
1804 Midterm (20 points).

Problem 1.

Consider a classical ideal gas of molecules that have an electric dipole moment d. Let

there be N such molecules in a volume V in a uniform electric field ~E and let the temperature

of the gas be T . Neglect rotational and vibrational modes of molecules.

(a) What is the probability that the direction of ~d forms an angle θ with the direction of ~E?

(b) Find the average polarization ~P (≡ dipole moment per unit volume of the gas). Express

your result in terms of N , V , d, E and T .

Reminder: the potential energy of a dipole ~d in the external electric field ~E is U = −~d · ~E.

Solution

(a)

The probability density is given by Eq. (2.64) from the lecture notes

ρ(qi, pi) =
1

Z
e−βH(qi,pi) ,

where the factor Z,

Z =
∫ n∏

i=1

dqi dpi e
−βH(qi,pi) ,

In our case

H =
N∑
i=1

(
p2
i

2m
− ~di · ~E) =

N∑
i=1

(
p2
i

2m
− dE cos θi)

so the probability of a certain molecule to have an angle θ is

ρ(θ) =
1

Z

∫
d3p

∫ 2π

0
dφ e−β

p2

2m
+βdE cos θ

N−1∏
i=1

dqi dpi e
−βH(qi,pi) (1)

Since molecules do not interact, the contribution of all other N − 1 molecules cancels

between the numerator and the denominator of Eq. 1 so we get

ρ(θ) =
1

z

∫
d3p

∫ 2π

0
dφ e−β

p2

2m
+βdE cos θ (2)

where z is the one-particle partition function

z =
∫
d3p

∫ 2π

0
dφ
∫ π

0
sin θdθ e−β

p2

2m
+βdE cos θ

Moreover, the integral over momenta and over the azimuthal angle φ in Eq. 2 also cancels

and we get

ρ(θ) =
eβdE cos θ∫ π

0 sin θ′dθ′ eβdE cos θ′
=

βdEeβdE cos θ

eβdE − e−βdE
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〈P 〉 =

∫
sin θdθ dE cos θ eβdE cos θ∫

d cos θ eβdE cos θ
=

∂

∂β

∫
sin θdθ eβdE cos θ =

∂

∂β
ln (eβdE − e−βdE)

(b)

By symmetry, the direction of the mean dipole moment is collinear to the direction of the

electric field. The mean value of the dipole moment for one molecule is given by Eq. (2.8)

from the lecture notes which for our case yields

d =
∫ π

0
sin θdθ d cos θ ρ(θ) =

∫ π

0
sin θdθ d cos θ

βdEeβdE cos θ

eβdE − e−βdE

=
βd

eβdE − e−βdE
∂

∂β

∫ π

0
sin θdθ eβdE cos θ =

βd

eβdE − e−βdE
∂

∂β

1

βdE
(eβdE − e−βdE)

= d
( 1

tanh(βdE)
− 1

βdE

)
For N molecules in a volume V we get

P (E) =
N

V
d
( 1

tanh(βdE)
− 1

βdE

)
=

N

V
d
( 1

tanh ( dE
kBT

)
− kBT

dE

)
A quick check: as E → 0 polarization is proportional to E

P (E) =
N

V
d
( 1

tanh(βdE)
− 1

βdE

)
' Nd2

3V kBT
E

Problem 2.

(a) For a classical harmonic oscillator with Hamiltonian H = p2

2m
+ mω2x2

2
find the average

x2 at temperature T .

(b) Same problem in quantum statistics: for a harmonic oscillator with Hamiltonian

Ĥ = p̂2

2m
+ mω2x̂2

2
find the average 〈x̂2〉 at temperature T and show that at kBT � h̄ω the

quantum result agrees with the one obtained in part (a).

Solution

(a)

By definition,

x2 =

∫
dpdx x2e−β(

p2

2m
+mω2x2

2
)∫

dpdx e−β(
p2

2m
+mω2x2

2
)

=

∫
dx x2e−β

mω2x2

2∫
dx e−β

mω2x2

2

=
kBT

mω2
(3)

(b)

In quantum statistics

〈x̂2〉 =
Tr x̂2e−β(

p̂2

2m
+mω2x̂2

2
)

Tr e−β(
p̂2

2m
+mω2x̂2

2
)

=
1

mωβ

∂

∂ω
ln
(
Tr e−β(

p̂2

2m
+mω2x̂2

2
)
)

= − 1

mωβ

∂

∂ω
ln z
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where

ln z = − βh̄ω

2
− ln (1− e−βh̄ω)

for a harmonic oscillator (see Eq. (7.40) from the lecture notes). We get

〈x̂2〉 = − 1

mωβ

∂

∂ω
ln z =

h̄

mω

(1

2
+

e−βh̄ω

1− e−βh̄ω
)

=
h̄

mω

(1

2
+

1

e
h̄ω

kBT − 1

)
As T →∞

〈x̂2〉 =
h̄

mω

(1

2
+

1

e
h̄ω

kBT − 1

)
T→∞→ kBT

mω2
+

h̄

2mω
' kBT

mω2

which is the classical result (3).

Problem 3.

A particle in thermal equilibrium with the reservoir at temperature T can be only in two

states: ground state with energy E0 = 0 and excited state with energy E1. The ground

state is non-degenerate and the degeneracy of the excited state is 2. Find the probability

that the particle has energy E0, probability that the particle has energy E1, and find the

mean energy.

P (E0) =
1

1 + 2e−βE1
, P (E1) =

2e−βE1

1 + 2e−βE1
, E =

2E1e
−βE1

1 + 2e−βE1

Solution

First, the partition function has the form

Z = Tr(e−βĤ) = 〈0|e−βĤ |0〉+ 〈1a|e−βĤ |1a〉+ 〈1b|e−βĤ |1b〉 = e−βE0 + 2e−βE1

where |1a〉 and |1b〉 are the two degenerate excited states. The density operator is

ρ̂ =
1

Z
e−βĤ =

1

e−βE0 + 2e−βE1
e−βĤ

A general formula for the probability of the particle to be in a state |s〉 is 〈s|ρ̂|s〉 so in our

case

P (0) = 〈0|ρ̂|0〉 =
1

Z
e−βE0 , P (1a) = 〈1a|ρ̂|1a〉 =

1

Z
e−βE1 , P (1b) = 〈1b|ρ̂|1b〉 =

1

Z
e−βE1

and therefore

P (E0) =
e−βE0

e−βE0 + 2e−βE1
and P (E1) =

2e−βE1

e−βE0 + 2e−βE1
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The mean energy is (see Eq. (6.78) from the lecture notes )

E = Tr(Ĥρ̂) =
1

Z
TrĤe−βH = E0P (E0) + E1P (E1) =

E0e
−βE0 + 2E1e

−βE1

e−βE0 + 2e−βE1

Check (see Eq. (6.93) from lecture notes):

E = − ∂

∂β
lnZ = − ∂

∂β
ln (e−βE0 + 2e−βE1) =

E0e
−βE0 + 2E1e

−βE1

e−βE0 + 2e−βE1

Finally, the heat capacity for NA particles is

cV =
∂

∂T
NAE = −NAkBβ

2 ∂

∂β
E = 2R(

E1 − E0

kBT
)2 e

−E0+E1
kBT

(e−βE0 + 2e−βE1)2


