Phys. 807 — Statistical Mechanics

HW3 Solution

Problem 1:
Show that the relations
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represent a canonical transformation (p,q) <> (p,¢'). Expressing the hamiltonian H =
p?/2m + mw?q?/2 as a function of p’ and ¢/, show that it can be made independent of ¢’
by suitable choice of «, and use this form of the hamiltonian to determine its mean value
F at the temperature T' according to classical statistical mechanics.

Solution

The inverse formulas are
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The Hamiltonian in new variables is
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so the transformation is canonical.
If we now take a? = mw
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olnZ
g = 20
o8



where

=z 1 27rdq//oodp/ 6—5Wp/ _ 1
27Th 0 0 hLL)/B
so we get
olnp 1
o8~ B "
Problem 2

For an ideal gas of particles with rest mass mg and kinetic energy

c\/p? + (moc)? — moc? determine the energy e and the specific heat ¢, per mole
a) For § = kpT/moyc? < 1, including terms linear in §
b) For v = moc?/kgT < 1, including linear and quadratic terms in 7.

Solution

The partition function for 1 molecule is
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Part (a)

In the first § = iﬁg; <& 1 case we get the one-molecule statistical sum in the form
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For an ideal gas of such molecules

s 1<V(2m07r)3/2( 15 ))N
~ N!'\ (2nh)333/2 8moc? 3
SO
OlnZ 3N 0 15 3N 5 3N 5
E=- o %_Nﬁln(l—i_&no@ﬁ) o %( _4m002/8) a 7kBT(1_16)
and the specific heat is
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Part (b)
In the second v = T,?}ggf < 1 case we get
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For the ideal gas of N molecules
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and the specific heat is
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Problem 3

What is the probability density and specific heat of a mole of an ideal gas at temperature
T contained in a volume V if each molecule is subject to the same constant force in the
x-direction?

Solution

The general formula for the probability density is given by Eq. (4.1) from the lecture

notes "
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The Hamiltonian for a particle subject to force in x direction is
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where « is the corresponding “Hooks law” coefficient F' = kx. We get
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To get the partition function we need to integrate density over the phase space. The
integration yields
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Let us assume that the mole of an ideal gas occupies cubic volume V = L3 with the

origin (0,0,0) being the corner of the cube, then
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and
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For N particles we get
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The energy is given by Eq. (4.52) from the lecture notes so
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If we assume that x is not negligible (and in microscopic terms L is very large) we can
neglect the second term so

and the specific heat is
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