Problem 1.

A TM wave is propagating in the semi-infinite wave guide with perfectly conducting plates located at $x=0, y>0$, and $x=a, y>0$, and $a>x>0, y=0$ (see the cross section below).

Find the electric and magnetic fields between the plates and surface charges and currents induced on the side $a>x>0, y=0$

Solution

The solution for E_{z} satisfying boundary condition $\left.E_{z}\right|_{x=0, a}=0$ and $\left.E_{z}\right|_{y=0}=0$ is

$$
E_{z}=\sin \frac{\pi n x}{a} \sin k^{\prime} y e^{i k z-i \omega t}
$$

where $\mu \epsilon \omega^{2}=\gamma^{2}+k^{2}$ and $\gamma^{2}=\frac{\pi^{2} n^{2}}{a^{2}}+k^{\prime 2}$. The transverse fields are

$$
\begin{aligned}
\vec{E}_{T} & =\frac{i k}{\gamma^{2}} \vec{\nabla}_{T} E_{z}=\frac{i k}{\gamma^{2}}\left(\frac{\pi n}{a} \cos \frac{\pi n x}{a} \sin k^{\prime} y \hat{e}_{1}+k^{\prime} \sin \frac{\pi n x}{a} \cos k^{\prime} y \hat{e}_{2}\right) e^{i k z-i \omega t} \\
\vec{H}_{T} & =\frac{i \omega \epsilon}{\gamma^{2}} \hat{e}_{3} \times \vec{\nabla}_{T} E_{z}=-\frac{\omega k}{\gamma^{4}}\left(\frac{\pi n}{a} \cos \frac{\pi n x}{a} \sin k^{\prime} y \hat{e}_{1}+k^{\prime} \sin \frac{\pi n x}{a} \sin k^{\prime} y \hat{e}_{2}\right) e^{i k z-i \omega t}
\end{aligned}
$$

Boundary conditions on the $a>x>0, y=0$ surface are

$$
\begin{aligned}
\sigma & =\Re \epsilon_{0} E_{2}(x, 0, z)=\frac{k k^{\prime}}{\gamma^{2}} \sin \frac{\pi n x}{a} \sin (\omega t-k z) \\
\vec{K} & =\Re \vec{H} \times \hat{e}_{2}=-\frac{\omega k}{\gamma^{4}} \frac{\pi n}{a} \cos \frac{\pi n x}{a} \sin k^{\prime} y \hat{e}_{3}
\end{aligned}
$$

Problem 2.

A particle of charge q moves in a circle of radius a at a constant angular velocity ω. Assume that the circle lies in the x, y plane, centered at the origin and at time $t=0$, the charge is at $(a, 0)$ on the positive x axis. For points on the z axis, find
(a) the Lienard-Wiechert potentials and
(b) the time-averaged electric field.

Solution

Part (a).
The Lienard-Wiechert potentials are given by

$$
\begin{aligned}
\phi(\vec{r}, t) & =\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\left|\vec{r}-\vec{w}\left(t_{r}\right)\right|-\frac{1}{c} \vec{v}\left(t_{r}\right) \cdot\left(\vec{r}-\vec{w}\left(t_{r}\right)\right)} \\
\vec{A}(\vec{r}, t) & =\frac{\vec{v}\left(t_{r}\right)}{c^{2}} \phi(\vec{r}, t)
\end{aligned}
$$

