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1 Notations

I use the notations from the book by Peskin and Schoeder (except for arrows on Dirac
lines). The units are ~ = c = 1.

Also: Fourier transform - (2π)−1 goes with
∫
dk:

f(x) =

∫
dnk

(2π)n
e−ikxf(k) f(k) =

∫
dnxeikxf(x) (1.1)

Dirac delta-function:
Definition: ∫

dy δ(x− y)f(y) = f(x) (1.2)

In multi-dimensional space

δ(n)(x− y)
def≡ δ(x1 − y1)δ(x2 − y2)...δ(xn − yn) (1.3)

Sometimes we will omit the upper label (n) for brevity (if there is no confusion about the
dimension of the δ-function)).

Properties:

δ(F (x)− F (y)) =
1

|F ′(x)|
δ(x− y) (1.4)

θ-function:

θ(x) = 1 x ≥ 0

Θ(x) = 0 x < 0 (1.5)

Derivative:
d

dx
θ(x) = δ(x) (1.6)
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Space-saving notation (inspired bu ~ = h
2π ):∫

d−np ≡
∫

dnp

(2π)n
(1.7)

where n is the dimension (n = 3 for space and n = 4 for space-time).

Part I

2 Green functions in the non-relativistic scattering theory

2.1 Scattering in quantum mechanics

A scattering experiment correspond to the situation when we have imposed certain initial
conditions in the remote past and we are intersted in the state of our affairs in the re-
mote future. For example, a typical scattering problem studied in non-relativistic quantum
mechanics is: given a wave packet which in the remote past represents a particle approach-
ing the potential, one asks what the wave will look like in the remote future (see Fig. 1)
Qualitatively we can view this process in terms of Huygens’ principle. If the wave function

potential

remote

future

remote

past

wave packet

Figure 1. Typical scattering problem studied in the non-relativistic quantum mechanics

Ψ(t1, ~r1) is known at one particular time t1, it may be found at any later time t2 by con-
sidering at time t1 each point of space ~r1 as a source of spherical waves which propagate
outward from ~r1 (see Fig. ??).

The strength of the wave amplitude arriving at point ~r2 at time t2 from the point ~r1

will be proportional to the original wave amplitude Ψ(t1, ~r1). If we denote the constant of
proportionality by K(t2, ~r2; t1, ~r1), the total wave arriving at the point ~r2 at time t2 will,
by Huygens’ principe, be

Ψ(t2, ~r2) =

∫
d3r1K(t2, ~r2; t1, ~r1)Ψ(t1, ~r1) (2.1)
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Figure 2. Qualitative description of a scattering in terms of Huygens’ principle

The function K(t2, ~r2; t1, ~r1) is known as “the propagation amplitude”. It describes the
influence upon Ψ(t2, ~r2) of the magnitude of Ψ at the time t1. Finding K is equivalent
to the complete solution of the scattering problem; given the initial state, we can find the
state of the system at arbitrary later time using eq.(2.1).

Quantitatively, we derive the formula (6.36) from the corresponding Schrödinger equa-
tion for the motion of the particle (wave packet) in the potential V :

i
d

dt
Ψ(t, ~r) = H(t, ~r)Ψ (2.2)

H(t, ~r) = −∇
2

2m
+ V (t, ~r) (2.3)

(where, as usual, ∇i ≡ d
dxi

). We define of the propagation amplitude K(t2, ~r2; t1, ~r1) as a
solution of the Schrödinger equation(

i
d

dt2
−H(t2, ~r2)

)
K(t2, ~r2; t1, ~r1) = 0, (2.4)

with the special initial condition:

K(t1, ~r2; t1, ~r1) = δ(~r2 − ~r1) (2.5)

The physical meaning of the propagation amplitude is that it describes the fate of a particle
that was created at the time t1 in the point ~r1.

In the case of the stationary potential V = V (~r) it is easy to relate the propagation
amplitude to the eigenfunctions of stationary Schrödinger equation. For the stationary case
the time dependence of the solutions is trivial:

Ψn(t, ~r) = e−iEntΨn(~r) (2.6)
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where the energies En are the eigenvalues of the stationary Schrödinger equation

HΨn(~r) = EnΨn(~r) (2.7)

Now, if we know a full set Ψn(~r) of eigenfunctions of the stationary Schrödinger equation
(2.7) we can find the propagation amplitude using the following formula:

K(t2, ~r2; t1, ~r1) =
∑
n

Ψn(t2, ~r2)Ψ∗n(t1, ~r1) (2.8)

It is easy to verify this formula. First, it trivially satisfies the Schrödinger equation (2.4)
since each term in the sum in r.h.s. of eq. (2.8) does so. Second, the initial condition (2.5)
is the completeness relation for the set of solutions of the stationary Schrödinger equation
(2.7): ∑

n

Ψn(~r2)Ψ∗n(~r1) = δ(~r2 − ~r1) (2.9)

As an illustration, let us find the propagation function for the free particle. Let us
consider one particle in the large box with side L 1

The plane wave corresponding to the free non-relativistic particle moving in a box with
size L (with periodical boundary conditions) has the form:

Ψ~n =
1√
L3
e−

i
2m

~p2~nt+i~p~n~r (2.10)

where ~p~n = 2π
L ~n, ~n = (n1, n2, n3). These plane waves are normalized as usual eigenfunctions

of the discrete spectrum: ∫
d3rΨ~m(t, ~r)Ψ∗~n(t, ~r) = δmn (2.11)

where δmn is equal to 1 if m = n and 0 otherwise. The propagation amplitude for the free
particle is given by the expression (2.8). Let us calculate it in the limit of very large box.
When the box is very large one can replace the summation over the discrete spectrum of
states (labeled by ~n) by the integration over the continuous label ~p∑

~n

→ L3

∫
d3p

(2π)3
(2.12)

One obtains:

K0(t2, ~r2; t1, ~r1)
def≡
∑
~n

Ψn(t2, ~r2)Ψ∗n(t1, ~r1)

→ L3
∫ d3p

(2π)3
1√
L3
e−

i
2m

~p2t2+i~p~r2 1√
L3
e

i
2m

~p2t1−i~p~r1 =∫ d3p
(2π)3

e
−i
2m

~p2t21+i~p~r21 =
(
m

2πit

)3/2
e
i
r221m

2t21 (2.13)

It is easy to check that (2.13) satisfies the Schrödinger equation (2.4) (at V = 0) with the
initial condition

K0(t1, ~r2; t1, ~r1) =

∫
d3p

(2π)3
ei~p~r21 = δ(~r2 − ~r1) (2.14)

1 Quite often we will consider the infinite space as a limited case of the large box with side L→∞ because
it is convenient to start from a situation where we have a discrete spectrum rather than the continuouis
one.
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2.2 Non-relativistic particle in external field

Consider now the propagation of our non-relativistic particle in a certain external field
described by the potential V . We will treat this potential as a small perturbation. Let us
obtain the propagation amplitude as a series in powers of V .

In the trivial order in perturbation theory there is no any interaction with the exter-
nal potential and the particle simply propagates freely (see Fig. 3) The free propagation

r r

t t 2

21

1
K  (t  ,r  ; t  ,r  )

1 120 2

Figure 3.

amplitude satisfies the free Schrödinger equation:(
i
d

dt2
−H0

)
K0(t2, ~r2; t1, ~r1) = 0 (2.15)

In the second order we will take into account one interaction with the potential. The
corresponding picture is shown in Fig. 4: the particle is created at time t1 in the point

t
1

K  (t  ,r  ; t  ,r  )
t

2

2

t’

r’ r
1122

r
1

1

Figure 4.

r = r1, then it propagates freely to the point r′ where the interaction occurs at t = t′ then
again the particle moves freely up to the end point r2 where it is absorbed at the time
t2. This interaction can take place at any time t1 < t′ < t2 in any point r′. Due to the
superposition principle of quantum mechanics we must sum over all these possibilities so
the propagation amplitude takes the form:

K1(t2, ~r2; t1~r1) = −i
∫ t2

t1

dt′
∫
d3r′K0(t2, ~r2; t′, ~r′)V (t′, ~r′)K0(t′, ~r′; t1, ~r1) (2.16)

The coefficient −i can be fixed from the perturbative form of the Schrödinger equation

i
d

dt
(K0 +K1 +K2 + ...) = (H0 + V )(K0 +K1 +K2 + ...) (2.17)

In the first order we get:(
i
d

dt2
−H0

)
K1(t2, ~r2; t1, ~r1) = V (t2, ~r2)K0(t2, ~r2; t1, ~r1) (2.18)

Actually, the eq. (2.16) is an educated guess which should be confirmed by check (2.18).
In the next order in perturbation theory we must take into account two interactions

with the external potential (see Fig. 5). The corresponding contribution to the propagating
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Figure 5. Non-relativistric propagation amplitude in the second order

amplitude has the form:

K2(t2, ~r2; t1, ~r1) = (2.19)∫ t2
t1
dt′′
∫ t′′
t1
dt′
∫
d3r′d3r”K0(t2, ~r2; t”, ~r”)[−i]V (t”, ~r”)K0(t”, ~r”; t,′ ~r′)[−i]V (t′, ~r′)K0(t′, ~r′; t1, ~r1)

It is easy to see that it satisfies the Schrödinger equation(
i
d

dt2
−H0

)
K2(t2, ~r2; t1, ~r1) = V (t2, ~r2)K1(t2, ~r2; t1, ~r1) (2.20)

which justifies our educated guess (2.19) for K2.
Continuing this procedure, one obtains the total propagation amplitude in external

potential as an infinite sum over the potential insertions:

K(t2, ~r2; t1, ~r1) =
∞∑
n=0

Kn(t2, ~r2; t1, ~r1) (2.21)

where Kn satisfies the equation(
i
d

dt2
−H0

)
Kn(t2, ~r2; t1, ~r1) = V (t2, ~r2)Kn−1(t2, ~r2; t1, ~r1) (2.22)

By construction, the sum (2.21) satisfies the Schrödinger equation (2.17) with the initial
condition (2.5)

K(t1, ~r2; t1, ~r1) = K0(t1, ~r2; t1, ~r1) = δ(~r2 − ~r1) (2.23)

(all other Kn vanish at t2 = t1).
It is convenient to introduce the so-called Green function which is defined in the fol-

lowing way:
G(t2, ~r2; t1, ~r1)

def≡ θ(t2 − t1)K(t2, ~r2; t1, ~r1) (2.24)

This Green function satisfies the inhomogenuous Schrödinger equation:(
i
d

dt2
−H(~r2, t2)

)
G(t2, ~r2; t1~r1) = (2.25)

= K(t2, ~r2; t1, ~r1)i ddt2 θ(t2 − t1) = iδ(t2 − t1)K0(t1, ~r2; t1, ~r1) = iδ(t2 − t1)δ(~r2 − ~r1)

2.3 Feynman diagrams for Green functions

In short, the Green function can be represented by the same diagrams as the propagation
function (see Figs. 3,4, 5). The analytical expressions corresponding to these diagrams are
the same up to one distinction: in terms of propagation functions, we must put the limits
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r r

t t 2
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1 120 2
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Figure 6.

of integration over times of interaction by hand; in terms of Green functions the cutoffs due
to causality are automatic so we just put time limits from −∞ to ∞.

For completeness, let us redraw these diagrams. The first diagram is:
The free Green function corresponds to the motion without interaction with the external

potential. A single interaction is desribed by the diagram similar to Fig. (4):

t
1

t
2

2

t’

r’ r
1122

r
1

1
G  (t  ,r  ; t  ,r  )

Figure 7.

The corresponding analytical expression has the form (cf. eq. (2.16)):

G1(t2, ~r2; t1, ~r1) = −i
∫
dt′
∫
d3r′G0(t2, ~r2; t′, ~r′)V (t′, ~r′)G0(t′, ~r′; t1, ~r1) (2.26)

In the second order the diagram is the same as Fig. (5) and the explicit form of G2 (cf.

t 2

r
2

r

t 1

1

t’

r’

t"

r"

G  (t  ,r  ; t  ,r  )
2 12 2 1

Figure 8. Non-relativistric Green function in the second order

eq.(2.19)) is:

G2(t2, ~r2; t1, ~r1) = (2.27)∫
dt′dt”

∫
d3r′d3r”G0(t2, ~r2; t”, ~r”)[−i]V (t”, ~r”)G0(t”, ~r”; t′, ~r′)[−i]V (t′, ~r′)G0(t′, ~r′; t1, ~r1)

The n−th term of this expansion can be represented by a similar Feynman diagram
with n − 1 insertions shown in Fig. 9. The corresponding analytical expresssion contains

t
1

r
1

...
t

r
2

2
t’

r’ r"

t"

Figure 9. A Green function in arbitrary order of perturbation theory
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(n− 1) integrations.
The formal sum of this series of diagrams is the total Green Function G(t2, ~r2; t1, ~r1)

defined in eq. (2.24).

...
+...

+...+=

Figure 10. Total Green function as infinite sum of Feynman diargams

To prove it, note that the formal sum

G(t2, ~r2; t1, ~r1) =

∞∑
n=0

Gn(t2, ~r2; t, ~r′) (2.28)

satisfies the following integral equation illustrated in Fig. 11:

{ ++
1t

r
1

=
2t

2
r

G G
0

-iV

-iV -iV

}

-iV(r’,t’)

+...
G0 G0 G0 G0

G G
00

t 2

r
2

Figure 11. Integral equation for exact Green function

G(t2, ~r2; t1, ~r1) = G0(t2, ~r2; t1, ~r1)− i
∫
dt′
∫
d3r′G0(t2, ~r2; t′, ~r′)V (t′, ~r′)G(t′, ~r′; t1, ~r1)

(2.29)
If we apply the operator i ∂∂t −H0 to both sides of this equation we get

(i
∂

∂t2
−H0)G(t2, ~r2; t1, ~r1) =

iδ(~r2 − ~r1)δ(t2 − t1) +

∫
dt′
∫
d3r′δ(~r2 − ~r′)δ(t2 − t′)V (t′, ~r′)G(t′, ~r′; t1, ~r1) =

iδ(~r2 − ~r1)δ(t2 − t1) + V (~r2, t2)G(~r2, t2;~r1, t1) (2.30)

which is equivalent to eq. (2.25)
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Part II

2.4 Non-relativistric Green functions in the momentum representation

To warm up, let us show that the free propagator in momentum space has the familiar form
( p

2

2m − p0)−1. (Warning: a propagator is another word for a Green function and not for the
propagation amplitude). The differential equation for the free propagator is eq. (2.25) with
H → H0: (

i
d

dt2
+
∇2

2m

)
G(t2, ~r2; t1, ~r1) = iδ(t2 − t1)δ(~r2 − ~r1) (2.31)

By Fourier transformation we get

G(t2, ~r2; t1~r1) =

∫
d4p

16π4i

1
~p2

2m − p0

e−ip0t21+i~p~r21 (2.32)

While performing the integration over p0 we face a problem: the denominator has a pole
at p0 = ~p2

2m . In order to regularize this divergence it is convenient to add a small imaginary
number −iε to the expression in the denominator which shifts the pole to the lower half of
the p0 plane (see Fig. 12):

t>0

t<0

0

x

(p  )

Figure 12. Calculation of the integral over p0
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After that we get:

lim|ε→0

∫
dp0

1
~p2

2m − p0 − iε
e−ip0t21 =

θ(t21) · 2πiRes|p0=~p2/2m = 2πie−i
~p2

2m
t21θ(t21) (2.33)

The remaining integral over ~p is trivial so one obtains:

lim|ε→0

∫
d4p

16π4i

1
~p2

2m − p0 − iε
e−ip0t21+i~p~r21 =

θ(t)
∫ d3p

8π3 e
−i ~p

2

2m
t+i~p~r21 =

(
2m
itπ

)3/2
e
i
r221m

2t21 (2.34)

which coincides with G0 = θ(t)K0, see eq. (2.13). It is worth noting that the regulator iε
in the denominator enforces the condition

G0(t2, ~r2; t1, ~r1) = 0 at t2 < t1 (2.35)

Should we choose the regulator iε rather than −iε we would get the function proportional
to θ(−t) instead. Thus, the free propagator in the momentum representation is

G0(p) =
1

p2

2m − p0 − iε
(2.36)

Next we consider the propagator in the first order in perturbation theory (2.26). It is
convenient to introduce the notation V (p) for the Fourier transform of the potential:

V (~r, t) =

∫
d4q

16π4
e−iq0t+i~q~rV (q) (2.37)

Using this notation, one can rewrite the first-order contribution (2.26) in the form:∫
d3r′dt′

(∫ d4p2
16π4i

G0(p2)e−ip20(t2−t′)+i~p2(~r2−~r′)
)

∫ d4q
16π4 e

−iq0t′+i~q~r′(−iV (q))
(∫ d4p1

16π4i
G0(p1)e−ip10(t′−t1)+i~p1(~r′−~r1)

)
(2.38)

The integration over r′ and t′ gives the corresponding δ-functions:∫
d3r′ei(~q+~p1−~p2)~r′

∫
dt′ei(p20−p10−q0)t′ =

(2π)3δ(3)(~p1 − ~p2)(2π)δ(p20 − p10) = (2π4)δ(4)(q + p1 − p2) (2.39)

Performing the integration over q we obtain:

G1(t2, ~r2; t1, ~r1) =

∫
d4p1d

4p2

(2π)8i
e−ip20t2+i~p2~r2eip10t1−i~p1~r1G0(p2)[−V (p2 − p1)]G0(p1) (2.40)

This expression can be represented by the following diagram where lines denote the free
propagators in the momentum space (2.36) and the vertex is the Fourier transform of the
potential (2.37).
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-V(p  -p  )
2 1

Figure 13.

Let us now introduce the exact Green function in the momentum representation :

G(~r2, t2;~r1, t1) =

∫
d4p1d

4p2

(2π)8i
e−ip20t2+i~p2~r2eip10t1−i~p1~r1G(p1, p2) (2.41)

The two first terms of the perturbative expansion of Green function are

G(p1, p2) = (2π)4δ(4)(p1 − p2)G0(p1) +G0(p2)[−V (p2 − p1)]G0(p1) + ... (2.42)

The equation (2.42) in terms of diagrams is shown in Fig. 14.

+...+=
G (p )       G (p )

p                       p p                      pp             p
1 2 1 2 1 2

0 1 0 2
G (p) 

0
G(p ,p ) 

1 2

Figure 14. Green function in the momentum representation

In the next order the expression for the Green function takes the form

G2(p1, p2) = G0(p2)

∫
d4p′

(2π)4
V (p2 − p′)G0(p′)V (p′ − p1)G0(p1) (2.43)

which corresponds to the second-order diagram

0
G (p )           G (p’)            G (p )

1 0 0

-V(p’-p )       -V(p -p’)
21

2

It worth noting that G1(p1, p2) (the second term in eq. (2.42)) corresponds to the first
Born approximation in the usual perturbation series in quantum mechanics. Similarly, eq.
(2.43) corresponds to the second Born approximation (and the integral over p′ stands for
the sum over intermediate states in the usual formula for the second Born term).

