
Phys. 807 — Statistical Mechanics

HW3 Solution

Problem 1:
Show that the relations

p = α
√
2p′ cos q′ ; q =

1

α

√
2p′ sin q′

represent a canonical transformation (p, q) ↔ (p′, q′). Expressing the hamiltonian H =

p2/2m +mω2q2/2 as a function of p′ and q′, show that it can be made independent of q′

by suitable choice of α, and use this form of the hamiltonian to determine its mean value
E at the temperature T according to classical statistical mechanics.

Solution

The inverse formulas are

p′ =
1

2

( p2
α2

+ α2q2
)
, cos q′ =

p√
p2 + α4q2

, sin q′ =
α2q√

p2 + α4q2

and therefore

ṗ′ =
1

2

( p2
α2

+ α2q2
)

=
pṗ

α2
+ α2qq̇ =

pqα2

m

(
1− m2ω2

α4

)
q̇′ = − ṗ

α2q
+

p2ṗ+ α4pqq̇

α2q(p2 + α4q2)
=

α2(p2 +m2ω2q2)

m(p2 + α4q2)

The Hamiltonian in new variables is

H ′ =
α2

m
p′
(
cos2 q′ +

m2ω2

α4
sin2 q′

)
so

∂H ′

∂p′
=

α2

m

(
cos2 q′ +

m2ω2

α4
sin2 q′

)
=

α2

m

p2 +m2ω2q2

p2 + α4q2

∂H ′

∂q′
= 2

α2

m

(m2ω2

α4
− 1
)
p′ sin q′ cos q′ = − α2

m

(
1− m2ω2

α4

)
qp

We see that
∂H ′

∂p′
= q̇′ and

∂H ′

∂q′
= − ṗ′

so the transformation is canonical.
If we now take α2 = mω

H ′ = ωp′

The mean energy is

E = − ∂ lnZ
∂β
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where

Z =
1

2π~

∫ 2π

0
dq′
∫ ∞
0
dp′ e−βωp

′
=

1

~ωβ
so we get

E =
∂ lnβ

∂β
=

1

β
= kBT

Problem 2

For an ideal gas of particles with rest mass m0 and kinetic energy
c
√
p2 + (m0c)2 −m0c

2 determine the energy ε and the specific heat cv per mole
a) For δ ≡ kBT/m0c

2 � 1, including terms linear in δ
b) For γ ≡ m0c

2/kBT � 1, including linear and quadratic terms in γ.

Solution

The partition function for 1 molecule is

z =

∫
d3pd3x

(2π~)3
e
−βm0c2

(√
1+ p2

m2
0c

2−1
)

=
4πV

(2π~)3

∫ ∞
0
dp p2e

−βm0c2
(√

1+ p2

m2
0c

2−1
)

Part (a)
In the first δ = kBT

m0c2
� 1 case we get the one-molecule statistical sum in the form

z =
4πV

(2π~)3

∫ ∞
0
dp p2e

− 1
δ

(√
1+ p2

m2
0c

2−1
)
' 4πV

(2π~)3

∫ ∞
0
dp p2e

− p2

2m2
0c

2δ

(
1 +

p4

8m4
0c

4δ

)
=

π3/2V (2δ)3/2m3
0c

3

(2π~)3
(
1 +

15

8
δ
)

=
V (2m0π)

3/2

(2π~)3β3/2
(
1 +

15

8m0c2β

)
For an ideal gas of such molecules

Z =
1

N !

(V (2m0π)
3/2

(2π~)3β3/2
(
1 +

15

8m0c2β

))N
so

E = − ∂ lnZ
∂β

=
3N

2β
−N ∂

∂β
ln
(
1+

15

8m0c2β

)
' 3N

2β

(
1− 5

4m0c2β

)
=

3N

2
kBT

(
1− 5

4
δ
)

and the specific heat is

cV =
3

2
R
(
1− 5

4
δ
)

Part (b)
In the second γ = m0c2

kBT
� 1 case we get

z =
4πV

(2π~)3

∫ ∞
0
dp p2e

−γ
(√

1+ p2

m2
0c

2−1
)
' 4πV

(2π~)3

∫ ∞
0
dp p2e

−γ
(

p
m0c
−1+m0c

2p

)
=

8πV m3
0c

3

(2π~)3γ3
eγ
(
1− γ2

4

)
=

8πV

(2π~)3c2β3
em0c2β

(
1− m2

0c
4β2

4

)
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For the ideal gas of N molecules

Z =
1

N !

( 8πV

(2π~)3c2β3
em0c2β

(
1− m2

0c
4β2

4

))N
so

E = − ∂ lnZ
∂β

=
3N

β
−Nm0c

2 −N ∂

∂β
ln
(
1− m2

0c
4β2

4

)
' 3N

β
−Nm0c

2 +
N

2
m2

0c
4β = 3NkBT

(
1− γ

3
+
γ2

6

)
and the specific heat is

cV = 3RT
(
1− γ

3
+
γ2

6

)
Problem 3

What is the probability density and specific heat of a mole of an ideal gas at temperature
T contained in a volume V if each molecule is subject to the same constant force in the
x-direction?

Solution

The general formula for the probability density is given by Eq. (4.1) from the lecture
notes

ρ(qi, pi) =
1

Z
e−βH(qi,pi) , Z =

∫ n∏
i=1

dqi dpi e
−βH(qi,pi) ,

The Hamiltonian for a particle subject to force in x direction is

H =
p2

2m
+ κx

where κ is the corresponding “Hooks law” coefficient F = κx. We get

ρ(q, p) =
1

Z
e−β(

p2

2m
+κx)

where β = 1
kBT

. For N particles

ρ(q, p) =
1

Z
e−β

∑
(
p2i
2m

+κxi)

To get the partition function we need to integrate density over the phase space. The
integration yields

Zone−particle =

∫
dpdq

2π~
e−β(

p2

2m
+κq) =

(2πm
β

)3/2∫
dxdydz e−βκx

Let us assume that the mole of an ideal gas occupies cubic volume V = L3 with the
origin (0, 0, 0) being the corner of the cube, then∫

V
dq e−βκq = L2 1

κβ

(
1− e−βκL

)
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and

Zone−particle =

∫
dpdq

2π~
e−β(

p2

2m
+κq) =

(2πm
β

)3/2
L2 1

κβ

(
1−e−βκL

)
=
(2πm

β

)3/2
V

1

κβL

(
1−e−βκL

)
For N particles we get

Z =
(2πm

β

)3N/2
V N
(1− e−βκL

κβL

)N
The energy is given by Eq. (4.52) from the lecture notes so

E = − ∂

∂β
lnZ(β) =

3N

2β
−N ∂

∂β
ln
(1− e−βκL

β

)
=

5N

2β
−N κLe−βκL

1− e−βκL

If we assume that κ is not negligible (and in microscopic terms L is very large) we can
neglect the second term so

E =
5N

2β
=

5N

2
kBT

and the specific heat is

CV =
(∂E
∂T

)
V

=
5

2
R
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