$ and $R=\left|\vec{x}-\overrightarrow{x^{\prime}}\right|$. Rewriting it for linear currents, one gets

$$
\vec{B}(\vec{x}, t)=\frac{\mu_{0}}{4 \pi} \int\left[\frac{I\left(\overrightarrow{x^{\prime}}, t_{\mathrm{ret}}\right)}{R^{2}}+\frac{\dot{I}\left(\vec{x}^{\prime}, t_{\mathrm{ret}}\right)}{c R}\right] \overrightarrow{d l^{\prime}} \times \hat{e}_{R}
$$

By symmetry, the magnetic field has only z component. Moreover, for a point on z-axis the retarded time is the came for all points on the wire and is equal to $t-\frac{R}{c}=t-\frac{\sqrt{z^{2}+a^{2}}}{c}$. Also, $I(t)=I_{0} \theta(t)$ and $\dot{I}(t)=I_{0} \delta(t)$ so we get

$$
\begin{aligned}
& B_{3}(\vec{x}, t)=\frac{\mu_{0}}{4 \pi} \int\left[\frac{I_{0}}{z^{2}+a^{2}} \theta\left(t-\frac{\sqrt{z^{2}+a^{2}}}{c}\right)+\frac{I_{0}}{c \sqrt{z^{2}+a^{2}}} \delta\left(t-\frac{\sqrt{z^{2}+a^{2}}}{c}\right)\right]\left(\overrightarrow{d l^{\prime}} \times \hat{e}_{R}\right)_{3} \\
& =\frac{\mu_{0} I_{0}}{4 \pi\left(z^{2}+a^{2}\right)} \theta\left(t-\frac{\sqrt{z^{2}+a^{2}}}{c}\right) \int\left(\overrightarrow{d l^{\prime}} \times \hat{e}_{R}\right)_{3}+\frac{\mu_{0} I_{0}}{4 \pi c \sqrt{z^{2}+a^{2}}} \delta\left(t-\frac{\sqrt{z^{2}+a^{2}}}{c}\right) \int\left(\overrightarrow{d l^{\prime}} \times \hat{e}_{R}\right)_{3}
\end{aligned}
$$

From geometry

$$
\left(\overrightarrow{d l^{\prime}} \times \hat{e}_{R}\right)_{3}=d l^{\prime} \frac{a}{\sqrt{a^{2}+z^{2}}} \Rightarrow \int\left(\overrightarrow{l^{\prime}} \times \hat{e}_{R}\right)_{3}=\frac{2 \pi a^{2}}{\sqrt{z^{2}+a^{2}}}
$$

and therefore

$$
B(z, t)=\frac{\mu_{0} I_{0} a^{2} \hat{e}_{3}}{2\left(z^{2}+a^{2}\right)^{3 / 2}} \theta\left(t-\frac{\sqrt{z^{2}+a^{2}}}{c}\right)+\frac{\mu_{0} I_{0} a^{2} \hat{e}_{3}}{2 c\left(z^{2}+a^{2}\right)} \delta\left(t-\frac{\sqrt{z^{2}+a^{2}}}{c}\right)
$$

Note that the first term is equal to the result for constant current I_{0} multiplied by $\theta(t-$ $\frac{\sqrt{z^{2}+a^{2}}}{c}$) (see e.g. Eq. (5.38) from Griffiths textbook). The second part is a burst of radiation coming from turning on the current.

Problem 3.

Find the reflection coefficient for the circularly polarized electromagnetic wave incident on a plane between two linear media at Brewster's angle. (For simplicity, take $\mu^{\prime}=\mu$).

Solution:

The circularly polarized wave have the form

$$
\vec{E}=\frac{1}{\sqrt{2}}\left(\hat{e}_{1}+i \hat{e}_{2}\right) E_{0}^{i} e^{i k\left(z \cos \theta_{i}+x \sin \theta_{i}\right)}
$$

(we've assumed that \vec{k} lies in the $X Z$ plane).
Let us consider the components $E_{0}^{i} \hat{e}_{1}$ (electric field in the plane of incidence) and $i E_{0}^{i} \hat{e}_{2}$ (electric field normal to the plane of incidence) separately.

At $\theta_{i}=\theta_{B}$ we have no reflected wave for the component $E_{0}^{i} \hat{e}_{1}$ (in the plane of incidence). For $i E_{0}^{i} \hat{e}_{2}$ (normal to the plane of incidence) we have

$$
E_{0}^{r}=\left(\frac{i}{\sqrt{2}} E_{0}^{i}\right) \frac{\sin \left(\theta_{T}-\theta_{i}\right)}{\sin \left(\theta_{T}+\theta_{i}\right)}
$$

Since at $\theta_{i}=\theta_{B}$ we have $\sin \theta_{B}=\cos \theta_{T}=n^{\prime} / \sqrt{n^{2}+n^{\prime 2}}$ and $\cos \theta_{B}=\sin \theta_{T}=n / \sqrt{n^{2}+n^{\prime 2}}$, we obtain

$$
E_{0}^{r}=\frac{i}{\sqrt{2}} E_{0}^{i} \frac{\sin \left(\theta_{T}-\theta_{B}\right)}{\sin \left(\theta_{T}+\theta_{B}\right)}=\frac{i}{\sqrt{2}} E_{0}^{i} \frac{n^{2}-n^{\prime 2}}{n^{2}+n^{\prime 2}}
$$

Therefore, the intensity of the reflected wave is proportional to $\frac{1}{2}\left(E_{0}^{i} \frac{n^{2}-n^{\prime 2}}{n^{2}+n^{\prime 2}}\right)^{2}$ and the reflection coefficient is

$$
R=\frac{\left(n^{2}-n^{\prime 2}\right)^{2}}{2\left(n^{2}+n^{\prime 2}\right)^{2}}
$$