Finally, the perturbative series for the Green function in the momentum representation
has the form:

G(p1, p2) = (2π)4δ(p1 − p2)G0(p1)+ (2.44)

G0(p2)[−V ((p2 − p1)]G0(p1) +G0(p2)
∫ d4p′

(2π)4)
V (p2 − p′)G0(p′)V (p′ − p1)G0(p1) + ...
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0 0 0 0 01
G (p )           G (p’)            G (p") G (p  )         G (p )

2

n

-V(p -p  )
n

1 2

Figure 15. Feynman rules for non-relativistic Green functions

Looking at this series we can formulate the Feynman rules for the n-th order diagram
for the non-relativistic Green function

1. We write down the factor G0(pn) for each line
2. Each vertex comes with the factor −V (pn, pn−1)

3. There is an integration
∫ d4pn

(2π)4
corresponding to each internal line

Finally, we must sum up all the diagrams to obtain the total Green function G(p2, p1) =∑∞
0 Gn(p2, p1).

2.5 Scattering Matrix and Green functions

Let us calculate the probability of the transition from a certain initial state Ψi(~r, t) to the
final state described by the wave function Ψf (~r, t). If the initial state at the time t1 was
Ψi(~r, t) then at the moment of time t2 the wave function of the system is

Ψ(~r2, t2) =

∫
d3r1K(~r2, t2;~r1, t1)Ψi(~r1, t1)

=

∫
d3r1G(~r2, t2;~r1, t1)Ψi(~r1, t1) (2.45)

Using our definition of the propagation functon K it is easy to check that the r.h.s. of eq.
(2.45) satisfies Schrödinger equation with the proper initial condition Ψ(~r, t1) = Ψi(~r, t1).
The amplitude to discover this particle (described by wavefunction (2.45)) at the time t2
in the state Ψf (~r, t) is ∫

d3r2Ψ∗f (~r2, t2)Ψ(~r2, t2) (2.46)

so the amplitude of the transition i→ f takes the form∫
d3r2Ψ∗f (~r2, t2)Ψ(~r2, t2) =

∫
d3r1d

3r2Ψ∗f (~r2, t2)G(~r2, t2;~r1, t1)Ψi(~r1, t1) (2.47)

The scattering experiment corresponds to the situation when t1 → −∞ (remote past) and
t2 →∞ (remote future) so the amplitude of the i→ f scattering has the form

Sfi = lim
t2→∞

lim
t1→−∞

∫
d3r1d

3r2Ψ∗f (~r2, t2)G(~r2, t2;~r1, t1)Ψi(~r1, t1) (2.48)

This transition amplitude is called “matrix element of scattering matrix” (or S-matrix for
short) and it is the main subject of the calculations in scattering theory.
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Consider a typical scattering process like Coulomb scattering. In the far past, long
time before the scattering when ti → −∞ the wave function was a plane wave with the mo-
mentum ~p1 and we would like to calculate the probability to find (long after the scattering)
a free particle moving with the momentum ~p2

2.
So,

Ψi(~r, t) = e−i
~p21
2m

t+i~p1~r (2.49)

Ψf (~r, t) = e−i
~p22
2m

t+i~p2~r (2.50)

Then the general expression for the matrix element of the S-matrix (2.48) reduces to:

S(~p2, ~p1) =
∫
d3r2d

3r1e
i
~p22
2m

t2−i~p2~r2e−i
~p21
2m

t1+i~p1~r1∫ d4p′1d
4p′2

(2π)8i
G(p′1, p

′
2)e−ip

′
20t2+i~p′2~r2eip

′
10t1−i~p′1~r1 (2.51)

where we have used the formula (2.41). The integration over r1 and r2 gives

(2π)3δ(~p2 − ~p′2)(2π)3δ(~p1 − ~p′1) (2.52)

so we obtain

S(~p2, ~p1) =
1

4π2i

∫
dp10dp20e

it2(
~p22
2m
−p20)e−it1(

~p21
2m
−p10)G(p10, ~p1; p20, ~p2) (2.53)

(we have wiped ′ from the notation for the variables of integration). Let us recall now the
expansion (2.42) of the Green function G(p1, p2) in powers of the interaction potential

G(p1, p2) = (2π)4δ(p1 − p2)G0(p1) +G0(p2)[−V ((p2 − p1)]G0(p1) +

+G0(p2)
∫ d4p′

(2π4)
V (p2 − p′)G0(p′)V (p′ − p1)G0(p1) + ... (2.54)

Next, we substitute this expansion in the expression (2.53) for the S-matrix ellement. First
term of the expansion yields:

S0(~p2, ~p1) = −(2π)2iδ(~p1 − ~p2)

∫
dp10e

i(t2−t1)(
~p21
2m
−p10)G0(~p, p10) (2.55)

= −(2π)2iδ(~p1 − ~p2)

∫
dp10e

i(t2−t1)(
~p21
2m
−p10) 1

~p21
2m − p10 − iε

= (2π)3δ(~p1 − ~p2)

which corresponds to the free propagation without scattering. Here again we have added
the contour integral over the lower semicircle in the complex p10 plane (which can be done
since t21 > 0) so the resulting integral over the closed contour is determined by the residue
and is equal to 2πi.

2 Our idea about scattering is that in the distant past a particle moves freely, then it scatters by the
potential which has a finite size and then moves freely again. To be self-consistent we have to think that
even in the case of potential which is independent of time it switches off adiabatically slowly in distant
past so that free wave is a true solution when t → −∞ and the potential is not yet switched on. It is not
evident that such approach is without fault but more elaborate treatments show that everything is OK at
this point.
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All other terms in the expansion of the Green function G(p1, p2) (see (2.54)) depend
on both p1 and p2 so we may write down the Green function in the following form:

G(p1, p2) = (2π)4δ(p1 − p2)G0(p1) +G0(p2)(2π)4T (p1, p2)G0(p1) (2.56)

where the “transition matrix” T (p1, p2) includes all vertices and internal lines (which also
means the integration over all internal momenta). The expansion of the transition matrix
in powers of V starts from the Born term:

(2π)4T (p1, p2) = −V (p2 − p1) +

∫
d4p′

(2π4)
V (p2 − p′)G0(p′)V (p′ − p1) + ... (2.57)

Let us substitute this expression for G(p1, p2) in the integrand in eq. (2.53). We have
already calculated the first trivial term without scattering - see eq. (2.55). As to the second
term, it has the form

1

4π2i

∫
dp10dp20e

it2(
~p22
2m
−p20)e−it1(

~p21
2m
−p10) (2π)4T (p1, p2)

(
~p21
2m − p10 − iε)(

~p22
2m − p20 − iε)

(2.58)

We must calculate now the integrals over p10 and p20. Let us start from the p10 integral.
As usual, we add the contour integral over the lower semicircle in the complex p10 plane (it
is easy to check that eip20t decreases in this direction) so the integral over p20 is determined
by the singularities of the integrand. These are the pole 1

~p22
2m
−p20−iε

plus any other possible

singularities of the function T (p1, p2) which depend on the explicit form of the potential V.
However, it is easy to see, however, that the contributions from any singularity other than
the pole 1

~p22
2m
−p20−iε

vanishes at large t2 due to the rapid oscillations of the exponent eit2(...)

so the integral over p20 gives
2πiT (p1, p2)

∣∣∣
p20=

~p22
2m

(2.59)

Repeating the same procedure for the integration over p10 we finally obtain:

S(~p2, ~p1) = (2π)3δ(~p1 − ~p2) + (2π)4iT (~p1, ~p2) (2.60)

where
T (~p1, ~p2) = T (p1, p2)

∣∣∣
p20=

~p22
2m

, p10=
~p21
2m

(2.61)

The first term in eq. (2.60) corresponds to the free propagation and the second (T ) deter-
mines the amplitude of the scattering. For example, in the first Born approximation

T (~p1, ~p2) = − 1

(2π)4
V (

~p2
2

2m
− ~p2

1

2m
, ~p2 − ~p1) (2.62)

Let us formulate the final set of Feynman rules for the scattering amplitude T (~p1, ~p2):
1. Write down the diagrams

+= + +...
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2. Write down the corresponding Green function using the rules formulated in Sect.
A.1. (the factor G0(pn) for each line, the factor −V (pn, pn−1) for each vertex and the
integration

∫ d4pn
(2π)4

for each internal line). The answer will have the form:

G(p1, p2) = (2π)4δ(p1 − p2)
1

~p21
2m − p10 − iε

+
(2π)4T (p1, p2)

(
~p21
2m − p10 − iε)(

~p22
2m − p20 − iε)

(2.63)

3. The scattering amplitude T (~p1, ~p2) is 1
(2π)4

times the numerator in the second term

in the above equation taken at p10 =
~p21
2m , p20 =

~p22
2m

Part III

2.6 Coulomb scattering

I would like to calculate cross section for scattering of an electron by Coulomb potential in
the first Born approximation. Suppose we have the electon scattereing from the repulsive
Coulomb potential

V (~r) =
Ze2

4π|~r|
(2.64)

corresponding to a certain large nuclei with atomic number Z 3. Let me remind you the
logic of our approach.

p

p

1

2

In the far past we have the plane wave corresponding to the incoming electron: with
momentum ~p1

Ψ̃p1(~r, t) =
1

L3/2
e−i

~p21
2m

t+i~p1~r (2.65)

3 In this chapter we will ignore the complexifications due to the fact that electron is a Dirac particle
with the spin - we shall take it into account later when we will study the Dirac equation. As a result, we
will get the Rutherford formulla for the cross section of the unpolarized scattering (I hope that in the end
of this course you’ll have no problem to understand what this means!)
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and we are interested in the probability to observe this state at the remote future as a free
electron with momentum ~p2 described by the plane wave 4

Ψ̃p2(~r, t) =
1

L3/2
e−i

~p22
2m

t+i~p2~r (2.66)

Here it is convenient to normalize the wavefunction by the condition that we have only one
particle in the large box with the side L:∫ L/2

−L/2
d3r|Ψ̃i(~r, t)|2 = 1 (2.67)

Note that the normalization in the previous section was different: we had the plane
waves normalized by the condition

∫
d3rΨ†~p(~r, t)Ψ~p′(~r, t) = δ(~p − ~p′) corresponding to the

continuous spectrum. Because of that, the S-matrix will also differ from the previous
Section by factor 1/L3 (see below). To clarify the notations, in this Section we will label
wave functions, matrix elements, etc corresponding to the plane waves normalized according
to eq. (2.67) by a tilde .̃

Time evolution of the electron during the scattering is given by the solution of the
Schrödinger equation

Ψ̃(p1)(~r2, t2) =

∫
d3r1G(~r2, t2;~r1, t1)Ψ̃p1(~r1, t1) (2.68)

(see eq.(2.45)) which coincides with the plane wave with momentum p1 at t1 → −∞. After
the scattering (≡ at the time t2 →∞) this solution can be written down as a superposition
of the outgoing pane waves

Ψ̃(p1)(~r, t2) = L3

∫
d3p2

(2π)3
S̃(~p1, ~p2)Ψ̃p2(~r, t2) (2.69)

with the coefficients being matrix elements of the S-matrix defined in Eq. (2.48):

S̃(~p1, ~p2) =

∫
d3rΨ̃∗p2(~r, t2)Ψ̃(p1)(~r, t2) (2.70)

The factor L3 in Eq. (2.69) is due to the completeness condition (2.71) below. As we
mentioned in the footnote, the Fourier transformation in Eq. (2.41) in the finite-volume
space contains summation over ~pn = 2π

L ~n rather than the integration over continuous ~p (see
Sect. 2.1.A). The completeness condition in a finite volume reads as

δ(~r − ~r′) =
∑
~n

Ψ̃∗~n(~r′, t)Ψ̃~n(~r, t)), Ψ̃~pn(~r, t) =
1

L3/2
e−i

~p2n
2m

t+i~pn~r

but at large L we can use the completeness condition in the form

δ(~r − ~r′) = L3

∫
d3p

(2π)3
Ψ̃∗p(~r

′, t)Ψ̃p(~r, t) (2.71)

4 Strictly speaking, the fact that we consider this problem in a box will lead to the quantization of the
electron momentum: ~p~n = 2π

L
~n but we assume that the box is very large so the electon momentum changes

almost continuously.
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where the plane waves are normalized according to eq. (2.67).
Thus, the probability to find this electron moving with some momentum p2 in the

remote future is determined by the matrix element of the S-matrix which has the form

S̃(~p1, ~p2) = lim
t2→∞

lim
t1→−∞

∫
d3r1d

3r2Ψ̃∗p2(~r2, t2)G(~r2, t2;~r1, t1)Ψ̃p1(~r1, t1) (2.72)

where Ψ̃p2 is the wavefunction corresponding to the outgoing plane wave with momentum p2

and G(~r2, t2;~r1, t1) is the Green function for the Coulomb potential. Note that S̃(~p1, ~p2) =
1
L3S(~p1, ~p2).

Since the electric charge is very small ( e
2

4π = 1
137) it is enough to consider the first Born

approximation. The Green function in the first Born approximation is

G1(p1, p2) = (2π)4δ(p1 − p2)G0(p1)−G0(p2)V (p2 − p1)G0(p1) (2.73)

where the Fourier transform of the Coulomb potential has the form

V (p2 − p1) = 2πδ(p10 − p20)
Ze2

|~p2 − ~p1|2
(2.74)

so the transition amplitude T (~p2, ~p1) reduces to (see equations (2.56) and (2.62)):

T̃ (~p1, ~p2) =
1

L3
T (~p1, ~p2) = − 1

(2π)4L3
2πδ(E2 − E1)

Ze2

|~p2 − ~p1|2
. (2.75)

where E1 =
~p21
2m is the energy of the non-relativistic electron with momentum p1 (and

E2 =
~p22
2m). Transition amplitude squared is equal to the probability of transition from

the state with initial momentum ~p1 into the state with final momentum ~p2 anywhere in
the space during the infinitely large time T = t2 − t1. This probability depends of course
on the flux of incoming particles. It is much more convenient to have some characteristic
of scattering which is independent of the initial flux and which characterises intensity of
scattering per unit of time.The probability is determined by the square of the matrix element
of the S-matrix so the transition rate per unit time interval is 5

Pfi =
|(2π)4T̃ (~p1, ~p2)|2

T
. (2.76)

The cross section is obtained from the scattering rate by dividing by the initial flux
and multiplying by the number of final states. Initial flux is equal to

j = |~p1|/(mL3) (2.77)

in accordance with normalization of initial state wave functions in Eq. 2.67. Indeed, total
number of particles is normalized to be equal to 1 in volume L3 and they move forward
with momentum ~p1 or velocity ~v1 = ~p1/m. Let us consider the cube (with side L) with our

5 Working in terms of T-matrix rather than S-matrix may seem inconvenient, but only for the non-
relativistic scattering: in the relativistic situatuion S-matrix contains the factor (2π)4 is explicitly and to
extract it from the definition is very natural.
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particle inside it. The particle moves with velocity v1 so after the time t = L
v elapses, the

particle should be somewhere inside the adjacent cube (with sides L). Hence, the number
of the particles which cross the side of the cube with area L2 in time t = L

v is exactly 1 so
the flux is:

Flux =
Number of particles

Time⊗Area
=

1

tL2
=
v1

L3
(2.78)

The number of final states in a volume L3 in momentum interval d3~p2 is equal to L3d3p2/(2π)3

(see Lecture 1). Cross section is thus equal to

σ =
1

j
L3

∫
d3p2

(2π)3
Pfi (2.79)

=
mL3

|~p1|
L3

∫
d3p2

(2π)3

|(2π)4T̃ (~p1, ~p2)|2

T
Note that cross section has the dimension of area and admits a nice physical inter-

pretation – it is equal to the effective target area to be hit by the particle in order to be
scattered into the interval of finite states just described.

The r.h.s. of Eq. (2.79) contains the square of a δ-function which is ill-defined so
one has to provide it with some sense. To this end one has simply to recall the integral
representation for the δ-function

δ(E2 − E1) =
1

2π

∫
dt exp[it(E2 − E1)] (2.80)

Next, it is almost evident that the square of δ-function in Eq. (2.79) can be interpreted as
follows:

{δ(E2 − E1)}2 =
1

2π

∫
dt et(E2−E1) 1

2π

∫
dt′ eit

′(E2−E1) (2.81)

=
1

2π

∫
dt δ(E2 − E1)eit(E2−E1) =

1

2π

∫
dt δ(E2 − E1)

=
T
2π
δ(E2 − E1).

After substitution of the above expression to Eq. (2.79) one obtains

σ =

∫
1

(L3)2
(2π)2 T

2π
δ(E2 − E1)

( Ze2

|~p2 − p1|2
)2 1

T
mL3

|~p1|
L3d3~p2

(2π)3
(2.82)

=
mZ2e4

4π2

∫
d3p2

1

|~p1|
1

|~p2 − ~p1|4
δ(E2 − E1).

In the general case of a time-independent potential V = V (~r) the cross section has the
form:

σ =
1

4π2v1

∫
d3p2 δ(E2 − E1)|V (~p2 − ~p1)|2 (2.83)

where V (~q) isa a three-dimensional Fourirer transform of the potential:

V (q) =

∫
d4x V (x)eiqx = 2πδ(E2 − E1)V (~q)

V (~q) =

∫
d3r V (~r)e−i~q~r (2.84)
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Next step is to take into account that d3p2 = p2
2dp2dΩ where the solid angle element is

defined by the relation dΩ = dφ sin(θ)dθ (it is assumed here that the z-axis is defined by the
direction of the momentum ~p1). Then δ-function of energies leads to the equality of absolute
values of initial and finite momenta |~p1| = |~p2| = p = mv and (~p1 − ~p2)2 = 4p2 sin2(θ/2).
Using these substitutions one easily converts Eq. (2.82) to familiar Rutherford formula for
the differential cross section of the Coulomb scattering:

σ =

∫
dΩ

dσ

dΩ
, (2.85)

dσ

dΩ
=

(
Ze2

8πmv2

)2
1

sin4(θ/2)
=

Z2α2

4m2v4

1

sin4(θ/2)
,

where α = e2/4π ≈ 1/137 is called the fine structure constant (in the usual units α = e2

4π~c).
It is a universal dimensionless constant which characterizes strength of electromagnetic
interaction and it enters all QED results.

Remarkable fact about the Rutherford formula is that for Coulomb scattering in Clas-
sical Mechanics and Born approximation in Quantum Mechanics lead to the same result!
In all other situations results of these theories coincide only in some limiting cases.

Homework assignment 1.
Nuclear forces are described by Yukawa potential:

V (r) = V0
e−α|~r|

|~r|
(2.86)

where V0 and α are real constants, with α positive. This potential is repulsive or attractive
depending on the sign of V0. 6

Problem 1. Find the differential cross section dσ
dΩ (analog of the Rutherford formula) for the

scattering from Yukawa potential.
Problem 2. Find σ - the total cross section (see eqs. (2.79),(2.82)) for the scattering from
Yukawa potential.
Problem 3. What is the total cross section for the scattering from Coulomb potential?

