804 Midterm (20 points). 1

Problem 1.

Consider a classical ideal gas of molecules that have an electric dipole moment d. Let
there be N such molecules in a volume V in a uniform electric field E and let the temperature
of the gas be T'. Neglect rotational and vibrational modes of molecules.

(a) What is the probability that the direction of d forms an angle # with the direction of E?
(b) Find the average polarization P (= dipole moment per unit volume of the gas). Express
your result in terms of N, V', d, F and T.

Reminder: the potential energy of a dipole d in the external electric field E is U = —d - E.

Solution

(a)
The probability density is given by Eq. (2.64) from the lecture notes
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In our case
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so the probability of a certain molecule to have an angle 6 is
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Since molecules do not interact, the contribution of all other N — 1 molecules cancels

between the numerator and the denominator of Eq. 1 so we get
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where z is the one-particle partition function
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Moreover, the integral over momenta and over the azimuthal angle ¢ in Eq. 2 also cancels

and we get
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(b)

By symmetry, the direction of the mean dipole moment is collinear to the direction of the
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electric field. The mean value of the dipole moment for one molecule is given by Eq. (2.8)

from the lecture notes which for our case yields
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For N molecules in a volume V' we get
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A quick check: as F — 0 polarization is proportional to
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(a) For a classical harmonic oscillator with Hamiltonian H = % + find the average

22 at temperature 7.

(b) Same problem in quantum statistics: for a harmonic oscillator with Hamiltonian

A~

H = % + %2“”2 find the average (2?) at temperature T and show that at kgT > hw the

quantum result agrees with the one obtained in part (a).

Solution

(a)
By definition,
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In quantum statistics
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for a harmonic oscillator (see Eq. (7.40) from the lecture notes). We get
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which is the classical result (3).

Problem 3.

A particle in thermal equilibrium with the reservoir at temperature 7' can be only in two
states: ground state with energy Fy = 0 and excited state with energy F;. The ground
state is non-degenerate and the degeneracy of the excited state is 2. Find the probability
that the particle has energy FEj, probability that the particle has energy FEi, and find the

mean energy.
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Solution

First, the partition function has the form
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where |la) and |1b) are the two degenerate excited states. The density operator is
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A general formula for the probability of the particle to be in a state |s) is (s|p|s) so in our

case
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The mean energy is (see Eq. (6.78) from the lecture notes )
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Check (see Eq. (6.93) from lecture notes):
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Finally, the heat capacity for N4 particles is
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