In our case $|\vec{r}-\vec{w}(t)|=\sqrt{z^{2}+a^{2}}$ and $\vec{v}(t) \cdot(\vec{r}-\vec{w}(t))=0$ for any t so we get

$$
\begin{aligned}
& \phi(\vec{r}, t)=\frac{q}{4 \pi \epsilon_{0} \sqrt{z^{2}+a^{2}}} \\
& \vec{A}(\vec{r}, t)=\frac{\vec{v}\left(t_{r}\right)}{c^{2}} \phi(\vec{r}, t)=\frac{\mu_{0} q}{4 \pi \sqrt{z^{2}+a^{2}}}\left[-\sin \left(t-t_{r}\right) \hat{e}_{1}+\cos \left(t-t_{r}\right) \hat{e}_{2}\right]
\end{aligned}
$$

where $t_{r}=\frac{1}{c} \sqrt{z^{2}+a^{2}}$ is the retarded time.
Part (b).
By symmetry, the time-averaged electric field is collinear to the z axis so it is sufficient to find $E_{z}(z, 0,0)$

$$
\left\langle E_{z}(z, 0,0)\right\rangle=-\left\langle\frac{\partial}{\partial z} \phi(z, 0,0)\right\rangle-\left\langle\frac{\partial A_{z}}{\partial t}\right\rangle=-\frac{\partial}{\partial z} \phi(z, 0,0)=\frac{q z}{4 \pi \epsilon_{0}\left(z^{2}+a^{2}\right)^{3 / 2}}
$$

so

$$
\langle\vec{E}(z, 0,0)\rangle=\frac{q z}{4 \pi \epsilon_{0}\left(z^{2}+a^{2}\right)^{3 / 2}} \hat{e}_{3}
$$

Problem 3.

Consider two identical rods of length l with charges $+q$ and $-q$ pasted on their ends. The centers of the rods are located on the z-axis which is perpendicular to the length of the rods (see below). The two rods are separated by a distance $d \gg l$, with the top and bottom rods located at heights $z= \pm \frac{d}{2}$ respectively. The rods rotate around the z axis with the same frequency ω but are out of phase, and at time $t=0$ the bottom rod has an azimuthal angle of ϕ_{0} while the top rod has $\phi=0$.
(a) In the limit $\frac{\omega}{c} d \gg 1$ and $\frac{\omega}{c} l \ll 1$, find (real) electric and magnetic fields at a height $z=\frac{3 d}{2}$ on the z axis.
(b) Find the time-averaged total power radiated by this system.

Solution

Part (a).
The two rotating dipoles can be represented by

$$
\begin{aligned}
\vec{p}_{1} & =p_{0}\left(\hat{e}_{1}+i \hat{e}_{2}\right) e^{-i \omega t} \\
\vec{p}_{2} & =p_{0}\left(\hat{e}_{1}+i \hat{e}_{2}\right) e^{-i \omega t-i \phi_{0}}
\end{aligned}
$$

The electric field is at the point $z=\frac{3 d}{2}$ is the sum of the radiation fields of two dipoles separated from the observation point by d and $2 d$ respectively. We get

$$
\begin{aligned}
\vec{E}_{1} & =-\frac{\mu_{0}}{4 \pi} \omega^{2} \hat{n} \times\left(\hat{n} \times \vec{p}_{1}\right) \frac{e^{i k d}}{d} e^{-i \omega t}=\frac{\mu_{0}}{4 \pi} \omega^{2} \vec{p}_{1} \frac{e^{i k d}}{d} e^{-i \omega t}=\frac{\mu_{0}}{4 \pi} \omega^{2} p_{0}\left(\hat{e}_{1}+i \hat{e}_{2}\right) \frac{e^{i k d}}{d} e^{-i \omega t} \\
\vec{E}_{2} & =-\frac{\mu_{0}}{4 \pi} \omega^{2} \hat{n} \times\left(\hat{n} \times \overrightarrow{p_{2}}\right) \frac{e^{2 i k d}}{2 d} e^{-i \omega t}=\frac{\mu_{0}}{4 \pi} \omega^{2} \vec{p}_{2} \frac{e^{2 i k d}}{2 d} e^{-i \omega t}=\frac{\mu_{0}}{4 \pi} \omega^{2} p_{0}\left(\hat{e}_{1}+i \hat{e}_{2}\right) \frac{e^{2 i k d}}{2 d} e^{-i \omega t-i \phi_{0}}
\end{aligned}
$$

because $\hat{n}=\hat{e}_{3}$ is orthogonal to \vec{p}_{i}. So, because of the retardation, the phases of the two dipoles are $e^{-i \omega\left(t-\frac{d}{c}\right)}$ and $e^{-i \omega\left(t-\frac{2 d}{c}+\phi_{0}\right)}$.