2.7 Unitarity of S-matrix

I have demonstrated that the probability amplitude is determined by matrix element (f, i)

of a certain matrix S which is called the scattering matrix. This matrix is unitary and this
feature of the scattering matrix is of particular importance. Unitarity means that∑

n

SlnS
†
nk = δkl, (2.87)

or in matrix notation

SS† = 1. (2.88)
6 To explain the origin of this potential, Yukawa was led to predict the existence of π-meson, which was

indeed discovered sometime later.
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It is very easy to prove unitarity. Consider for simplicity the case of discrete spectrum
in the initial (and final) state. (A good example is plane waves in the finite box and it is
easy to generalize our proof to the case of continuous spectrum of plane waves in the infinite
space). Let Ψ̃(k)(~r, t) and Ψ̃(l)(~r, t) be two solutions of Schrödinger equation which coincide
with two plane waves Ψ̃k(~r, t) and Ψ̃l(~r, t) at the time t = t1 (≡ in the remote past) :

Ψ̃(k)(~r, t) =

∫
d3r′G(~r, t;~r′, t1)Ψ̃k(~r

′, t1) (2.89)

and similarly for l. Actually, the indices k,l, etc. are the vector ones: ~k = (k1, k2, k3) but
we will omit the vector sign here for brevity. Due to the hermiticity of the Hamiltonian H
the scalar product of the two solutions conserves in time. Indeed,

i
d

dt

∫
d3rΨ̃†(k)(~r, t)Ψ̃(l)(~r, t) =

∫
d3rΨ̃†(k)(~r, t)(−H +H)(Ψ̃(l)(~r, t) = 0 (2.90)

so ∫
d3rΨ̃†(k)(~r, t)Ψ̃(l)(~r, t) =

∫
d3rΨ̃†k(~r, t1)Ψ̃l(~r, t1) = δkl (2.91)

Now, we can expand the wavefunction Ψ̃(k)(~r, t) at the time t = t2 (≡ remote future)
over the complete set of plane waves:

Ψ̃(k)(~r, t2) =
∑
n

S̃knΨ̃n(~r, t2) (2.92)

This formula can be obtained from our definition of the matrix elements of the S-matrix
(2.48) which can be rewritten in this case as follows:

S̃kn =

∫
d3rΨ̃†n(~r, t2)Ψ̃(k)(~r, t2) (2.93)

and from the condition of the completeness of the eigenfunctions Ψ̃n(~r, t2) which has the
form

δ(~r − ~r′) =
∑
n

.Ψ̃†n(~r, t)Ψ̃n(~r, t) (2.94)

(for arbitrary t). Substituting now the expansion (2.92) in the equation (2.91) we finally
obtain ∑

n

S̃lnS̃
†
nk = δkl (2.95)

where we have used again the property of the orthogonality of the eigenfunctions∫
d3rΨ̃†m(~r, t2)Ψ̃n(~r, t2) = δmn

.
Requirement of unitarity is one of the most important in quantum physics and has a

transparent physical meaning. Let us consider diagonal in k, k term in Eq. (2.87)

S̃†kkS̃kk +
∑
n 6=k

S̃†knS̃nk = 1. (2.96)
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This simply means that there is no leakage of probability during the transition. First
term in Eq. (2.96) is the probability that the state k survives the collision and second term
is equal to the total probability of transition from the state k to any other state. Obviously
sum of these terms should be equal to one from physical considerations. Nondiagonal term
in Eq. (2.87) should be equal to zero as we just have seen that this vanishing of nondiagonal
terms simply reflects orthogonality of different initial state wave functions.

Unitarity of the S-matrix is valid for any physical system. We will later consider field
theories where the analogues of the Schrödinger wave function satisfy nonlinear equations
but unitarity still survives. Quite often in the theories with strong interactions the unitarity
(≡ the optical theorem) is the only way to calculate the total cross section.

Let us now recover the optical theorem in quantum mechanics. For the case of contin-
uous spectrum the unitarity condition (2.95) takes the form:∫

d3p

(2π)3
S(~k, ~p)S†(~p, ~q) = (2π)3δ(~k − ~q) (2.97)

Let us substitute here the S-matrix in the form (2.60)

S(~k, ~p) = (2π)3δ(~k − ~p) + (2π)4iT (~k, ~p) (2.98)

(and similarly for S(~p, ~q). It is easy to see that the term proportional to the product of two
δ functions gives exactly the r.h.s. of eq. (2.97) so the sum of three remaining terms must
be zero. We obtain then :

1

i
(T (~k, ~q)− T ∗(~k, ~q)) = (2π)4

∫
d3p

(2π)3
T (~k, ~p)T ∗(~p, ~q) (2.99)

At k = q (for the case of forward scattering) this reduces to:

=T (k, k) =
1

2
(2π)4

∫
d3p

(2π)3
|T (~k, ~p)|2 (2.100)

In the case of scattering from the stationary potential the transition matrix T (~p1, ~p2) is
related to the usual non-relativistic scattering amplitude f(~p1, ~p2) in the following way:

T (~p1, ~p2) =
1

(2π)3m
2πδ(E1 − E2)f(~p1, ~p2) (2.101)

Using the “mnemonic rule” 2πδ(0) = T we can rewrite the Eq. (2.100) as

=f(k, k) =
m

2T
(2π)7

∫
d3p

(2π)3
|T (~k, ~p)|2 (2.102)

The (total) cross section is obtained by substitution of this equation to Eq. (2.79)

σtot =
mL3

|~k|
L3

∫
d3p2

(2π)3

|(2π)4T̃ (~k, ~p)|2

T
=

m

|~k|T
(2π)8

∫
d3p2

(2π)3
|T (~k, ~p)|2 (2.103)
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where we used T̃ (~p1, ~p2) = 1
L3T (~p1, ~p2), see Eq. (2.75). Now, from the comparison of Eq.

(2.101) and Eq. (2.103) we see that the optical theorem (2.100) reduces to a standard
textbook form

=f(~k, ~q) =
|~k|
4π
σtot (2.104)

It is worth noting that in the relativistic theory the optical theorem (which looks very
similar to eq. (2.104) is the main tool for calculations of the total cross sections of various
processes such as deep inelastic electron-proton scattering.

Part IV

3 Relativistic quantum mechanics

3.1 Quantum mechanics of a scalar meson

In the framework of classical relativistic mechanics the π-meson field is described by a
Klein-Gordon (KG) equation

(� +m2)φ(x) = 0, (3.1)

reflecting the relation between energy and momentum for the massive relativistic particle

E =
√
m2 + ~p2 (3.2)

We will consider the case of neutral π-meson so the corresponding KG field φ(x) is real.
Unfortunately, it is impossible to observe classical π-meson field since the mass of the π-
mesonm=140 MeV is very large. (The force due to the pion field decreases as e−mr so it
is negligible beyond r = 1fm' 10−13cm). If we lived in another world with mπ ∼ 10−7eV,
the force due to classical π-mesonfield should be observable at distances ∼ 1m so it would
be discovered long time ago and the Klein-Gordon equation would be a part of the course
on general physics.

The KG equation describe the propagation of a free π-meson wave in the empty space.
The general solution of this equation is the superposition of the plane waves with the four-
momenta p lying "on the mass shell" (⇔ p2 = m2). Indeed, the corresponding equation for
the Fourier transform

φ(p) =

∫
d4x eipxφ(x) (3.3)

(kx ≡ kµxµ) has the form
(p2 −m2)φ(p) = 0 (3.4)

which means that
φ(p0, ~p) = δ(p2 −m2)F (p0, ~p) (3.5)

where F is some function of p0 and ~p. The equation p2 = m2 has two solutions: p0 = Ep
and p0 = −Ep where Ep =

√
~p2 +m2. Keeping in mind that our original function φ(x)

must be real we obtain now that the general form of the function φ(p) is

φ(p0, ~p) = 2πδ(p0 − Ep)Φ(~p) + 2πδ(p0 + Ep)Φ
∗(−~p) (3.6)
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where Φ is an arbitrary function of ~p. In the coordinate space the general solution (3.6) is

φ(x) = φ+(x) + φ−(x) (3.7)

where

φ+(x) =

∫
d3p

(2π)3
e−iEpt+i~p~rΦ(~p)

φ−(x) =

∫
d3p

(2π)3
eiEpt+i~p~rΦ∗(−~p) (3.8)

The functions φ+ and φ− are called positive- and negative-frequency parts of the field (since
in the first case the frequency p0 = Ep is positive while in the second case it is negative:
p0 = −Ep. By construction, each of them satisfies the KG wave equation (3.1).

Let us try to develop quantum mechanical description for this free π-meson field. Al-
though we will obtain no new results in comparison to classical description 7 the quantum
formalism for the free wave is an important ingredient for description of the interactions of
particles (where there are new results in comparison to the classical physics!).

In the quantum mechanical approach a particle is described by the wave function Ψ(x)

and the square of the wave function is the density of the probability distribution. We
assume that the KG field is made from the π-mesons described by quantum mechanics and
try to construct the wave function Ψ for these mesons. The hope is to find some quantity
which has the probabilistic interpretation like∫

d3r|Ψ( ~r, t)|2 = 1 (3.9)

If this quantity is conserved it may serve as a probability to observe a π-meson (anywhere
in the space). On the other hand, the desired wave function Ψ(x) must satisfy the equa-
tion (3.1) which reflects the relation (3.2) between energy and momentum of a relativistic
particle.

Let us recall how we get the conservation of the probability in the non-relativistic
quantum mechanics (cf. Sect.1.3). Let us write down the Schrödinger equation and the
complex conjugate of it

i
d

dt
Ψ = HΨ H = H0 =

~p2

2m
= −

~∇2

2m
(3.10)

−i d
dt

Ψ∗ = HΨ∗ (3.11)

(as usual, ∇i ≡ d
dxi

). Now it is easy to see that

i
d

dt
Ψ∗(~r, t)Ψ(~r, t) =

1

2m
[Ψ(~r, t)~∇2Ψ∗(~r, t)−Ψ∗(~r, t)~∇2Ψ(~r, t)] (3.12)

7 One should expect this since the role of quantum effects enter the game when the feedback of the
classical detector on the π-meson field, i.e. the interaction, is nonzero.
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or, in other words,
d

dt
Ψ∗(~r, t)Ψ(~r, t) = − i

2m
∇j [Ψ(~r, t)∇jΨ∗(~r, t)−Ψ∗(~r, t)∇jΨ(~r, t)] (3.13)

and the total integral of the r.h.s. of this equation over the whole space vanishes after
integration by parts. Thus, we have two properties of the quantity Ψ∗Ψ:

1) Ψ∗(~r, t)Ψ(~r, t) > 0

2)

∫
d3rΨ∗(~r, t)Ψ(~r, t) = const (3.14)

which give us an opportunity to interpret |Ψ(~r, t)|2 as a density of the probability (to find
a particle in a point ~r at the time t). Indeed, the first equation means that the density of
the probability is positive while the second ensures that the total probability to observe the
particle anywhere in the space is 1.

Now we will try to construct smth which has a meaning of probability to observe a
π-meson. Instead of the Schrödinger eqn we have now the wave equation (3.1) so we need
a quantity which satisfies the continuity equation of the eq. (3.13) type. The (educated)
guess is to take the positive-frequency part φ+(x) of the classical meson field. 8 Let us try
to repeat the derivation of the eq. (3.14) for this case.

We write down two equations - for φ+ and φ∗+ :
d2

dt2
φ+(~r, t) +m2φ+(~r, t)− ~∇2φ+(~r, t) = 0

d2

dt2
φ∗+(~r, t) +m2φ∗+(~r, t)− ~∇2φ∗+(~r, t) = 0 (3.15)

Muiltiplying the first of these equations by φ∗+ and subtracting the second multiplied by φ,
we obtain:
d

dt
[φ∗+(t, ~r)

d

dt
φ+(t, ~r)− φ+(t, ~r)

d

dt
φ∗+(t, ~r)] = ∇j [φ∗+(t, ~r)∇jφ+(t, ~r)− φ+(t, ~r)∇jφ∗+(t, ~r)]

(3.16)
so

d

dt

∫
d3r[φ∗+(t, ~r)

d

dt
φ+(t, ~r)− φ+(t, ~r)

d

dt
φ∗+(t, ~r)] =

=

∫
d3r∇j [φ∗+(t, ~r)∇jφ+(t, ~r)− φ+(t, ~r)∇jφ∗+(t, ~r)] = 0 (3.17)

since the integral in the r.h.s. over the whole space vanishes after integration by parts. We
see that the integral ∫

d3r[φ∗+(t, ~r)
d

dt
φ+(t, ~r)− φ+(t, ~r)

d

dt
φ∗+(t, ~r)] (3.18)

is conserved so we may try to interpret the quantity in square brackets as a probability
density. We define 9:

ρ(t, ~r) = iφ∗+(t, ~r)
d

dt
φ+(t, ~r)− iφ+(t, ~r)

d

dt
φ∗+(t, ~r)

def≡ φ∗+i

↔
d

dt
φ+ (3.19)

8Alternatively, one can take a negative-frequency part; however, one cannot take the meson field φ itself
for the reasons discussed below (see Eq. (3.19).

9 Not that for the KG field itself this quantity is zero because the KG field is real — that is the reason
why we take the positive-frequenbcy part of it φ+(x) rather than the field itself.
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As we demonstrated, the integral of this quantity over the whole space is conserved. To
go ahead with probabilistic interpretation, we must show that it is also positive (cf. eq.
(3.14)). We have

∫
d3rρ(t, ~r) =∫
d3r

∫ d3p
(2π)3

d3p′

(2π)3
iφ(~p)φ∗(~p′)[eiEpt−i~p~r(−iE′p)e−iE

′
pt+i~p

′~r − e−iE′pt+i~p′~r(−iEp)eiEpt−i~p~r

=
∫ d3p

(2π)3
2Epφ(~p)φ∗(~p) (3.20)

which is surely positive.
The last remaining issue is whether we can ascribe a meaning of the local probability

density for the function ρ(x). In general, the function (3.19) can have arbitrary sign, but
for the stationary case described by wave function

φ+(x) = e−iωtφ(~r) (3.21)

we have
ρ(t, ~r) = 2ω|φ(~r)|2 (3.22)

which means that for stationary state the function (3.19) has the meaning of the probability
density as in the non-relativistic quantum mechanics. In general, we cannot define the
probability distribution for the system of π-mesons which merely reflects the fact that in
the relativistic quantum mechanics the number of the particles is not conserved.

So, one π-meson in a box with side L is described by the wave function

φ+(x) =
1√

2EpL3
e−iEpt+i~p~r (3.23)

It is easy to see that

1

2EpL3

∫ L

−L
d3reiEpt−i~p~ri

↔
d

dt
e−iEpt+i~p~r = 1 (3.24)

1

2EpL3

∫ L

−L
d3reiEpt−i~p~ri

↔
d

dt
e−i|

~p′|t+i~p′~r = 0, p 6= p′ (3.25)

(Strictly speaking, the momenta in a box are quantized : ~p~n = 2π
L ~n and the integral (3.25)

vanishes for ~n 6= ~n′). In practice it is more convenient to use wave functions without the
1

L3/2 factor.

φ~p(x) =
1√
2Ep

e−iEpt+i~p~r (3.26)

These wave functions are normalized according to

∫
d3rφ∗~p(t, ~r)i

↔
d

dt
φ~p′(t, ~r) = (2π)3δ(~p− ~p′) (3.27)

– 25 –



which is similar to usual normalization condition for continuous spectrum in non-relativistic
quantum mechanics ∫

d3rΨ†~p(~r, t)Ψ~p′(~r, t) = (2π)3δ(~p− ~p′) (3.28)

The function (3.26) describes a relativistic particle with mass m. moving with the momen-
tum ~p.

3.2 Propagation amplitude of the free π-meson

Let us recall the non-relativistic case considered in Lecture I. The free non-relativistic
propagation function was:

KNR
0 (x2, x1) =

∫
d3p

(2π)3
Ψ~p(x2)Ψ∗~p(x1) (3.29)

where
Ψ~p(x) = e−i

~p2

2m
t+i~p~r x = (t, ~r) (3.30)

is the non-relativistic plane wave with momentum ~p. The meaning of the propagation
function is that it gives the "time evolution" of the wave function, namely

Ψ(x2) =

∫
d3r1K

NR(x2, x1)Ψ(x1) (3.31)

so for the non-relativistic plane waves this reduces to

Ψ~p(x2) =

∫
d3r1K

NR
0 (x2, x1)Ψ~p(x1) (3.32)

since the momentum of the plane wave is conserved in the non-interacting theory. In the
relativistic theory we shoud expect the same result, namely that the non-interacting plane
wave should remain intact. In order to write down this property of the relativistic plane
wave, we note that for the non-relativistic case the formula (3.32) is a direct consequence
of orthogonality of plane waves:

Ψ~k
(x2) =

∫
d3p

(2π)3
Ψ~p(x2)(2π)3δ(~k − ~p) =

∫
d3p

(2π)3
Ψ~p(x2)

∫
d3r1Ψ∗~p(x1)Ψ~k

(x1) =

=

∫
d3r1

(∫
d3p

(2π)3
Ψ~p(x2)Ψ∗~p(x1)

)
Ψ~k

(x1) =

∫
d3r1K

NR
0 (x2, x1)Ψ~k

(x1) (3.33)

Let us now perform the same steps for the relativistic plane wave. Using the orthogonality
condition for the relativistic plane waves given by eq. (3.27) one gets:

φ~k(x2) =

∫
d3p

(2π)3
φ~p(x2)(2π)3δ(~k − ~p) =

∫
d3p

(2π)3
φ~p(x2)

∫
d3r1φ

∗
~p(x1)i

↔
d

dt1
φ~k(x1) =

=

∫
d3r1

(∫
d3p

(2π)3
φ~p(x2)φ∗~p(x1)

)
i

↔
d

dt1
φ~k(x1) (3.34)
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The last line in this equation can be rewitten in a form similar to the eq. (3.32) 10 :

φ~p(x2) =

∫
d3r1K0(x2, x1)i

↔
d

dt
φ~p(x1) (3.35)

where the propagation amplitude for the free plane wave has the form:

K0(x2, x1) =

∫
d3p

(2π)3
φ~p(x2)φ∗~p(x1) (3.36)

Moreover, since in the non-interacting theory the wavefunction of a relativistic particle in
an arbitrary state can be expressed as a superposition of plane waves (see eq. (3.8)) the
formula (3.35) holds for the time evolution of any wavefunction of a free particle.

Let us find an explicit form of K0. We have:

K0(t2, ~r2, t1, ~r1) =

∫
d3p

(2π)3

1

2Ep
e−iEp(t2−t1)+i~p(~r2−~r1) (3.37)

It is convenient to rewrite the propagation function (3.37) in the relativistic-invariant form.
Using the formula (1.4) for the δ-function it is easy to show that

K0(x2, x1) =

∫
d4p

(2π)4
e−ip(x2−x1)2πδ(p2 −m2)Θ(p0) (3.38)

reduces to the (3.37) after the integration over p0
11. The propagation function (3.38)

satisfies the Klein-Gordon equation:

(�2 +m2)K(x2, x1) = 0 (3.39)

(where �2 ≡ d2

dt22
− d

dx2i
d

dx2i
) with the initial condition

2i
d

dt2
K(x2, x1)|t2=t1

= (2π)3δ(~r2 − ~r1) (3.40)

Part V

3.3 Propagation of the π-meson in the external field

Let us study the interaction of our relativistic particle with the external field described by
a certain potential V (x). In the non-relativistic case the interaction with the potential was
described by the set of diagrams in Fig. 15. In particular, the first nontrivial diagram gave

10Note that it would be wrong to expect the formula exactly of the same type as eq. (3.29) φ~p(x2) =∫
d3r1K0(x2, x1)φ~p(x1) since it would mean that in order to find the function φ at any given time it is

sufficient to know this function at a certain time t = t1. Even in the classical relativistic mechanics, it is
not true: in order to find φ(x) it is nessesary to know not only the function itself at t = t1 but also its first
derivative. (Mathematically, the difference with the non-relativistic case is due to the fact that φ(x) obeys
second-order differential equation (3.1) while Schrödinger equation is of the first order in time). Note that
in our formula (3.35) the function φ(x) at time t2 is determined by both φ(x) and d

dt
φ(x) at time t1.

