804 Midterm (16 points). 03/30/23, 10:55 am. - 12:25 p.m.
Problem 1.

A TM wave is propagating in the semi-infinite wave guide with perfectly conducting plates
located at x = 0,y > 0, and z = a,y > 0, and a > = > 0,y = 0 (see the cross section below).
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Find the electric and magnetic fields between the plates and surface charges and currents

induced on the side a > x > 0,y =0

Solution
The solution for E, satisfying boundary condition F, =0and F, =0is
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Boundary conditions on the a > x > 0,y = 0 surface are
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Problem 2.

A particle of charge ¢ moves in a circle of radius a at a constant angular velocity w.
Assume that the circle lies in the z,y plane, centered at the origin and at time ¢ = 0, the
charge is at (a,0) on the positive = axis. For points on the z axis, find
(a) the Lienard-Wiechert potentials and
(b) the time-averaged electric field.

Solution



Part (a).
The Lienard-Wiechert potentials are given by
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In our case |7 — w(t)| = V22 + a? and 0(t) - (7" — @(t)) = 0 for any ¢ so we get
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vV 22 + a? is the retarded time.
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Part (b).
By symmetry, the time-averaged electric field is collinear to the z axis so it is sufficient to

find E,(z,0,0)
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Problem 3.

Consider two identical rods of length [ with charges +q and —¢q pasted on their ends. The
centers of the rods are located on the z-axis which is perpendicular to the length of the rods
(see below). The two rods are separated by a distance d > [ , with the top and bottom rods
located at heights z = :I:% respectively. The rods rotate around the z axis with the same
frequency w but are out of phase, and at time ¢ = 0 the bottom rod has an azimuthal angle

of ¢y while the top rod has ¢ = 0.
(a) In the limit “d > 1 and ¥l < 1, find (real) electric and magnetic fields at a height

__ 3d

z = on the z axis.

(b) Find the time-averaged total power radiated by this system.
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Part (a).
The two rotating dipoles can be represented by
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5 1s the sum of the radiation fields of two dipoles

The electric field is at the point z =
separated from the observation point by d and 2d respectively. We get
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because n = é3 is orthogonal to p;. So, because of the retardation, the phases of the two
dipoles are e~ w(t=%) and e—w(t—2+d0)

Taking the real part, we obtain
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so the total electric field is
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Part (b).

For the purpose of calculation of total radiated power, the two dipoles can be replaced by

F=RtP = molertiea)(1+ e ™)e™ = 2pgcos (6, i) )

Using the result for power radiated by rotating dipole from HWS, the time-averaged power
radiated by this rotating dipole is
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