
Phys. 807 — Statistical Mechanics

HW8

Problem 1.
In the neighborhood of z = 1 the following expansion may be

obtained

g5/2(z) = 2.363ν3/2 + 1.342− 2.612ν − 0.730ν2 + . . . (1)

where ν = − ln z. From this, the corresponding expansions for
g3/2, g1/2 and g−1/2 may be obtained by the recursion formula
gn−1 = −∂gn/∂ν. Using this expansion show that for the ideal
Bose gas the discontinuity of ∂CV /∂T at T = Tc is given by(
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and find constant c (numerically).

Solution
We start from Eq. (10.57) from the lecture notes rewritten

as
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where we used Eq. (10.34): v
λ3 = g3/2(α

∗).
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where we used α ∂
∂αgn(α) = gn−1(α).

Next, dα
dT is known from Eq. (10.55) from the lecture notes
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so we get(
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Since g3/2(1) = 2.612 and g−1/2(1) = ∞ the first term vanishes
as T → Tc. To estimate the second term, we need the expansion
of g−1/2 and g1/2 near α∗ = 1 (≡ ν → 0) which can be obtained
from Eq. (1):
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and therefore

c = − 3(
2.612

2.363
)
2 ' − 3.665

Problem 2.
Show that the equation of state of the ideal Bose gas phase can

be written in the form of a virial expansion, i.e.,
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and find constants c1 and c2.

Solution
The equation of state of an ideal Bose gas is given by Eq.

(10.39) from the lecture notes (at T > Tc)
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On the other hand
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In order to get the equation of state in the form of virial expan-
sion we must invert Eq. (4)
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and substitute it into Eq. (5). We get
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