11 From this form it is easy to see that K0(x2, x1) corresponds to the propagation of plane waves with
positive frequencies only - due to the factor Θ(p0). The meaning of this property is that if we had a wave-
function at some time t = t1 constructed from positive frequencies the wave functions at later moments of
time will also have only positive frequencies - otherwise the probabilistic interpretation would be impossible.
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Figure 16. Non-relativistic propagation function in the first Born approximation

the contribution to the propagation function of the type∫ t2

t1

dt

∫
d3rKNR

0 (x2 − x)V (x)KNR
0 (x, x1) (3.41)

The time ordering was formalized by writing down Feynman rules in terms of Green func-
tions

GNR0 (x2 − x1) = Θ(t2 − t1)KNR
0 (x2 − x1) (3.42)

and it corresponded to causality: the non-relativistic particle was created in the point ~r1 at
time t = t1 , then it interacted with the potential at time t > t1 and finally it propagated
to the point x2 at time t2 > t.

For the relativistic particle we can also try to write down the interaction with external
potential (in the lowest order) of the form∫

dxK0(x2 − x)V (x)K0(x− x1) (3.43)

but we face the problem that the condition t2 > t > t1 cannot be imposed in the relativistic
invariant way. Indeed, the condition t > t1 is meaningful only for the time-like intervals
(x − x1)2 > 0. If the interval x − x1 is spacelike ((x − x1)2 < 0) the condition t > t1 is
not invariant and it can happen that t > t1 in one frame and t < t1 in another. So, for
the relativistic particle we must modify somehow the relation between propagation function
and Green function: our first guess of the eq. (3.42) type is not relativistic invariant 12.

So, we were not able to satisfy both the conditions
1. Propagation function (in the extenal field) should contain only positive frequencies,
2. The interaction took place at the moment of time t2 > t > t1
Thus, we must sacrifice one of these conditions in order to build relativistic description of
thew interaction of our particle with the external potential. To sacrifice (1) appears too
high a price since we abandon the probabilistic interpretation of our wave functions. We
shall try to modify the property (2) instead. Our problem is that∫ t2

t1

dt

∫
d3r K0(x2 − x)V (x)K0(x− x1) (3.44)

corresponding to the diagram in Fig.(16) is not relativistic invariant. Let us try to add
smth to the r.h.s. of this equation "in a minimal way" so as to get a relativistic-invariant
expression. It turns out that the following sum corresponding to the three diagrams in Fig.
(17) is relativistic invariant:

12 Everything would be OK with the relativistic invariance of the formula (3.42) if K0(x − y) = 0 for
spacelike intervals x−y but we see from the explicit form of K0 (3.37) that it is unfortunately not the case.
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∫ t2

t1

dt

∫
d3r K0(x2 − x)V (x)K0(x− x1) +

∫ t1

−∞
dt

∫
d3r K0(x2 − x)V (x)K0(x1 − x)

+

∫ ∞
t2

dt

∫
d3r K0(x− x2)V (x)K0(x− x1) (3.45)

Here the first term is (3.44) describes the situation when the particle was created in the
point ~r1 at time t = t1, propagated to the point ~r where at the the time t it interacted with
the potential and finally it was absorbed in the point ~r2 at the time t2. The interpretation
of other two terms in r.h.s. of eq. (3.45) is differrent - see Fig. 17. The second term (Fig.
17b) corresponds to the situation when the external potential creates two particles at the
moment of time t < t1, t2, they propagate (the propagation is described by our function
K0) and then one of them is annihilated in the point ~r1 at time t1 and the second in ~r2 at
time t2. Similarly, the interpretation of the third term (see Fig. 17c) is as folows: the two
particles were created at t1, ~r1 and t2, ~r2 and after that they propagated to the point t, ~r
where they had been absorbed by the potential 13.

Now let us prove that the sum (3.45) is relativistic invariant. The best way to do this
is to rewrite the r.h.s. of the eq. (3.45) in the following form:∫

d4x{K0(x2−x)θ(t2−t)+K0(x−x2)θ(t−t2)}V (x){K0(x−x1)θ(t−t1)+K0(x1−x)θ(t1−t)}
(3.46)

The sum of the two propagation functions (multiplied by Θ-functions) in braces in r.h.s. of
this equation is actually relativistic invariant . Indeed, using the explicit form of the free
propagation function K0 (3.37) it is easy to show that

K0(x)θ(t) +K0(−x)θ(−t) =∫ d3p
(2π)3

1
2Ep

(θ(t)e−iEpt+i~p~r + θ(−t)e−iEpt+i~p~r)

= limε→0

∫ d4p
(2π)4i

1
m2−p2−iεe

−ipx (3.47)

The last transition here needs explanation which we give below. Let us consider the integral
13 Such interpretation does not contradict conservation of energy since due to the Heisenberg uncertainity

relation ∆E∆t ∼ 1 we can create any number of particles for a short time.
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over p0 in the r.h.s. of eq. (3.47):∫
dp0

−e−ip0t

p2
0 − |~p|2 −m2 + iε

=

∫
dp0

−e−ip0t

(p0 − Ep + iε)(p0 + Ep − iε)
(3.48)

It is easy to see that at time t > 0 one can close the contour in the lower half of the complex
p0 plane (see Fig. (18)) so the result will be given by the residue in the right pole. On the

x

t>0

t<0

(k  )
0

x

Figure 18. Calculation of the integral over p0

other hand, at t < 0 one can add a contour in the upper half of the plane so the resulting
contour integral will be given by the residue in the left pole. We get∫

dp0
e−ip0t

p2
0 − E2

p + iε
= − 2πi

2Ep
e−iEptθ(t)− 2πi

2Ep
eiEptθ(−t) (3.49)

Now, substituting the eq. (3.49) in the r.h.s.of eq. (3.47) we obtain the l.h.s. of this
equation. The expression in r.h.s. of this equation is called Feynman Green function of our
scalar particle 14.

14 The second name "Feynman" reflects the fact that the poles in the integral over k0 are located as
shown in Fig. (18) which ensures that the Green function can be expressed in the sum of two propagation
functions (3.47). For any other choice of the locations of the poles (say, if both of them are above the axis)
the Green function has both positive- and negative-frequency parts propagating in time which does not
allow the probability interpretation (this was realized by Feynman).
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======================================
Indeed, it is easy to see that this function

G0(x) =

∫
d4p

(2π)4i

1

m2 − p2 − iε
e−ipx (3.50)

satisfies the inhomogenuous Klein-Gordon equation

(� +m2)G0(x) =

∫
d4p

(2π)4i
e−ipx

m2 − p2

m2 − p2
= −iδ(4)(x) (3.51)

so it is indeed the Green function of the KG equation in the mathematical sense.
We see now that the integrand in the r.h.s of eq. (3.45) is relativistic invariant and the

integration goes over the whole space so the result is also invariant. It can be described by
one Feynman diagram shown in Fig. (16) where each line corresponds now to the Feynman
Green function: ∫

d4xG0(x2 − x)V (x)G0(x− x1) (3.52)

This is the first-order correction to the Green function of the relativistic particle in the
external potential V (x). The total Green function is given by the sum of the diagrams
shown in Fig.(19) just as in the non-relativistic case, only each line now corresponds to the

+= + +...

      

x             x         x                       x         x                       x          x                                                        x                                 

G

1 2 1 212 21

V(z)                                                     V(z)                     V(z’)

Figure 19. Feynman diagrams for the interaction of the relativistic particle with the potential

Feynman Green function (3.50) so that

G(x2, x1) (3.53)

= G0(x2 − x1)− i
∫
d4zG0(x2 − z)V (z)G0(z − x1)

−
∫
d4zG0(x2 − z)V (z)G0(z − z′)V (z′)G0(z′ − x1) + ...

This Green function satisfies the equation:

(�2 + V (x2))G(x2, x1) = −iδ(4)(x2 − x1) (3.54)

which describes ppropagation of the relativistic scalar meson through the external field
V (x).

In the momentum representation the set of Feynman rules will be the same as for
the non-relativistic particle (see Lecture I and Fig. 15), only instead of the non-relativistic
propagator ( ~p

2

2m−p0− iε)−1 we should write we should write down the Feynman propagator
in the momentum space

G0(p) =
1

m2 − p2 + iε
(3.55)
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As in the non-relativistic theory, the transition matrix T (p1, p2) is obtained by the "ampu-
tation" of Green function G(p1, p2) (≡ removing the factors G0(p2),G0(p1), see eq. (2.56))
and the transition matrix "on the mass shell" T (~p1, ~p2) which determines the S-matrix
element according to eq. (2.60) is obtained by the formula similar to eq. (2.61):

T (~p1, ~p2) = T (p1, p2)|p10=Ep1 ,p20=Ep2
(3.56)

and the cross section is obtained in the same way as in lecture 3 (the only difference with the
non-relativistic case will be the trivial factors due to the different relation between energy
and momentum - for example, it will change the formula for the flux of initial particles)

It is instructive to get back the non-relativistic description for the case of small velocities
v � 1 ≡ |~p| � m. Suppose x20 > x10. For the free Green function we get

G0(x2, x1) = K0(t2, ~r2, t1, ~r1) =

∫
d3p

(2π)3

1

2Ep
e−iEp(t2−t1)+i~p(~r2−~r1) (3.57)

At small velocities Ep ' m+ |~p|2
2m so

G0(x2 − x1) ' e−imt21

2m

∫
d3p

(2π)3
e−i

|~p|2
2m

(t2−t1)+i~p(~r2−~r1) =

=
e−imt21

2m
KNR

0 (x2 − x1) =
e−imt21

2m
GNR

0 (x2 − x1) (3.58)

In the first nontrivial order the Green function is given by the sum of three expressions in
the r.h.s. of eq. (3.45). In the limit of small velocities the first term gives∫ t2

t1

∫
d3xK0(x2 − x)V (x)K0(x− x1) =

=

∫ t2

t1

∫
d3x

e−im(t2−t)

2m
KNR

0 (x2 − x)V (x)
e−im(t−t1)

2m
KNR

0 (x− x1)

=
e−imt21

2m

∫ t2

t1

∫
d3xGNR

0 (x2 − x)
1

2m
V (x)GNR

0 (x− x1) (3.59)

The last two terms in r.h.s. of eq. (3.45) are small in the NR limit. For example, the second
term reduces to∫ t1

−∞

∫
d3xK0(x− x2)V (x)K0(x− x1) =

=
e−imt21

2m

∫ t1

−∞

∫
d3xKNR

0 (x− x2)
e−2im(x10−t)

2m
V (t, ~r)KNR

0 (x1 − x) (3.60)

In the NR situation the characteristic scale of the potential is � 1
m so∫ t1

−∞
e−2im(t1−t)V (t, ~r) ' 1

2m
V (t1, ~r) (3.61)

which is small compared to the contribution (3.59) of the first term in Eq. (3.45). For
example, in the case of the time-independent potential the first term in eq. (3.45) is
proportional to ∫ t2

t1

e−it
(
|~p2|

2

2m
− |~p1|

2

2m

)
V (~r) ' 1

|~p2|2
2m −

|~p1|2
2m

V (~r) (3.62)
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so (3.61) = O(|~p|2/m2) ⊗ (3.62).
Similarly, one can prove that in general

G(x2, x1) =
e−imt21

2m
GNR(x2, x1) (3.63)

where GNR(x2, x1) is the non-relativistic Green function for the potential 1
2mV (x).

Part VI

4 Interactions of scalar mesons: the "πM model"

4.1 Interactions of particles in relativistic theory

At first let us recall how we write down Feynman diagrams for the two-particle interaction
in the non-relativistic theory. The Schrödinger equation for the two-particle interaction in
the non-relativistic quantum mechanics has the form 15:

id

dt
Ψ(t, ~r, ~r′) =

(
−∇

2

2m
− ∇

′2

2m
+ V (~r − ~r′)

)
Ψ(t, ~r, ~r′) (4.1)

where∇i ≡ d
dri

and∇′i ≡ d
dr′i

. Similarly to the case of one non-relativistic particle considered
in Sect. 1 we can introduce the two-paticle propagation function which describes the time
evolution of the solution of the two-particle Schrödinger equation (4.1):

Ψ(t2, ~r2, ~r
′
2) =

∫
d3r1

∫
d3r′1K

NR(t2, ~r2, ~r
′
2; t1, ~r1, ~r

′
1)Ψ(t1, ~r1, ~r

′
1) (4.2)

This propagation function is an exact solution of Schrödinger eq. (4.1)) with the initial
condition

KNR(t1, ~r1, ~r
′
1; t1, ~r2, ~r

′
2) = δ(~r1 − ~r′1)δ(~r2 − ~r′2) (4.3)

This initial condition will ensure that at t2 = t1 our solution in r.h.s. of eq (4.2) reduces
to initial-state wave function Ψ(t1, ~r1, ~r

′
1) 16. The (non-relativistic ) Feynman diagrams for

this propagation function have the form (see Fig. 20)

KNR(t2, ~r2, ~r
′
2; t1, ~r1, ~r

′
1) =

KNR
0 (t2 − t1, ~r2 − ~r1)KNR

0 (t2 − t1, ~r′2 − ~r′1) +∫ t2
t1
dt
∫
d3rd3r′KNR

0 (t2 − t, ~r2 − ~r)KNR
0 (t2 − t, ~r′2 − ~r′)

(−iV (~r − ~r′))KNR
0 (t− t1, ~r − ~r1)KNR

0 (t− t1, ~r′ − ~r′1) + ... (4.5)
15For the two interacting particles the potential can depend only on the separation of the particles |~r−~r′|

due to the homogeneity and isotropy of the 3-space.
16If we want to describe the scattering of two particles with initial momenta ~p1 and ~p′1 the initial state

can be taken as a superposition of free plane waves:

Ψ(t1, ~r1, ~r
′
1)
∣∣
t1→−∞

e−i
|~p1|2
2m

+i~p1~re−i
|~p2|2
2m

+i~p2~r (4.4)
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Figure 20. Non-relativistic Feynman diagrams for the two-particle interaction

It is easy to check that the series in r.h.s. of eq. (4.5) satisfies Schrödinger eq. (4.1) with

the correct initial condition (4.3). In terms of Green function GNR(t2, ~r2, ~r
′
2; t1, ~r1, ~r

′
1)

def≡
θ(t2 − t1)KNR(t2, ~r2, ~r

′
2; t1, ~r1, ~r

′
1) this series takes the form:

GNR(t2, ~r2, ~r
′
2; t1, ~r1, ~r

′
1) =

GNR0 (t2 − t1, ~r2 − ~r1)GNR0 (t2 − t1, ~r′2 − ~r′1) +∫
dt
∫
d3rd3r′GNR0 (t2 − t, ~r2 − ~r)GNR0 (t2 − t, ~r′2 − ~r′)

(−iV (~r − ~r′))GNR0 (t− t1, ~r − ~r1)GNR0 (t− t1, ~r′ − ~r′1) + ... (4.6)

The two-particle non-relativistic Green function (4.6) satisfies the inhomogenuous Schrö-
dinger equation:(

id

dt
+
∇2

2m
+
∇′2

2m
− V (~r − ~r′)

)
GNR(t, ~r, ~r′; t1, ~r1, ~r

′
1) = δ(t− t1)δ(~r − ~r1)δ(~r′ − ~r′1) (4.7)

The sum in r.h.s. of eq. (4.6) is given by the same diagrams in Fig. 20 with the lines being
Green functions instead of the propagation amplitudes.

The interaction in non-relativistic quantum mechanics in instantaneous: the upper and
lower points to which the potential is attached correspond to the same time. It is clear
that such instantaneous interaction V (|~r−~r′|)δ(t− t′) is not relativistic invariant . Instead
of instantaneous interaction, we can try to invent some type of invariant potential like
V ((x − x′)2). Since this potential depends only on the interval (x − x′)2 there will be no
problem with relativistic invariance.

It turns out however that every non-local relativistic invariant potential corresponds to
the exchange by a certain particle (or a group of particles) - in other words, each non-local
interaction can be reduced to the local ones17 (this is an experimental fact). In the simplest
case, this is the exchange by one relativistic particle shown in Fig. 21.

For definiteness, suppose that the two scattered particles are scalar mesons with the
mass M (let us call them M-mesons) which interact by exchange of π-mesons with mass m.

17 The (hypotetical) example of the true non-local interaction which cannot be reduced to the local ones
is studied in the so-called string theories
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Figure 21. The two-particle interaction as an exchange by a third particle

The elementary process here is the emission of π-meson by the M-meson (see Fig. 22) so
let us study this process first 18.

The amplitude for this emission (in the coordinate space) has the form:

G(x2, x3;x1) = i

∫
d4xN0(x2 − x)G0(x3 − x)λN0(x− x1) (4.8)

where G0 is the free relativistic Green function of the π-meson (see eq. (3.50)) and N0 so

N0(x) =

∫
d4p

(2π)4i

1

M2 − p2 − iε
e−ipx (4.9)

denotes the similar Green function for the M-meson. The quantity λ which describes the
local interaction could, in principle, depend on the point x: λ = λ(x) but due to the
uniformity and homogenuety of the space it should be constant.

x

x

x

1

2

3

x

Figure 22. The emission of π-meson (dotted line) by M-meson (denoted by solid line)

If we substitute the explicit expressions for the Green functions (3.50) and (4.9) into
the three-point Green function (4.8) we obtain:

G(x2, x3;x1) =

= iλ
∫ d−4p1

i
d−4p2
i
d−4p3
i

1
(M2−p21−iε)(M2−p22−iε)(m2−p23−iε)

∫
d4xe−ip2(x2−x)−ip3(x3−x)−ip1(x−x1)

=
∫
d−4p1d−

4p2d−
4p3 e

−ip2x2−ip3x3+ip1x1G(p1, p2, p3) (4.10)

where

G(p1, p2, p3) =
−λ(2π)4δ(p2 + p3 − p1)

(M2 − p2
1 − iε)(M2 − p2

2 − iε)(m2 − p2
3 − iε)

(4.11)

is the three-point Green function in the momentum representation (see Fig. 23). Here the
18Since the diagram below is relativistic it describes both the decay of M-meson into M-meson plus π-

meson M ⇒ M + π, the recombination M + π ⇒ M , and the annihilation MM ⇒ π (or π ⇒ MM)
depending on the relation between times t1,t2, and t3.
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Figure 23. The Green function for the emission of π-meson by M-meson in the momentum
representation

δ-function in the integrand stands for the conservation of momentum. For the future uses
it is convenient to extract the δ-function and the factor −1 from the Green function (4.11)
and define the reduced momentum-space Green function:

G(p1, p2, p3) =
λ

(M2 − p2
1 − iε)(M2 − p2

2 − iε)(m2 − p2
3 − iε)

(4.12)

Does the Green function (4.10) describe the real decay of the M-meson? The answer is
no, since we cannot satisfy all three conditions p2

1 = M2, p2
2 = M2, p2

3 = m2 if p1 = p2 +p3.
It is especially clear if we sit in the frame where this meson is at rest, so p1 = (M, 0, 0, 0).
Then after the decay we have the same meson and π-meson moving one away from the
other with some relative momentum ~p. Therefore, the sum of the energies of these meson
should be

√
M2 + ~p2 +

√
m2 + ~p2 ≥ M + m, so this decay is impossible. However, it is

possible for the short periods of time due to the Heisenberg uncertainity relation ∆E∆t = 1

and therefore the Green function G(x1, x2, x3) given by eq. (4.10) is nonzero. But from
the same uncertainity relation it follows also that the Green function should vanish at large
times (greater than 1

∆E ∼
1
m). Let us demonstrate that

lim
t1→−∞,t2,t3→∞

G(x2, x3;x1) = 0 (4.13)

At t1 → −∞, t2, t3 →∞ we can close the contours of the integration over p10,p20, and p30

in eq. (4.10) in the upper half-planes so

G(x2, x3 →∞;x1 → −∞) (4.14)

=

∫
d−4p1d

−4p2d
−4p3 e

−ip2x2−ip3x3+ip1x1 −λ(2π)4δ(p2 + p3 − p1)

(p2
10 −M2 − ~p2

1 + iε)(p2
20 −M2 − ~p2

2 − iε)(p2
30 −m2 − ~p2

3 + iε)

=

∫
d−3p1d

−3p2d
−3p3

iλ

2Ep12Ep22Ep3
e−iEp2x20+i~p2~r2−iEp3x30+i~p3~r3+iEp1x10−i~p1~r1(2π)4δ(p2 + p3 − p1)

= λ

∫
d−3p2d−

3p3e
−ip2(x2−x1)−ip3(x3−x1)

2πδ
(√

m2 + ~p2
3 +

√
M2 + ~p2

2 −
√
M2 + (~p2 + ~p3)2

)
8
√
m2 + ~p2

3

√
M2 + ~p2

2

√
M2 + (~p2 + ~p3)2

As we demonstrated above, there is no point in the momentum space where the argument
of the δ-function vanish so the result is zero.