Taking the real part, we obtain

$$
\begin{aligned}
& \vec{E}_{1}=\Re \frac{\mu_{0}}{4 \pi} \omega^{2} p_{0}\left(\hat{e}_{1}+i \hat{e}_{2}\right) \frac{e^{i k d}}{d} e^{-i \omega t}=\frac{\mu_{0} \omega^{2}}{4 \pi d}\left[\hat{e}_{1} \cos \omega\left(t-\frac{d}{c}\right)+\hat{e}_{2} \sin \omega\left(t-\frac{d}{c}\right)\right] \\
& \vec{E}_{2}=\Re \frac{\mu_{0}}{4 \pi} \omega^{2} p_{0}\left(\hat{e}_{1}+i \hat{e}_{2}\right) \frac{e^{2 i k d}}{2 d} e^{-i \omega t-i \phi_{0}}=\frac{\mu_{0} \omega^{2}}{8 \pi d}\left[\hat{e}_{1} \cos \omega\left(t-\frac{2 d}{c}+\phi_{0}\right)+\hat{e}_{2} \sin \omega\left(t-\frac{2 d}{c}+\phi_{0}\right)\right]
\end{aligned}
$$

so the total electric field is
$\vec{E}\left(0,0, \frac{3 d}{2}\right)=\frac{\mu_{0} \omega^{2}}{4 \pi d}\left\{\hat{e}_{1}\left[\cos \omega\left(t-\frac{d}{c}\right)+\frac{1}{2} \cos \omega\left(t-\frac{2 d}{c}+\phi_{0}\right)\right]+\hat{e}_{2}\left[\sin \omega\left(t-\frac{d}{c}\right)+\frac{1}{2} \sin \omega\left(t-\frac{2 d}{c}+\phi_{0}\right)\right]\right\}$
and the magnetic field is

$$
\begin{aligned}
& \vec{B}\left(0,0, \frac{3 d}{2}\right)=\frac{\hat{e_{3}}}{c} \times \vec{E}\left(0,0, \frac{3 d}{2}\right) \\
& =\frac{\mu_{0} \omega^{2}}{4 \pi d c}\left\{\hat{e}_{2}\left[\cos \omega\left(t-\frac{d}{c}\right)+\frac{1}{2} \cos \omega\left(t-\frac{2 d}{c}+\phi_{0}\right)\right]-\hat{e}_{1}\left[\sin \omega\left(t-\frac{d}{c}\right)+\frac{1}{2} \sin \omega\left(t-\frac{2 d}{c}+\phi_{0}\right)\right]\right\}
\end{aligned}
$$

Part (b).
For the purpose of calculation of total radiated power, the two dipoles can be replaced by

$$
\vec{p}=\vec{p}_{1}+\vec{p}_{2}=p_{0}\left(\hat{e}_{1}+i \hat{e}_{2}\right)\left(1+e^{-i \phi_{0}}\right) e^{-i \omega t}=2 p_{0} \cos \frac{\phi_{0}}{2}\left(\hat{e}_{1}+i \hat{e}_{2}\right) e^{-i \omega\left(t-\frac{\phi_{0}}{2}\right)}
$$

Using the result for power radiated by rotating dipole from HW8, the time-averaged power radiated by this rotating dipole is

$$
P=\frac{\mu_{0} \omega^{4}}{6 \pi c} 4 p_{0}^{2} \cos ^{2} \frac{\phi_{0}}{2}=\frac{\mu_{0} \omega^{4}}{3 \pi c} p_{0}^{2}\left(1+\cos \phi_{0}\right)
$$

