Phys. 807 — Statistical Mechanics

HW3 due Tue Sept. 27 at 4 p.m. in my mailbox.

Problem 1:

Show that the relations

$$p = \alpha \sqrt{2p'} \cos q'$$
; $q = \frac{1}{\alpha} \sqrt{2p'} \sin q'$

represent a canonical transformation $(p,q) \leftrightarrow (p',q')$. Expressing the hamiltonian $H = p^2/2m + m\omega^2q^2/2$ as a function of p' and q', show that it can be made independent of q' by suitable choice of α , and use this form of the hamiltonian to determine its mean value E at the temperature T according to classical statistical mechanics.

Problem 2:

For an ideal gas of particles with rest mass m_0 and kinetic energy $c\sqrt{p^2+(m_0c)^2}-m_0c^2$ determine the energy ϵ and the specific heat c_v per mole

- a) For $\delta \equiv k_B T/m_0 c^2 \ll 1$, including terms linear in δ b) For $\gamma \equiv m_0 c^2/k_B T \ll 1$, including linear and quadratic terms in γ .

Problem 3:

What is the probability density and specific heat of a mole of an ideal gas at temperature T contained in a volume V if each molecule is subject to the same constant force in the x-direction?