Let us return now to the scattering of two M-mesons shown in Fig. 20. Since we know
now the amplitude of the elementary process corresponding to the splitting (or recombi-
nation) of the M-meson we can write the amplitude of the scattering by exchange of one
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π-meson . We have

G(x2, x
′
2;x1, x

′
1) = (iλ)2

∫
d4zd4z′N0(x2 − z)N0(z − x1)G0(z − z′)N0(x′2 − z′)N0(z′ − x′1)

(4.15)
Using the explicit form of the free Green functions (3.50) and (4.9) we obtain

G(x2, x
′
2;x1, x

′
1) (4.16)

= (iλ)2

∫
d4zd4z′

∫
d−4p1

i

d−4p′1
i

d−4p2

i

d−4p′2
i

d−4p

i

× e−ip1(z−x1)−ip2(x2−z)−ip′1(z′−x′1)−ip′2(x′2−z′)−ip(z−z′)

(M2 − p2
1 − iε)(M2 − p′21 − iε)(M2 − p2

2 − iε)(M2 − p′22 − iε)(m2 − p2 − iε)

The integration over z and z′ yields two δ-functions which we can rewrite as follows:

δ(p2 − p1 − p)δ(p′1 − p′2 − p) = δ(p2 − p1 − p)δ(p2 + p′2 − p1 − p′1)) (4.17)

The first of the δ-functions in the r.h.s. of this equation was used to perform the integration
over p while the last one stands in the final answer and reflects the conservation of the
momentum for the MM-scattering so we get

G(x2, x
′
2;x1, x

′
1) (4.18)

= iλ2

∫
d−4p1d−

4p′1d
−4p2d−

4p′2(2π)4δ(p1 + p′1 − p2 − p′2)

× e−ip
′
1x
′
1−ip′2x′2+ip1x1+ip2x2

(M2 − p2
1 − iε)(M2 − p′21 − iε)(M2 − p2

2 − iε)(M2 − p′22 − iε)(m2 − (p1 − p2)2 − iε)

It is convenient to rewrite Eq. (4.18) in terms of the momentum-space Green function:

G(x2, x
′
2;x1, x

′
1) =∫ d4p1

(2π)4
d4p′1
(2π)4

d4p2
(2π)4

d4p′2
(2π)4

eip
′
1x
′
1−ip′2x′2+ip1x1−ip2x2G(p2, p

′
2; p1, p

′
1) (4.19)

where the Green function corresponding to the diagram in Fig. 24a has the form:

Ga(p2, p
′
2; p1, p

′
1) = i(2π)4δ(p1 + p′1 − p2 − p′2)Ga(p2, p

′
2; p1, p

′
1) (4.20)

Ga(p2, p
′
2; p1, p

′
1) =

λ2

(M2 − p2
1 − iε)(M2 − p′21 − iε)(M2 − p2

2 − iε)(M2 − p′22 − iε)(m2 − (p1 − p2)2 − iε)

(here again we introduced the reduced Green function G with the δ-function excluded).
We put label(a) here because except the diagram shown in Fig. (24a) there can be other
possible processes shown in Fig. 24b and c.

In a similar way we can obtain the explicit expressions for contributions of the diagrams
Fig. 24b and c. :

Gb(p2, p
′
2; p1, p

′
1) =

λ2

(M2 − p2
1 − iε)(M2 − p′21 − iε)(M2 − p2

2 − iε)(M2 − p′22 − iε)(m2 − (p′1 − p2)2 − iε)

Gc(p2, p
′
2; p1, p

′
1) =

λ2

(M2 − p2
1 − iε)(M2 − p′21 − iε)(M2 − p2

2 − iε)(M2 − p′22 − iε)(m2 − (p1 + p′1)2 − iε)
(4.21)
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Figure 24. The Green function for the scattering of M-mesons by π-meson exchange in the
momentum representation

(you may note that the only difference between these expressions stems from the different
momentum flowing through the π-meson ) so the total Green function of the MM →MM

amplitude will be given by eq. (4.19) with

G(p2, p
′
2; p1, p

′
1) = Ga(p2, p

′
2; p1, p

′
1) +Gb(p2, p

′
2; p1, p

′
1) +Gc(p2, p

′
2; p1, p

′
1) (4.22)

One may check that these are all possible diagrams for the MM scattering in the second
order in λ -other diagrams as shown in Fig. 25 are simply the rewritings of the Fig. 24 in

           

p                        p

p’                       p’
1                              2

1                              2

Figure 25. Another drawing of Fig. 11b diagram

a different way.
The diagram shown in Fig. 24c is called annihilation-type diagram since it describes

not the scattering of two M-mesons by exchange of π-meson but rather the annihilation
of the pair of M-mesons into π-meson with subsequent decay of the virtual π-meson into
pair of M-mesons. Due to the relativistic invariance, the amplitude of this process must
be described by the same constant λ2 as the scattering process. Thus, the relativistic
invariance predict some relations between the amplitudes of different processes and indeed
these relations are confirmed experimentally.
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Part VII

4.2 Feynman rules for “the πM theory”

We have learned that the propagation of the free massive particles (π-meson and M-meson
in our πM model) is described by the Green functions (3.50) and (4.9) while the elementary
process of the interaction - the emission of M ⇒ M + π 19 is described by the elementary
MMπ vertex which is iλ where λ is a real number called the coupling constant for this
model. Let us return to the scattering of two M-mesons. In previous Lecture we have
considered the simplest case of the two elementary interactions and the resulting Green
function for the scattering process was ∼ λ2. But since this elementary MMπ interaction
can occur any number of times (at any place and at any time) we obtain an infinite set of
possible Feynman diagrams of the type shown in Fig. (26):

Figure 26. Typical Feynman diagrams for MM scattering

19 or M + π ⇒M , or MM ⇒ π, or π ⇒MM depending on the situation
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Let us formulate carefully the Feynman rules for calculation of Green functions (in
the coordinate space at first) in this πM theory. In order to draw all the diagrams for
the Green function with m M-meson tails and l π-meson ones G(x1, x2...xm; y1, y2...yl) one
should perform the following steps:

1. Draw the m + l end points (marking which of them correspond to M-mesons and
which to π-mesons).

2. Draw any number (n) of πMM vertices. Each vertex comes with the factor iλ/2
and there is an integration over all the space over the position of each vertex.

3. Draw all possible connections between m + l end points and n vertices. Each line
will be the Green function G0 (3.50) or N0 (4.9) depending on the type of the line (better
draw the different particles with different lines).

4. Divide the result by n!.
This 1/n! (and the factor 1/2 in front of each vertex) are the combinatorial factors that

will go away in the final answer (in some cases they do not go away entirely so it is better
to keep trace of them). Let us illustrate how this works. Suppose we want to calculate
the three-point MMπ Green function G(x1, x2, y1) in the third order in coupling constant.
Using our rules (1)-(4) we draw the following picture

3

(

3!2

x
1

z1 z2

z
3

x 2

y

)
3

i λ

Figure 27. Feynman diagrams for MMπ transition in the λ3 order: start

Now let us connect the end points and the vertices. Let us start with the point x1.
There are three possibilities : to connect it to z1, z2, or z3. For each of these variants, there
are two possibilities to connect x1 with either left or right prong of the MπM vertex. All
of these 6 possiblities give the same result: it does not matter how we call the integration
variable - z1, z2, z3 (or even @). Let us call it, say, z1. Thus, after the first step our result
is given by Fig. 28.
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x1

z1 z2

z3

x2

y

2 2!
i 3)

Figure 28. Feynman diagrams for MMπ transition in the λ3 order: step 1

Consider now the point x2. There are two possibilities: to connect it to the remaining
tail at the point z1 or to connect it to one of the points z2, z3. These to possibilities lead
to different classes of diagrams. At first, we will consider the connection to z1. There are
no combinatorial factors at this step so we simply get

(

2

x
1

z1

λ

2 2!

x 2

z

z
3

2

y

)
3

i 

Figure 29. Feynman diagrams for MMπ transition in the λ3 order: step 2, first set

Let us proceed with this picture and connect the point y. There are two ways to do
this: (1) connect the point y to the remaining tail at the point z1 (with no combinatorial
factor) and, (2) connect y to either z2 or z3 (so the combinatorial factor is 2). The picture
at this stage is given by Fig. 30
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Figure 30. Feynman diagrams for MMπ transition in the λ3 order: first set, step 3

The remaining step in both of this cases is obvious: to connect two π-meson lines (this
brings no combinatorial factor) and to connect four remaining M-meson lines. If we connect
meson lines from the same vertex the combinatorial factor is again 1 but if we connect M-
mesons belonging to different vertices this factor is two (first time there is 2 M-mesons to
choose from and second time there is only one). The final set of the diagrams for the first
set is presented in Fig. 31
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x x

z

z
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1 2

z

z
2

3
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λ

x
1 2 x x 21

y
y

2

(i  )
3

(i  )
3

48

(i  )
3

1z z
1

z
1

++

(a) (b) (c)

λ λ

Figure 31. Feynman diagrams for MMπ transition in the λ3 order: first set, finish

The first two diagrams are the examples of so-called disconnected diagrams which we
will discuss (and throw away) in a minute.
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Let us return to the step 1 and consider another possibility: the point x2 is connected
to one of the points z2 or z3. Since there are 2 of them to choose from and in both cases
we can choose left or right M-meson the combinatorial factor is 4. Thus, at this step our
picture is Fig. 32 (since the name of the integration variable is irrelevant, we called it z2).

x
1

1
z

λ

z
3

z
2

2
x

y

(i  )

2

3

Figure 32. Feynman diagrams for MMπ transition in the λ3 order: second set, step 2

Now let us connect at first the remaining M-meson lines. There are two ways to do
this shown in Fig. 33a and b. The combinatorial factor for the (a) figure is 2 while for the
(b) figure it is simply 1.
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Figure 33. Feynman diagrams for MMπ transition in the λ3 order: second set, step 3

Now we must connect the remaining π-meson lines. There are 3 possibilities for the
diagram in Fig. 33a and two for the diagram in Fig. 33b so the final picture takes the form
shown in Fig. 34 (there are no additional combinatorial factors at this step):
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Figure 34. Feynman diagrams for MMπ transition in the λ3 order: second set, finish

These diagrams and the diagrams in Fig. 31 form the complete set of Feynman diagrams
for the M ⇒M + π transition in the third order in coupling constant. Each vertex comes
with the factor iλ, each solid line is the free M-meson Green function (4.9), each dotted
line is the π-meson Green function (3.50). You may note the factors like 1/2 or 1/4 in front
of some diagrams. These are the remnants of the combinatorial factors in the numerator
(≡ number of possible ways to connect lines) and in the denominator (the initial factor

1
2nn! , see Feynman rules 2 and 4). Apart from these combinatorial factors, the rule is easy:
simply draw all the possible diagrams. There actually exist the rule how to figure out the
combinatorial factors (like 1/2 in our example) just by inspection of the symmety group of
the given diagram, but in simple cases it is easier to reobtain these factors from the rules
1-4.
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Part VIII

There are two types of Feynman diagrams: connected and disconnected. Let us compare
the expressions for , say, diagram in Fig. 31b and Fig. 31c:

G(x1, x2; y)b = (4.23)

−iλ
3

4

(∫
dz1N0(x2 − z1)N0(z1 − x1)G0(z1 − y)

)(∫
dz2dz3[N0(z2 − z3)]2G0(z2 − z3)

)
G(x1, x2; y)c = (4.24)

−iλ
3

2

∫
dz1dz2dz3N0(x2 − z1)N0(z1 − x1)G0(z1 − z3)[N0(z3 − z2)]2G0(z2 − y)

The integration over z2 + z3 in the second parentheses in r.h.s. of eq (4.23) is unrestricted
- it gives the total volume VT of the 4-space so

G(x1, x2; y)b =

(
iλ

∫
dz1N0(x2 − z1)N0(z1 − x1)G0(z1 − y)

)(
−λ

2

4
V T

∫
dz23[N0(z23)]2G0(z23)

)
(4.25)

Just for comparison note that there are no such unrestricted integrations in the contribu-
tion (4.24) of the connected diagram in Fig.31. It is easy to note that the first factor in
parentheses in the r.h.s. of eq. (4.23) is actually our Green function G(x1, x2; y) in the first
order in coupling constant (see eq. (4.8) in the previous Lecture). The second factor is the
volume of the space-time multiplied by some number (the result of integration over z23).
Such factors are called vacuum bubbles. It will be demonstrated below that these vacuum
bubbles exponentiate:∑

all vacuum bubbles = e−iV T (
∑

connected vacuum bubbles) (4.26)

and therefore∑
all Green functions =

(∑
connected Green functions

)
∗e−iV T (

∑
connected vacuum bubbles)

(4.27)
This result has nothing to do with specifics of our Green functions and vertices – it is a
general result valid for any diagram technique (another example is diagrams in statisti-
cal physics). Mathematically, it is a combinatorial property which follows from theory of
graphs.

Let us illustrate this property. When we consider Feynman diagrams of the Fig. 31b
type in higher odrers in perturbation theory our vacuum bubble can appear arbitrary num-
ber of times. After some algebra, one can see that the corresponding combinatorial factor is
1/n! where n is the number of bubbles. The expression for the contribution of this diagram
with n bubbles of Fig. 31b type has the form:

Gn bubbles(x1, x2; y) = G(1)(x1, x2; y)
1

n!
(−iV TB)n (4.28)
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Figure 35. Exponentiation of vacuum bubbles

where

B = −iλ
2

4

∫
dz23[N0(z23)]2G0(z23)

=
λ2

4

∫
dp1

(2π)4i

dp2

(2π)4i

1

(M2 − p2
1 − iε)(M2 − p2

2 − iε)(m2 − (p1 − p2)2 − iε)
(4.29)

The (infinite) constant B has the dimension of an energy density. It represents the con-
tribution of the vacuum bubble in Fig. (31b) to the shift of vacuum energy due to the
interactions. The fact that this constant is real (=B = 0) can be proved using so-called
Cutkovsky rules for imaginary parts of Feynman diagrams, see the discussion after Eq.
(4.42) below.

From Eq. (4.28) one sees that the sum of vacuum bubbles exponentiates

GFig.35 = G(1)e−iV TB (4.30)

It can be demonstrated that this properyt is true for any bubble (and for the sum of
any number of connected bubbles) so we get the exponentiation (4.27). The factor in the
exponent in eq. (4.27), given by the sum of all connected vacuum bubbles, is the shift of
vacuum energy due to the interaction. In the relativistic theory all our our Green functions
G(x1, ...yn) contain this factor e−iEvacT (where Evac = V εvac and εvac is the density of
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vacuum energy) 20 . This (infinite) factor is present in all amplitudes and has nothing to
do with the scattering of the particles so it is convenient to exclude it from the definition
of the Green functions for our transition amplitudes. So, the net result of our discussion is
that there is no need to draw vacuum bubbles.

Apart from vacuum bubbles appearing in Fig. 31 there are other diagrams in Fig. 34
which may be disregarded. Let us discuss the so-called tadpole diagram shown in Fig.??
This tadpole diagram does not actually depend on y so it is (an infinite) number which

y

Figure 36. Tadpole diagram.

gives the average value of the classical π-meson field φ in the vacuum. (Intuitively, it is
clear that if we allow the π-meson “disappear into vacuum" as shown in Fig. 36, there will
be a large number of π-mesons in the vacuum and the large number of particles corresponds
to the classical field). There are models with symmetry breaking where the average value
of the scalar (Higgs) field in the vacuum is nonzero so the tadpole diagrams are allowed.
We, however, will consider the simplest case of the theory without vacuum condensate of
π-meson s. The “no vacuum condensate” property is translated into the Feynman diagram
language as the “no tadpoles" requirement. In the case of gauge theories like QED the
property that the tadpole diagrams vanish is preserved by gauge symmetry in each order
in perturbation theory (we shall see it later). In our model we do not have any symmetry
which ensures vanishing of the tadpoles so we must preserve it ourselves in each order in
perturbation theory. To do this, we must redefine Green functions of our particles in such a
way that there would be no tadpoles. Practically, we simply do not draw them. Therefore
the set of the relevant Feynman diagrams for the M ⇒ π + M transition reduces to Fig.
37

Apart from vacuum bubbles and tadpoles there are also disconnected diagrams with the
two or more legs like shown in Fig. 38. This diagrams describe two independent processes
going on in the space so their calculation will simply reproduce the product of amplitudes
for their parts. Thus, these diagram bring no new information and we shall not bother to
draw them.

Summarising, this gives us the additional Feynman rule
5 Draw only connected diagrams without tadpoles.
Now, the rules 1-5 give us the complete set of Feynman rules for our πM model.

4.3 Feynman rules in the momentum space

In previous Lecture we have formulated Feynman rules for the calculation of Green functions
(in our πM model). Since the explicit form of the free Green function is much more simple

20 It is worth noting that in the non-relativistic theory we cannot construct vacuum bubbles ( although
the shift of vacuum energy is still present).
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Figure 37. Connected diagrams without tadpoles for M ⇒ π +M transition

Figure 38. Disconnected diagram for MMM ⇒MMMπ transition.

in the momentum space (see eq. (3.55)) one should expect that the explicit form of the
Feynman diagrams should be simpler in the momentum representation. Let us consider
the diagrams for M ⇒ π +M transition which were studied in the Born approximation in
Lecture 6. In the lowest order in perturbation theory (≡ in expansion in powers of λ) the
corresponding three-point Green function has the form (4.10). In the next order in λ2 this
Green function is given by diagrams in Fig. 34. Let us consider the diagram in Fig. 34c as
a typical example

– 48 –



k

k

k

x x

y

1 2

p

p

1 2
p

3

z z
1 2

z
3

2

1

3

Figure 39. Typical one-loop diagram for the π ⇒ π +M transition.

The corresponding three-point Green function has the form:

G(x2, y;x1) =

(iλ)3
∫ d4p1

(2π)4i
d4p2

(2π)4i
d4p3

(2π)4i
1

(M2−p21−iε)(M2−p22−iε)(m2−p23−iε)
∫
d4z1d

4z2d
4z3e

−ip2(x2−z2)−ip3(y−z3)−ip1(z1−x1)∫
d4k1

(2π)4i
d4k2

(2π)4i
d4k3

(2π)4i
e−ik2(z3−z2)−ik3(z1−z3)−ik1(z2−z1) 1

(m2−k21−iε)(M2−k22−iε)(M2−k23−iε)
(4.31)

It is easy to see that the integration over the position of each vertex gives the δ-function
reflecting conservation of the momentum in this vertex, so we obtain:

G(x2, y, x1) =

∫
d4p1

(2π)4

∫
d4p2

(2π)4

∫
d4p3

(2π)4
e−ip2x2−ip3y+ip1x1G(p1, p2, p3) (4.32)

where the Green function in the momentum space is:

G(p1, p2, p3) =

λ3

(M2−p21−iε)(M2−p22−iε)(m2−p23−iε)
∫ d−4k1

i
d−4k2
i

d−4k3
i δ−(k1 − k3 − p1)δ−(k2 − k1 + p2)δ−(k3 − k2 + p3)

1
(m2−k21−iε)(M2−k22−iε)(M2−k23−iε)

(4.33)

One may check that this structure is universal: the set of Feynman rules for the Green
function G(p1, p2, ...pn) in the momentum space is:
I. Draw all possible (but different!) diagrams with proper symmetry combinatorial factors.
II. Put G0(p) = 1

i(m2−p2−iε)
(
or N0(p) = 1

i(M2−p2−iε)
)
for each line with momentum p.

III. Put −iλ(2π)4δ(
∑
pj) in each vertex (where pj are the momenta flowing into this ver-

tex).
IV. Integrate over the momenta of internal lines (an internal line is any line that is not the
tail). Each integration over momenta comes with (2π)4 in the denominator.

These Feynman rules can be simplified even more by performing the integration using
these δ-functions. To demonstrate this, let us return to our 34c diagram and finish the
calculation. We obtain:

G(p1, p2, p1 − p2) =
λ3

(M2−p21−iε)(M2−p22−iε)(m2−p23−iε)
∫

d4k
(2π)4i

1
(m2−k2−iε)(M2−(p2−k)2−iε)(M2−(p1−k)2−iε) (4.34)
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where the reduced Green function G(p1, p2, p1−p2) was defined in previous Lecture according
to

G(p1, p2, p3) = −(2π)4δ(p1 − p2 − p3)G(p1, p2, p1 − p2) (4.35)

The expression for the reduced Green function (4.34) can be visualized as shown in Fig. 40

kp1 p2

p −k1 p −k2

p  = p −p3 1 2

Figure 40. Momentum flow for our one-loop diagram.

We see, that after taking into account the momentum conservation in each vertex there
is only one non-trivial integration (over k) corresponding to one loop. In more complicated
diagrams, there are more loop integrals. On the other hand, if one cosnsiders the so-called
tree diagrams (≡ without loops) the value of these diagrams in momentum representation
is actually already fixed by simply drawing the diagram with taking into account the mo-
mentum conservation in each vertex. For example, the πM scattering diagrams shown in
Fig. 24are given (in Born approximation) by the expressions (4.21).

Let us formulate the final set of rules for calculation of the reduced Green function in
the momentum representation. First of all, the precise definition of G(p1, p2, ...pn) is:

G(x1, x2, ...xn) =

∫
d4p1

(2π)4

d4p2

(2π)4
...
d4pn
(2π)4

e−ip1x1−ip2x2...−ipnxnG(p1, p2, ...pn)

G(p1, p2, ...pn) = (−i)n−1(2π)4δ(p1 + p2 + ...+ pn)G(p1, p2, ...pn) (4.36)

(Note that our definition of the Green function G0(p) = (m2 − p2 − iε)−1 agrees with this
general formula).

The Feynman rules for G(p1, p2, ...pn) are:
I. Draw all different connected diagrams without tadpoles taking into account the

symmetry (combinatorial) factors.
II. Draw momenta flow for each diagram taking into account conservation of the mo-

mentum in each vertex.
III. Each π-meson line with momentum p brings factor G0(p) = 1

m2−p2−iε , each M-
meson line - factor N0(p) ≡ 1

M2−p2−iε , and each vertex - factor λ

IV. There is an integration
∫

d4k
(2π)4i

for each loop.
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Homework assignment 2:.
Draw Feynman diagrams for the two-π-meson Green function in order λ4 (connected

diagrams, no tadpoles). Write down the corresponding expressions for G in the momentum
representation.

Part IX

4.4 General structure of Feynman diagrams

The that Green functions contain all the physical information about the theory - if you
calculated all the Green functions, you know everything (except maybe how to get the
cross sections from these Green functions - because this will be explained only in the next
Lecture!). In general, the Green functions are classified according to number of tails and
loops. For a given proicess, the number of tails (≡ end points) is fixed. For example, for the
MMπ ⇒ MMπ transition shown in Fig. 41 below there are four M-meson tails and two

Figure 41. MMπ ⇒MMπ transition.

pion ones. When the number of tails in fixed, the Green functions are classified according to
the number of loops - integrations over momenta. In the lowest order, there are no loops at
all, and we get so-called tree diagrams, see Fig. 42a below. It is easy to see that each extra
loop comes with the factor λ2 so if λ is small, the tree diagrams are the most important
ones and each extra loop bring additional smallness. The examples of diagrams with one
and two loops for our example are shown in Fig. 42b and c.

(a) (c)(b)

Figure 42. Examples of the tree (a), one-loop (b), and two-loop (c) diagrams forMMπ ⇒MMπ

transition.
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It is easy to check that in conventional units an extra loop brings also an additional
factor ~, so the expansion in number of loops in the expansion in “quantumness” of our
process.

It is easy to note that some of the integrals for the diagrams are divergent at large loop
momenta (it is called “an UV divergency”. The typical examples are the so-called self-energy
corrections and vertex corrections shown for example in Fig.42b and c respectively. The
analytical expression for this so called self-energy insertion is (see Fig. 43)

N (p) =
1

M2 − p2 − iε

(∫
d4k

(2π)4i

1

(M2 − (p− k)2 − iε)(m2 − k2 − iε)

)
1

M2 − p2 − iε
(4.37)

k

p p

p−k

Figure 43. Self-energy diagram

It is easy to see that the integral over k in parenthesis is actually divergent at large
k. Let us consider for simplicity the case p2 < 0 and draw the position of the poles in the
integral over k0 in the complex k0 plane. Let us take the frame where p0 = 0 (you can
always find such frame for the space-like 4-vector p. There are four poles

(k0)1,2 = ±
√
~k2 +m2 (4.38)

(k0)3,4 = ±
√

(~p− ~k)2 +M2

which are located as shown in Fig. 45
The integration goes over the real axis, and it is easy to see that we can turn the contour

of integration on 90o counterclockwise. After that, we make the substitution k0 → ik0 so
the total integral over 4-momentum k will have the Euclidean form:∫

d4k

(2π)4

1

(M2 + (p− k)2)(m2 + k2)
(4.39)

Now it is obvious that it diverges at large k. In the same way one can check that the
integral corresponding to the vertex correction is also divergent. These are the example of
UV divergencies in the field theories. There is a special procedure called renormalization
to deal with such divergencies.

We have seen that the integral∫
d4k

(2π)4i

1

(M2 − (p− k)2 − iε)(m2 − k2 − iε)
(4.40)
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Figure 44. Singularities in complex k0 plane for the self-energy integral at p2 < 0.

is real at p2 < 0. Actually, if we increase p2 it will be real until p2 = (M +m)2 and then it
will gain imaginary part corresponding to the creation of physical (on-mass-shell) particles.
Indeed, at p2 > 0 we can always find a frame where ~p = 0 so the structure of the poles in
k0 plane is as shown Fig. 45

(k0)1,2 = ±
√
~k2 +m2 (4.41)

(k0)3,4 = p0 ±
√
~k2 +M2

It is clear that you can rotate the contour until p0 is so large that the pole (4) is to the
right of the pole (1) so the dashed contour in Fig. 45 will be pinched by these two poles
when p0 ≥

√
~k2 +m2 +

√
~k2 +M2 which means that the energy p0 is sufficient to produce

two physical (on-shell) particles with momenta ~k and −~k. Since we have integration over
~k the first time it will happen at very small k so the condition of the imaginary part is
p0 ≥M +m which translates to p2 ≥ (M +m)2 in our frame. It can be demonstrated that
this imaginary part can be written as

2i=
∫

d4k

(2π)4i

1

(M2 − (p− k)2 − iε)(m2 − k2 − iε)

=

∫
d4k

(2π)4i
2πiδ((p− k)2 −M2)θ(p0 − k0)2πiδ(k2 −m2)θ(k0)) (4.42)

which is illustrated in Fig. 46 where the propagator with a cross stands for 2πiδ(M2 −
p2)θ(p0) or 2πiδ(k2 −m2)θ(k0) for M and π-mesons, respectively.

In general, imaginary parts of diagrams are given by so-called “Cutkovsky rules”: the
discontinuity (≡ 2i=) of a Feynman diagram is the sum of all possible cuts and on each cut
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Figure 45. Singularities in complex k0 plane for the self-energy integral at p2 > 0.

p−k
p p

k

Figure 46. Imaginary part of the self-energy diagram

the corresponding propagator (M2− p2− iε)−1 is replaced by 2πiδ(M2− p2)θ(p0) depicted
by the corresponding line with a cross. In our example there is only one possible cut colored
in blue in Fig. 46.

From Cutkovsky rules one immediately gets that vacuum bubbles have no imaginary
parts since conservation of energy forbids creation of physical particles from the vacuum.
Thus, the vacuum energy is real and the corresponding factor B in Eq. (4.29) is a real
(albeit infinite) number so the factor e−iV TB in Eq. (4.30) is indeed a pure phase shift
which will be canceled in all physical cross sections.
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Part X

4.5 Green functions and time evolution

To get the Feynman rules for the Green functions in the relativistic theory, we have postu-
lated that, due to locality, all interactions can be reduced to elementary interaction process
M ⇒ M + π repeated it arbitrary number of times. Technically, it means that the Green
functions for the (interacting) particles can be obtained by the convolution of the free Green
functions with the amplitude of elementary interaction - vertex. But until we also specified
the meaning of the Green functions in the relativistic theory we have actually postulated
rules for construction of some artifact which may have nothing to do with real life. So, the
next step (and actually it should be the first step) is to postulate that the meaning of the
Green functions to be the same as in the non-relativistic case - namely, that Green fuctions
describe the time evolution of our particles.

Let us recall the relation between time evolution and Green function in the non-
relativistic theory of one particle interacting with time-independent potential. In order
to study the time evolution, it is convenient to consider a finite-time scattering with the
potential turned on t = t1 and off at t = t2, see Fig. (47).

p particle
free 

px

V=V(r)   (t  -t)   (t-t  )θ θ

t

1

2
t

x
1

free 
particle

(plane 
wave) 2

22

1

1

Figure 47. The finite-time scattering setup in the NR quantum mechanics

At time t < t1 the particle moves as a plane wave (say, with momentum p1):

t < t1 : Ψ(x) = Ψp1(x) =
1

L3/2
e−i

p21
2m

+i~p~r (4.43)

As usually, x1 ≡ (t1, ~r1) etc. At time t2 > t > t1 the evolution of the particle is described
by the Green function GNR defined as a sum of Feynman diagrams (2.3.3) so

Ψ(~r2, t2) =

∫
d3r1G

NR(~r2, t2;~r1, t1)Ψi(~r1, t1) (4.44)

At time t > t2 (after the scattering) the particle again moves as a superposition of the plane
waves

t > t2 : Ψ(x) =

∫
d3p2

(2π)3
U~p2,~p1(t2, t1)Ψp2(x) (4.45)
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where the “matrix elements of the evolution matrix" U~p2,~p1(t2, t1) are given by the overlap
integrals of the wavefunction (4.44) with the plane waves:

U~p2,~p1(t2, t1) =

∫
d3r2d

3r1Ψ∗p2(x2)GNR(x2;x1)Ψp1(x1) (4.46)

The evolution matrix is the S-matrix (2.5.4) for the time-truncated potential V (r)θ(t2 −
t)θ(t− t1). In terms of usual approach to quantum mechanics the evolution operator is

U(t2, t1) = e−iH(t2−t1) (4.47)

(H = H0 + V (r) is the Hamiltionian) and

U~p2,~p1(t2, t1) = 〈~p2|e−iH(t2−t1)|~p1〉 (4.48)

where 〈~p2| and |~p1〉 are Dirac bra and ket vectors for plane waves.
In the limit t1 → −∞, t2 → ∞ our problem reduces to the scattering from the time-

independent potential V (r). (Actually, our finite-time setup with the subsequent limit
t1 → −∞, t2 →∞ is a rigorous way to approach the scattering from the time-independent
potential). It is easy to see that in this limit the matrix elements of the U -matrix reduce
to the matrix elements of the S-matrix defined by eq. (2.5.4).

lim
t2→∞

lim
t1→−∞

U~p2,~p1(t2, t1) = S(~p2, ~p1) (4.49)

In the relativistic theory we do not have the Schrödinger equation which defines the
evolution operator accordoing to (4.48), but the definition (4.46) can be generalized to the
relativistic situation. To this end, let us postulate that our Green functions obtained from
the assumption of the locality of the interaction describe the time evolution of particle just
as in the non-relativistic case. The crucial difference with the non-relativistic situation is
that the number of particles is not conserved (and therefore our time evolution operator
will be matrix in the space of states, see the discussion below).

In order to study the time evolution in relativistic quantum mechanics we will consider
the same finite-time scattering setup as in the above NR case: we switch the interaction on
at t = t1 and turn it off at t = t2, see Fig. (48).

Formally, we replace the coupling constant λ in our Feynman diagrams by the time-
dependent coupling constant λ(t) = λΘ(t− t1)Θ(t2 − t)

λ→ λΘ(t− t1)Θ(t2 − t) (4.50)

At this step we loose the relativistic invariance of our approach but it will be restored when
we take the limit t2 →∞, t1 → −∞.

Let us for simplicity take the initial state at t = t1 to be a free-particle plane wave with
momentum p1.

φ̃p1(x1) =
1√

2E1L3
e−ip1x1

∣∣∣∣
p10=E1=

√
~p21+M2

(4.51)
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Figure 48. The finite-time scattering setup in relativistic theory

(the normalization is 1 particle in the large box with side L, cf. eq. (3.23) and eq. (3.25)
so we put the label ˜ above the plane wave as in Lecture III):

∫
d3rφ̃∗~p(t, ~r)i

↔
d

dt
φ̃~p(t, ~r) = 1∫

d3rφ̃∗~p(t, ~r)i

↔
d

dt
φ̃~p′(t, ~r) = 0, ~p 6= ~p′ (4.52)

As we discussed just above, in the trivial order in λ it simply moves freely without interac-
tion so the wavefunction at the time t = t2 is the same plane wave:

φ̃p(x2) =

∫
d3R1G0(x2, x1)i

↔
d

dt1
φ̃(x1) =

1√
2p0L3

e−ipx2

∣∣∣∣∣
p0=
√
~p2+M2

(4.53)

(In this Section we denote the M-meson spatial coordinates by capital R’s).
In the lowest nontrivial order in λ there is one elementary M → Mπ vertex in our

disposal so we must have one M and one π-meson in the final state (≡ at time t = t2), see
Fig. 49. The wavefunction of this state at t = t2 has the form (see Fig. 49):

φ̃Mπ(t2, ~R2, ~r2) =

∫
d3r1G(y2, x2;x1)i

↔
d

dt1
φ̃p(x1) (4.54)
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Figure 49. The M ⇒M + π transition

and the probability to find M-meson and the π-meson at time t = t2 is:

PMπ(t2) =

∫
d3R2d

3r2φ̃
∗
πM (x2, y2)) i

↔
d

dx20
i

↔
d

dy20
φ̃πM (x2, y2)

∣∣∣∣∣∣
x20=y20=t2

(4.55)

The status of the formula for the probability to find two (and more) particles is the educated
guess which will be confirmed by the calculation of the probability conservation - just as
in the case of one-particle probability density. The form of the expression in r.h.s of eq.
(4.55) can be guessed from the consideration of the two non-interacting particles which can
be described by the wavefunction

φMπ(x, y) = φM (x)φπ(y) (4.56)

(where x = t, R and y = t, r) which is the product of two independent wavefunctions φM (x)

and φ(x). The probability density to find the M-meson in the point R and the π-meson in
the point r (at time t) is then the product of the one-particle probability densities

ρMπ(R, r) = ρM (R)ρπ(r) (4.57)

which are given by our usual expressions, see e.g. eq. (8.64). In terms of the two-particle
wavefunction this probability density (4.57) can be written down as follows:

ρMπ(R, r) = φ∗Mπ(x, y)i

↔
d

dx0
i

↔
d

dy0
φMπ(x, y)

∣∣∣∣∣∣
x0=y0=t

(4.58)

and we simply assume that for the general situation of non-factorized φMπ wave functions
the probability density is given by the same formula. The justification of this assumption
will be given below when we’ll learn that the probability defined in such a way conserves.
21

21 Let us compare this to the non-relativistic approach where we have (i) Schrödinger equation , and (ii)
interpretation of the square of the wavefunction as a probability density ρ = |Ψ|2. Both of these statements
follow from nowhere - they are guesses which are to be confirmed by the experiments. The same logic is
true for the relativistic theory - only instead of the Schrödinger equation we have (i) a set equations of the
(4.54) type describing the time evolution of the wavefunction of the initial state in terms of corresponding
Green functions and instead of the simple formula ρ = |Ψ|2 we have (ii) a set of formulas for probabilities
of the eq. (4.55) type. But the meaning is the same - both i and ii are wild guesses to be confirmed by the
experiment (and our arguments in favor of particular form for the expressions for the probability densities
like (4.55) are, in fact, the checks of self-consistency of our formulas).
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There is one more O(λ) contribution to M-meson wave function at time t2 given by the
diagram shown in Fig. 50

x x

x ’

x’’

y

1 2

2

2

2

Figure 50. Four-particle component of the wavefunction at time t2 in the λ1 order

φ̃MMMπ(t2, ~r2, ~r
′
2, ~R) (4.59)

=

∫
d3R1 G(1)(x

′
2, x
′′
2, y2)G0(x2;x1)i

↔
d

dt1
φ̃p(x1) = φ̃p(x2)G(1)(x

′
2, x
′′
2, y2)

The Green function G(1)(x2, x
′
2, y2) describes the creation of two M-mesons and one π-

meson from the vacuum (which can happen at short times due to Heisenberg uncertainty
principle ∆E∆t ∼ 1). Hereafter he label ...(i) denotes the order of perturbation theory.

In the next order in coupling constant our M-meson can emit extra π-meson or the
π-meson can decouple into MM pair 22, so we have the three-particle component of the
wavefunction in the form (see Fig. 51) The three-particle component of the wavefunction

x’’2

x ’2

x2

x1

x2

y2x1

y’
2

Figure 51. Three-particle component of the wavefunction at time t2 in the λ2 order

at time t2 in the λ2 order is a column with two elements corresponding toMππ andMMM

components of the wave function:

φ̃Mππ(t2, ~r2, ~r
′
2,
~R) =

∫
d3R1G(2)(y2, y

′
2, x2;x1)i

↔
d

dt1
φ̃p(x1)

φ̃MMM (t2, ~R2, ~R
′
2,
~R′′2) =

∫
d3R1G(2)(x2, x

′
2, x
′′
2;x1)i

↔
d

dt1
φ̃p(x1) (4.60)

22In addition, there is a bunch of diagrams with particles created from the vacuum of the Fig. 50 type
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where G(2)(x2, x
′
2, x2”;x1) and G(2)(y2, y

′
2, x2;x1) are the Green functions for the M ⇒

MMM and M ⇒ Mππ transitions, respectively. The corresponding probabilities has the
form:

PMMM (t2) =

1

3!

∫
d3R2d

3R′2d
3R′′2φ̃

∗
MMM (x2, x

′
2, x
′′
2) i

↔
d

dx20
i

↔
d

dx′20

i

↔
d

dx′′20

φ̃MMM (x2, x
′
2, x
′′
2)

∣∣∣∣∣∣
x20=x′20=x′′20=t2

PMππ(t2) =

1

2!

∫
d3R2d

3r2d
3r′2φ̃

∗
Mππ(x2, y2, y

′
2)) i

↔
d

dx20
i

↔
d

dy20
i

↔
d

dy′20

φ̃Mππ(x2, y2, y
′
2)

∣∣∣∣∣∣
x20=y20=y′20=t2

(4.61)

where the combinatorial factors 1
n! take into account the identity of the particles in the final

state. Apart from that, in this order there is a correction to the one-particle wave function
given by the diagrams in Fig. 52 which has the form:

21
x x

2
x

1
x

Figure 52. Corrections to the one-particle component of the wave function ∼ λ2

φ̃M (t2, R2) =

∫
d3R1G

(2)(x2 − x1)i

↔
d

dt1
φ̃p(x1) + φ̃p(x2)(−iV TB) (4.62)

where the vacuum bubble B is defined in Eq. (4.29). (As we shall see below, vacuum
bubbles do not contribute to probability conservation). The reason for this correction is
as follows: since the M-meson can emit π-mesons the total probability to discover a single
M-meson in the space at time t2 should be less than 1 because there is a positive probability
to create some other particles, e.g. π-mesons, and on the other hand, the total probability
to have anything should be conserved.

Let us check the conservation of probability in the second order in λ. In this order the
wavefunction of our state (which was a plane wave at t = t1) is a four-row vector (in the
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so-called Fock space):

φ̃M (x2) = (1− iV TB)φ̃p(x2) +

∫
d3R1G(2)(x2 − x1)i

↔
d

dt1
φ̃p(x1) (4.63)

φ̃Mπ(x2, y2) =

∫
d3R1G(1)(y2, x2;x1)i

↔
d

dt1
φ̃p(x1)

φ̃MMM (x2, x
′
2, x”2) =

∫
d3R1G(2)(x2, x

′
2, x”2;x1)i

↔
d

dt1
φ̃p(x1)

φ̃Mππ(x2, y2, y
′
2) =

∫
d3R1G(2)(y2, y

′
2x2;x1)i

↔
d

dt1
φ̃p(x1)

φMMMπ(x2, x
′
2, x”2, y2) = G(1)(x

′
2, x”2, y2)

∫
d3R1G0(x2;x1)i

↔
d

dt1
φ̃p(x1) = φ̃p(x2)G(1)(x

′
2, x”2, y2)

Thus, the probability to find one M-meson at time t2 is (cf eq. 4.62):

PM (t2) =

∫
d3R2φ̃

∗
M (t2, R2)i

↔
d

dt2
φ̃M (t2, R2) (4.64)

the probability to find M-meson and one π-meson is given by Eq. (4.55), the probability
to find three M’s and π-meson is

PMMMπ(t2) =
1

2!

∫
d3R2d

3R′2d
3R′′2d

3r2 (4.65)

× φ̃∗MMMπ(x2, x
′
2, x
′′
2, y2)) i

↔
d

dx20
i

↔
d

dx′20

i

↔
d

dx′′20

i

↔
d

dy20
φ̃MMMπ(x2.x

′
2, x
′′
2, y2)

∣∣∣∣∣∣
x20=x′20=x′′20=y20=t2

and that is all, because the probability to find three particles is ∼ λ4 at best, see Eq. (4.61).
So, if we sum all the probabilities in the order up to λ2, we obtain:

PM (t2) + PMπ(t2) + PMMMπ(t2) = 1 + (−iV TB) + iV TB (4.66)

+

∫
d3R1d

3R2φ̃
∗
p(x2)i

↔
d

dt2
G(2)(x2 − x1)i

↔
d

dt1
φ̃p(x1)

+

∫
d3R1d

3R2φ̃
∗
p(x2)i

↔
d

dt1
G∗(2)(x1 − x2)i

↔
d

dt2
φ̃p(x2)

+

∫
d3R1d

3R′1d
3R2d

3r2φ̃
∗
p(x
′
1)i

↔
d

dt′1
G∗(1)(x

′
1;x2, y2) i

↔
d

dx20
i

↔
d

dy20
G(1)(x2, y2;x1)i

↔
d

dt1
φ̃p(x1)

∣∣∣∣∣∣
x20=y20=t2

+

∫
d3R2d

3R′2d
3R”2d

3r2φ
∗
p′(x

′
2)G∗(1)(x2, x”2, y2) i

↔
d

dx20
i

↔
d

dx′20

i

↔
d

dx”20
i

↔
d

dy20
G(1)(x

′
2, x”2, y2)φp(x2)

∣∣∣∣∣∣
x20=x′20=x”20=y20=t2

First, one observes that the contribution of vacuum bubble cancels. As to the last four
terms in the r.h.s. of this equation, I demonstrate in the Appendix F that the sum of these
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terms vanishes and therefore the probability is conserved. One immediate consequence of
this fact is that the probability to discover the single M-boson once we switched on the
interaction is less than 1.

Part XI

In higher orders in λ we can have as many particles in our final state as we wish, so the
general form of the wavefunction at t = t2 is an infinite column:

φ̃M (x2) =

∫
d3R1G(x2 − x1)i

↔
d

dt1
φ̃p(x1)

φ̃Mπ(x2, y2) =

∫
d3R1G(y2, x2;x1)i

↔
d

dt1
φ̃p(x1)

φ̃MMM (x2, x
′
2, x”2) =

∫
d3R1G(x2, x

′
2, x”2;x1)i

↔
d

dt1
φ̃p(x1)

φ̃Mππ(x2, y2, y
′
2) =

∫
d3r1G(y2, y

′
2x2;x1)i

↔
d

dt1
φ̃p(x1)

φ̃MMMπ(x2, x
′
2, x
′′
2, y2) =

∫
d3R1G(y2, x2, x

′
2, x
′′
2;x1)i

↔
d

dt1
φ̃p(x1)

.... (4.67)

where G′s are the exact Green functions. Now we shall project these states at t = t2 into

plane waves. Note that the projection will have extra i
↔
d
dt in comparison to ordinary Fourier

transform (e.g. as in non-relativistic quantum mechanics) due to the different orthogonality
condition for our plane waves (cf. eq. (3.27):

∫
d3r φ∗~p(t, ~r) i

↔
d

dt
φ~p′(t, ~r) = (2π)3δ(~p− ~p′) (4.68)

Here our plane waves are normalized as in the continuum spectrum and thus do not have
tildes. It is convenient also to change at this point the normalization of the initial plane
wave to (4.68) so we multiply both sides of equations like (4.67) by L3/2 which effectively
means wiping the label .̃.. from both sides. Expanding the components of wavefunction into
corresponding plane waves, one has:

φM (x2) =

∫
d3p2

(2π)3
φp2(x2)U(t2, t1)p2;p (4.69)

φMπ(x2, y2) =

∫
d3p2

(2π)3

d3k2

(2π)3
φp2(x2)φk2(y2)U(t2, t1)p2,k2;p

φMMM (x2, x
′
2, x”2) =

∫
d3p2

(2π)3

d3p′2
(2π)3

d3p”2

(2π)3
φp2(x2)φp′2(x′2)φp”2(x”2)U(t2, t1)p2,p′2,p”2;p
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and so on, where

Ut2,t1(p2; p1) =

∫
d3R2d

3R1φ
∗
p2(x2)i

↔
d

dt2
G(x2, x1)i

↔
d

dt1
φp1(x1) = (2π)3δ(~p2 − ~p1)(1 +O(λ2))

Ut2,t1(p2, k2; p1) =

∫
d3R2d

3r2d
3R1φ

∗
p2(x2)φ∗k2(y2) i

↔
d

dx20
i

↔
d

dy20

∣∣∣∣∣∣
x20=y20=t2

G(x2, y2;x1)i

↔
d

dt1
φp1(x1)

Ut2,t1(p2, p
′
2, k2; p1) = ... (4.70)

The elements of the “evolution matrix” Ut2,t1(p2, ..p
(m)
2 , k2...k

(n)
2 ; p1) give the amplitudes to

observe our state (which was one-particle plane wave at t = t1) at time t = t2 as a set of m
M-mesons and n π-mesons with momenta p2, p

′
2, ...p

(m)
2 and k2, k

′
2, ...k

(n)
2 . The conservation

of the probability (4.66) in terms of operator U has the simple form:

∑
m,n

1
m!n!

∫ d3p2
(2π)3

....
d3k

(n)
2

(2π)3
U∗t2,t1(p2, ..p

(m)
2 , k2...k

(n)
2 ; q1)Ut2,t1(p2, ..p

(m)
2 , k2...k

(n)
2 ; p1)

= (2π)3δ(~p1 − ~q1) (4.71)

where the r.h.s. is not 1 because we have multiplied our initial wavefunction by L3/2 so the
normalization for the free propagation without scattering is now (4.68) rather than (4.52).

Let us prove that the formulas (4.66) and (4.71) for the conservation of the probability
are equivalent. For definiteness, consider the PMπ term (the fourth line of Eq. (4.66)). The
Mπ contribution to Eq. (4.71) has the form∫ d3p2

(2π)3
d3k2
(2π)3

U∗t2,t1(p2, , k2; q1)Ut2,t1(p2, k2; p1) (4.72)

where Ut2,t1(p2, k2; p1) is defined in eq. (4.70). We will use the property that
↔
d

dxi0
in this

definition may be replaced by 2 d
dxi0

or −2
←
d

dxi0
. At first, we shall prove that when we

integrate an arbitrary Green function with the plane wave at t = t2 the direction of the
arrow does not matter:∫

d3R2φp(x2)i

↔
d

dx20

∣∣∣∣∣∣
x20=t2

G(x2, z1, ...zn) =

= 2

∫
d3R2φp(x2)i

d

dx20

∣∣∣∣
x20=t2

G(x2, z1, ...zn)

= −2

∫
d3R2φp(x2)i

↔
d

dx20

∣∣∣∣∣∣
x20=t2

G(x2, z1, ...zn) (4.73)

where z1, ...zn may correspond to M or π meson tails. To demonstrate this, note that each
Green function G(x2, z1, ...zn) can be represented as shown in Fig. (53)

G(x2, z1, ...zn) =

∫
dz G′(z, z1, ...zn)N0(x2 − z) (4.74)
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where z is the position of the vertex where the line starting at x ends and G′(x1, ..., yn, z)

is the rest of the diagram. Also, since all the inetractions are restricted to the region t < t2
(see the setup in Fig. 48) we can replace the Green function N0(x2 − z) by the M-meson
propagation function

L0(x2 − z) =

∫
d3p

(2π)32Ep
e−iEp(t2−z0)+i~p(~R2−~z) (4.75)

(cf. 3.47). With this representation in mind, we must prove that

∫
d3R2 φ

∗
p(x2)i

↔
d

dx20

∣∣∣∣∣∣
x0=t

L0(x2 − z) =

= 2

∫
d3R2 φ

∗
p(x2)i

d

dx20

∣∣∣∣
x20=t2

L0(x2 − z)

= −2

∫
d3R2 φ

∗
p(x2)i

←
d

dx20

∣∣∣∣∣∣
x20=t2

L0(x2 − z) (4.76)

which can be easily seen from the explicit form of the plane wave and L0 (both right and
left differentiations bring the same extra factor Ep2).

Now we can return to the proof of eq. (4.72). We have seen that we can choose any
direction of the arrow in d

dt provided that we take into account the corresponding signs
and 2’s. (We have demonstrated it for the M-meson plane wave but the same proof can be
repeated for the π-meson plane wave as well).
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Let us choose the direction of the arrows as follows (x′1 = (t1, ~R′1), x1 = (t1, ~R1)):

Ut2,t1(p2, k2; p1) = 4

∫
d3R̃2d

3r̃2d
3R1φ

∗
p2(x̃2)φ∗k2(ỹ2) i

d

dx̃20
i
d

dỹ20

∣∣∣∣
x̃20=ỹ20=t2

G(x̃2, ỹ2; x̃1)i

↔
d

dt1
φp1(x1)

U∗t2,t1(p2, k2; p1) = 4

∫
d3R′2d

3r′2d
3R′1φ

∗
p1(x′1)i

↔
d

dt1
G∗(x′2, y

′
2;x′1)

[
i
d

dx′20

∣∣∣∣
x′20=t2

φp2(x′2)

][
i
d

dy′20

∣∣∣∣
y′20=t2

φk2(x′2)

]
(4.77)

If we substitute these equations into eq. (4.72) and use

2

∫
d3p2

(2π)3

[
i
d

dx′20

∣∣∣∣
x′20=t2

φp2(x′2)

]
φ∗p2(x̃2) = δ(~R′2 −

~̃R2)

2

∫
d3k2

(2π)3

[
i
d

dy′20

∣∣∣∣
y′20=t2

φk2(x′2)

]
φ∗k2(ỹ2) = δ(~r′2 − ~̃r2) (4.78)

we get (after renaming integration variables R̃2 → R2 and r̃2 → r2)∫
d3p2

(2π)3

d3k2

(2π)3
U∗t2,t1(p2, , k2; q1)Ut2,t1(p2, k2; p1) (4.79)

= 4

∫
d3R′1d

3R̃1d
3R2d

3r2φ
∗
p1(x′1)i

↔
d

dt1
G∗(1)(x

′
1;x2, y2) i

d

dx20
i
d

dy20
G(1)(x2, y2;x1)i

↔
d

dt1
φp(x1)

∣∣∣∣∣∣
x20=y20=t2

In a way similar to the proof of eq. (4.73) we can demonstrate that the direction of the
arrow in d

dx20
or d

dy20
does not matter. To this end we represent each of the Green functions

G(1)(x2, y2;x1) and G∗(1)(x
′
1;x2, y2) in the form (4.74), use the fact that x20 = t2 is larger

than any time z associated with the interaction vertex which leads to replacement of N0(G0)
by L0 (K0), and use the equation∫

d3R2N
∗
0 (z′ − x2)

d

dt
N0(x2 − z) = −

∫
d3R2

[ d
dt
N∗0 (z′ − x2)

]
N0(x2 − z).

Thus, we have reproduced the fourth line in eq. (4.66). In a similar way one can prove
that the formula (4.72) represent the conservation of probability for the terms in higher
orders in perturbation theory. Note that the conservation of probabilty in the form (4.71)
is more transparent than in the form (4.66) since it tells us that the sum of all probabilities
to observe our initial state at t = t2 as a superposition of the different plane waves is equal
to 1 (in the finite box; in the conutinuum limit it is equal to the product of δ-functions).

A very important practical case is the two-particle scattering - the time evolution of
the two-particle state. Let us consider the scattering of M-mesons as an example. At the
time t = t1 our initial state is a superposition of the two plane waves corresponding to the
two incoming M-mesons: 23

φMM (x1, x
′
1) = φp1(x1)φp′1(x′1) (4.80)

23 Here again the alternative rigorous procedure is to switch on the interaction at t = t1 and turn it off
at t = t2, then before t = t1 we indeed have the superposition of the two free plane waves with momenta
p1 and p′1 whose time slice at t = t1 coincides with ψMM (x1, x

′
1)
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As we discussed above, this state at t = t2 can be described by the infinite column

φπ(y2) (4.81)

φMM (x2, x
′
2) (4.82)

φMMπ(x2, x
′
2, y2) (4.83)

φMMππ(x2, x
′
2, y2, y

′
2) (4.84)

φMMMM (x2, x
′
2, x
′′
2, x
′′′
2 ) (4.85)

.... (4.86)

where , for example, the two-M two-π component of the t = t2 wavefunction is

φMMππ(x2, x
′
2, y2, y

′
2) =

∫
d3R1d

3R′1G(x2, x
′
2, y2, y

′
2;x1, x

′
1)i

↔
d

dx10
i

↔
d

dx′10

ψMM (x1, x
′
1)

(4.87)
and the probability to find our t = t2 state in the form of 2 M-mesons and two π-mesons is
correspondingly

ρMMππ(t2; r2, r
′
2, R2, R

′
2) = (4.88)

φ∗MMππ(x2, x
′
2, y2, y

′
2)i

↔
d

dx20
i
↔
d

dx′20
i
↔
d

dy20
i
↔
d

dy′20

∣∣∣∣
x20=x′20=y20=y′20=t2

φMMππ(x2, x
′
2, y2, y

′
2)

Again, let us project our final state on the plane waves:

φπ(y2) =

∫
d3k2

(2π)3
φk2(y2)U(t2, t1)k2;p1,p′1

φMMπ(x2, x
′
2, y2) =

∫
d3p2

(2π)3

d3p′2
(2π)3

d3k2

(2π)3
φp2(x2)φp′2(x2)φk2(y2)Ut2,t1(p2, p

′
2, k2; p1, p

′
1)

φMMππ(x2, x
′
2, y2, y

′
2) =

∫
d3p2

(2π)3

d3p′2
(2π)3

d3k2

(2π)3

d3k′2
(2π)3

φp2(x2)φp′2(x′2)φk2(y2)φk′2(y′2)Ut2,t1(p2, p
′
2, k2, k

′
2; p1, p

′
1)

... (4.89)

where

Ut2,t1(k2; p1, p
′
1) =

∫
d3r2d

3R1d
3R′1φ

∗
p2(y2)i

↔
d

dt2
G(y2, x1, x

′
1) i

↔
d

dx10
i

↔
d

dx′10

∣∣∣∣∣∣
x10=x′10=t1

φMM (x1, x
′
1)

Ut2,t1(p2, p
′
2; p1, p

′
1) =

∫
d3R2d

3R′2d
3R1d

3R′1φ
∗
p2(x2)φ∗p′2

(x′2) i

↔
d

dx20
i

↔
d

dx′20

∣∣∣∣∣∣
x20=y20=t2

G(x2, x
′
2;x1, x

′
1)

× i

↔
d

dx10
i

↔
d

dx′10

∣∣∣∣∣∣
x20=y20=t2

φMM (x1, x
′
1)

Ut2,t1(p2, p
′
2, k2; p1, p

′
1) = ... (4.90)

The elements of the “evolution matrix” Ut2,t1(p2, ..p
(m)
2 , k2...k

(n)
2 ; p1, p

′
1) give the amplitudes

to observe our (two-particle at time t1) state at time t = t2 as a set of m M-mesons and
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n π-mesons with momenta p2, p
′
2, ...p

(m)
2 and k2, k

′
2, ...k

(n)
2 . For the future uses, let us also

write down explicitly the conservation of probability for this case (cf. eq. (4.71)):

∑
m,n

1

m!n!

∫
d3p2

(2π)3
....
d3k

(n)
2

(2π)3
U∗t2,t1(p2, ..p

(m)
2 , k2...k

(n)
2 ; q1, q

′
1)Ut2,t1(p2, ..p

(m)
2 , k2...k

(n)
2 ; p1, p

′
1) =

= (2π)3δ(~p1 − ~q1)(2π)3δ(~p′1 − ~q′1) (4.91)

Part XII

4.6 S-matrix and the transition matrix

Let us summarize what we achieved in the previous section. We have considered the finite-
time scattering problem: switched the interaction on at time t = t1 and turned it off at
t = t2. If before the scattering (at t = t1) we had the free propagation of, say, two M-
mesons with momenta p1, p

′
1 then after the scattering (at t = t2) we may have any number

of particles and the amplitude of such scattering is determined by the matrix element of the
evolution matrix Ut2,t1(p2, ..p

(m)
2 , k2...k

(n)
2 ; p1, p

′
1) (where p2, ..p

(m)
2 , k2...k

(n)
2 are the momenta

of final particles). The conservation of the probability for such 2⇒ m+n scattering process
is given by eq. (4.91).

Now let us take the limit t1 → −∞, t2 → ∞ which correspond to the scattering
experiments in our macroworld. Then the 2 ⇒ m + n process will look as follows. At the
remote past (at t1 → −∞) we had the two freely moving M-mesons with momenta p1 and
p′1. After the scattering we can observe any number of particles (allowed by the energy
conservation) with the probability determined by the corresponding S- matrix element

S(p2, ..p
(m)
2 , k2...k

(n)
2 ; p1, p

′
1)

def≡ limt1→−∞,t2→∞ Ut2,t1(p2, ..p
(m)
2 , k2...k

(n)
2 ; p1, p

′
1) (4.92)

It is easy to note that our definition of the S-matrix is a straightforward generalization
of the similar definition (2.48) for the non-relativistic theory. These matrix elements were
defined as the coefficient functions of the projection of the final state on the plane waves -
see e.g. eq. (2.92). The only difference is that in the relativistic case our wavefunction is an
infinite column of the many-particle components φM..Mπ...π representing different possible
outcomes for our scattering process, so our S-matrix has a complicated matrix structure.
But for each given element of the S-matrix the formula is very similar to eq. (2.48). For
example, the explicit formula for the matrix element describing theMM ⇒MM transition
is:

S(p1, p
′
1;→ p2, p

′
2) = limt1→−∞, t2→∞

∫
d3R2d

3R′2d
3R1d

3R′1 (4.93)

φ∗p2(x2)φ∗p′2
(x′2) i

↔
d

dx20
i
↔
d

dx′20

∣∣∣∣
x20=y20=t2

G(x2, x
′
2;x1, x

′
1) i

↔
d

dx10
i
↔
d

dx′10

∣∣∣∣
x10=y10=t1

φp1(x1)φp′1(x′1)

One may recall that in the non-relativistic case the connection between the matrix
elements of the S-matrix and the Green functions had a much simpler form in the momentum
representation. This is also true for the relativistic theory. Let us derive such formula for our
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example -MM ⇒MM transition. The Green function G(x2, x
′
2;x1, x

′
1) can be represented

as follows:

G(x2, x
′
2;x1, x

′
1) = N0(x′2 − x′1)N0(x2 − x1)+∫

dz2dz
′
2dz1dz

′
1N0(x2 − z2)N0(x′2 − z′2)Gamp(z2, z

′
2; z1, z

′
1)N0(z1 − x1)N0(z′1 − x′1)(4.94)

where the first term corresponds to the free propagation without scattering and theGamp(z2, z
′
2; z1, z

′
1)

is the Green function with amputated legs, see Fig. 54 24
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Figure 54. Total Green function for MM ⇒ MM scattering as a sum of the disconnected and
connected parts

Now, since t1 → −∞, t2 → ∞ we can replace each of the Green functions N0 in eq.
(4.94) by the corresponding propagation function L0 (cf. eq. 3.2.9)

L0(t2, ~r2, t1, ~r1) =

∫
d3p

(2π)3

1

2
√
|~p|2 +M2

e−i
√
|~p|2+M2(t2−t1)+i~p(~r2−~r1) (4.95)

so we obtain

G(x2, x
′
2;x1, x

′
1)

t1→−∞, t2→∞
= L0(x2 − x1)L0(x′2 − x′1)+∫

dz2dz
′
2dz1dz

′
1L0(x2 − z2)L0(x′2 − z′2)Gamp(z2, z

′
2; z1, z

′
1)L0(z1 − x1)L0(z′1 − x′1)(4.96)

Now let us substitute this formula in our definition of the S-matrix element (4.93). Using
the formulas∫

d3R2φ
∗
p2(x2)i

↔
d

dx20
L0(x2 − z2) =

1√
2E2

eip2z2
∣∣∣∣
E2≡p20=

√
~p22+M2

= φ∗p2(z2)

∫
d3R1L0(z1 − x1)i

↔
d

dx10
φp1(x1) =

1√
2E1

e−ip1z1
∣∣∣∣
E1≡p10=

√
~p21+M2

= φp1(z1) (4.97)

24 As we mentioned above, the non-connected diagrams of the Fig. 38 type bring no additional information
so it is not nessesary to write them down. But here we want to keep such term for a while for completeness.
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we can reduce the expression (4.93) to the Fourier transform of the amputated Green
function times some simple factors:

S(p2, p
′
2; p1, p

′
1) = (2π)6δ(~p2 − ~p1)δ(~p′2 − ~p′1)+ (4.98)∫

dz1dz2dz
′
1dz
′
2
eip2z2+ip

′
2z
′
2−ip1z1−ip

′
1z
′
1√

2E2

√
2E′2
√

2E1

√
2E′1

Gamp(z2, z
′
2; z1, z

′
1)

∣∣∣∣
p20=E2,p′20=E′2,p10=E1,p′10=E′1

= 1√
2E2

1√
2E′2

1√
2E1

1√
2E′1

Gamp(p2, p
′
2; p1, p

′
1)

∣∣∣∣
p20=E2,p′20=E′2,p10=E1,p′10=E′1

where Ei =
√
~p2
i +M2.

In the next section we will demondtrate that this pattern is general: the element of
S-matrix for the arbitrary m + n ⇒ m′ + n′ transition is given by the amputated Green
functions on the mass shell times factors 1√

2Ei
for each particle.

As we have seen above, the (non-reduced) Green function in the momentum represen-
tation contains the δ - function corresponding to the conservation of the overall momentum.
As in the case of thr non-relativistic scattering, it is convenient to introduce a transition
matrix (T-matrix) with this δ-function excluded. We define:

S(p2, p
′
2; p1, p

′
2) = (4.99)

(2π)6δ(~p2 − ~p1)δ(~p′2 − ~p′1) + (2π)4δ(p2 + p′2 − p1 − p′1) 1√
2E2

1√
2E′2

1√
2E1

1√
2E′1

iT (p2, p
′
2; p1, p

′
1)

It is easy to see that the transition matrix is the amputated reduced Green function
G(p2, p

′
2; p1, p

′
1) on the mass shell (see eq. 4.36):

T (p2, p
′
2; p1, p

′
1) = lim

p21,p
,2
1 ,p

2
2,p

,2
2 →M2

(p2
1 −M2)(p,21 −M

2)(p2
2 −M2)(p,22 −M

2)G(p2, p
′
2; p1, p

′
1)

(4.100)

4.7 T-matrix and cross section for MM scattering

Let us now calculate the cross section of theMM ⇒MM scattering in the same way as we
have done for the non-relativistic case (see Lecture III). Again, it is convenient to consider
for a moment the plane waves φ̃~p(x) (4.51) normalized to 1 particle per volume L3, see
eq. (4.52)). The probabilitry of the transition is proportional to the square of the matrix
element of the S-matrix (since it is the S-matrix who has a meaning of the probability
amplitude, see eq. (4.92)):

Wfi =
[(2π)4δ(p2 + p′2 − p1 − p′1)]2

2E22E′22E′12E1
|T̃ (p2, p

′
2; p1, p

′
1)|2 (4.101)

where
T̃ (p2, p

′
2; p1, p

′
1) =

1

L6
T (p2, p

′
2; p1, p

′
1) (4.102)

As usual, label˜means a T-matrix for the scattering of plane waves normalized according
to (4.52). The eq. (4.101) is the probability of the transition (from the initial state of two
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M-mesons with momenta p1, p
′
1 to the final MM state with momenta p2 and p′2) anywhere

in the space and time. Therefore the rate of the transition is

1

T
Wfi =

[(2π)4δ(p2 + p′2 − p1 − p′1)]2

2E22E′22E′12E1T
|T̃ (p2, p

′
2; p1, p

′
1)|2 (4.103)

where T = t2 − t1 (and has nothing to do with T-matrix!). Since the number of final
states in the momentum interval d3p is L3 d3p

(2π)3
the rate of the probability for the two initial

mesons to scatter in the interval of final states d3p2d
3p′2 is

dWfi = L6 d
3p2

(2π)3

d3p′2
(2π)3

[(2π)4δ(p2 + p′2 − p1 − p′1)]2

2E22E′22E′12E1T
|T̃ (p2, p

′
2; p1, p

′
1)|2

=
1

L6T

d3p2

(2π)3

d3p′2
(2π)3

[(2π)4δ(p2 + p′2 − p1 − p′1)]2

2E22E′22E′12E1
|T (p2, p

′
2; p1, p

′
1)|2 (4.104)

The of square the δ-function can be unmasked using the same trick as in the non-relativistic
case (see eq. (2.81):

[(2π)4δ(p2 + p′2 − p1 − p′1)]2 =

(2π)4δ(p2 + p′2 − p1 − p′1)
∫
d4xe−i(p2+p′2−p1−p′1)x = L3T (2π)4δ(p2 + p′2 − p1 − p′1)(4.105)

The rate of probability (4.104) is reduced to:

dWfi =
1

L3

d3p2

(2π)3

d3p′2
(2π)3

(2π)4δ(p2 + p′2 − p1 − p′1)

2E22E′22E′12E1
|T (p2, p

′
2; p1, p

′
1)|2 (4.106)

The last step is to divide this by flux and get the differential cross section. It is very simple
to calculate the flux in the frame where the spatial components of the two colliding M-
mesons are (anti)parallel. Then it is natural to define the flux as the number of particles
crossing the unit of area (orthogonal to the momenta ~p1 ‖ ~p′1) from both sides, i.e. as the
sum of the number of the particles crossing this area unit from left to right plus the number
of particles crossing from right to left (see Fig. 55)

1

L

1
v   v’

Figure 55. Flux for the two colliding beams

j =
|~v1|
L3

+
|~v′1|
L3

=
1

L3

(
|~p1|
E1

+
|~p′1|
E′1

)
(4.107)

Note that for the particular choice of target frame (when v′1 = 0) this expression for the flux
is |~v1|/L3 as you have seen in HW2. It is easy to see that the flux (4.107) can be rewritten
in the form:

j =
I

4E1E′1L
3

(4.108)
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where
I

def≡ 4
√

(p1p′1)2 −M4 (4.109)

is called the invariant flux 25. Substituting these formulas for flux in the expression (4.106)
we get:

dσ
def≡ 1

j
dWfi =

1

I

d3p2

(2π)32E2

d3p′2
(2π)32E′2

(2π)4δ(p2 + p′2 − p1 − p′1)|T (p2, p
′
2; p1, p

′
1)|2 (4.111)

It is easy to see that the cross section (4.112) is relativistic invariant since all the expresions
in the r.h.s. are (recall that

∫ d3p
2p0

=
∫
d4pδ(p2−M2)Θ(p0) is relativistic invariant). In order

to get rid of the δ-function let us integrate the cross section over p′2. The meaning of this
procedure is that if we want to calculate the probability of one of the mesons to scatter in
the momentum interval d3p2 without paying attention to what the second meson is doing we
must sum (≡ integrate) over all the possible momenta for the second meson. However, due
to the conservation law the momentum of the second meson is fixed so the integration over
the momentum of the second meson is trivial - this integration and δ(3)(~p′2 + ~p2 − ~p1 + ~p′1)

simply cancel each other.
We obtain:

dσ =
1

I

d3p2

(2π)34E2E′2
2πδ(E2 + E′2 − E1 − E′1)|T (p2, p

′
2; p1, p

′
1)|2 (4.112)

It is convenient to proceed further in the spherical coordinates in the center of mass frame.
In this frame

E1 = E′1, |~p1| = |~p′1|, E2 = E′2, |~p2| = |~p′2| (4.113)

so
I = 8E1|~p1| (4.114)

and also
d3p2 = p2

2dp2dΩ (4.115)

where Ω is the spherical angle in our c.m. frame. Then our expression for the cross section
(4.112) reduces to

dσ =
1

8E1|~p1|
p2

2dp2dΩ

(2π)34E2
2

2πδ(2E2 − 2E1)|T (p2, p
′
2; p1, p

′
1)|2 (4.116)

To get rid of the remaining δ-function let us integrate this expression over the final energy
E2. The meaning of this integration is as follows: since we are not interested in the energy
of final particle, we must sum over all the possible energies (but due to the conservation

25 If the masses of two colliding particles are different (say M and M ′) the eq. (4.107) is still true (it just
counts the number of particles) but the invariant flux takes the form

I
def≡ 4

√
(p1p′1)2 −M2M ′2 (4.110)

where p is the momentum of the particle with mass M and p′ with mass M ′.
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of energy E2 is actually fixed). The final expression for the differential cross section of the
scattering in the element of spherical angle Ω in the c.m. frame has the form:

dσ

dΩ
=
|T (p2, p

′
2; p1, p

′
1)|2

256E2
1π

2
(4.117)

The last step is to plug in the formula for the T-matrix (in the Born approximatiuon).
First, the reduced Green function is given by eq. (4.22), see Fig. 24. Amputating the
external legs we get the following expression for the T-matrix (see eq. (4.100)):

T (p2, p
′
2; p1, p

′
1) =

λ2

m2 − t− iε
+

λ2

m2 − u− iε
+

λ2

m2 − s− iε
(4.118)

where

s = (p1 + p′1)2

t = (p1 − p2)2

u = (p1 − p′2)2 (4.119)

are the so-called Mandelstam variables for the 2 ⇒ 2 particle scattering. These variables
are not independent: one may check that

s+ t+ u = 4M2 (4.120)

so only two of them are independent. The three terms in r.h.s. of eq. (4.118) correspond
to the contributions of the diagrams in Fig. 24 a,b, and c, respectively. In the c.m. frame
Mandelstam invariants take the form:

s = 4E2
1 , t = −4|~p1|2 sin2

(
θ

2

)
, u = −4|~p1|2 cos2

(
θ

2

)
(4.121)

where, as usually, θ is the angle between the initial momentum ~p1 and the final momentum
~p2. So, the final answer for the differential cross section is:

dσ

dΩ
=

λ4

256E2
1π

2

(
1

m2 + 4|~p1|2 sin2( θ2)
+

1

m2 + 4|~p1|2 cos2( θ2)
− 1

4E2
1 −m2

)2

(4.122)

The total cross section is obtained by integration of eq. (4.122) over the spherical angle:

σtot =
1

2

∫
dΩ

λ4

256E2
1π

2

(
1

m2 + 4|~p1|2 sin2( θ2)
+

1

m2 + 4|~p1|2 cos2( θ2)
− 1

4E2
1 −m2

)2

(4.123)

where the factor 1
2 is due to the fact that the two M-mesons in the final state are identical

26. Performing the integration over dΩ = 2π sin θdθ, one obtains:

σtot (4.124)

=
λ4

64πs

[(
1

|~p1|2(2|~p1|2 +m2)
− 2

|~p1|2(s−m2)

)
ln(1 +

4|~p1|2

m2
) +

4

m2(m2 + 4|~p1|2)
+

2

(s−m2)2

]
26 If you move your detector around the whole sphere you’ll register each event twice. In other words, if

you want to register each event only once, you should move your detector only over , say, upper semishpere,
since the recoil M-meson will fly into the lower semishpere.
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where |~p1|2 = s
4 −M

2.
Let us compare our answer with the non-relativistic limit which should correspond to

the MM scattering in the Yukawa potential. Suppose that M � m and suppose that the
momenta of the incoming (and outgoing) M-mesons are small in comparison to M (but not
necessarily to m). Then

~p1 = M~v1, ~p2 = M~v2, E1 = M (4.125)

It is easy to see that in the non-relativistic limit the last term in r.h.s. of eq. (4.122) is
small in comparison to the first two ones, so we obtain:

dσ

dΩ
=

λ4

256M2π2

(
1

m2 + 4|~p1|2 sin2( θ2)
+

1

m2 + 4|~p1|2 cos2( θ2)

)2

(4.126)

Now let us recall the non-relativistic result for the scattering from Yukawa potential
(HW1). If the particle with mass µ and momentum ~p1 is scattered from the Yukawa
potential (2.86), the differential cross section has the form:

dσ

dΩ
=

(
2µV0

α2 + 4|~p1|2 sin2( θ2)

)2

(4.127)

The cross section for the scattering of the two identical particles with mass M interacting
by (Yukawa) potential in the c.m. frame can be reduced to one-particle scattering with
the effective mass µ = M

2 so the differential cross section for the MM scattering with the
Yukawa potential interaction is:

dσ

dΩ
=

(
MV0

α2 + 4|~p1|2 sin2( θ2)
+

MV0

α2 + 4|~p1|2 cos2( θ2)

)2

(4.128)

where we have added the exchange term corresponsing to the case of the scattering in the
angle 180o − θ which is undistinquishable from the scattering in the angle θ so we must
add the amplitudes rather than the probabilities (cross sections). Now we see that the two
expressions (4.126) and (4.128) are actually identical if one makes the identification:

α = m, V0 =
λ2

16πM2
(4.129)

The first of these properties tells us that the range of the Yukawa potential 1
α is determined

by the inverse π-meson mass, and indeed 1fm' (140MeV )−1. The second of these proper-
ties enable us to relate the coupling constant λ to the “experimentally observed” Yukawa
constant V0. In this artificial πM model it has not much sense, but in the case of electro-
dynamics of π-mesons this is the way how we will relate the π-meson-photon vertex to the
experimentally obseved electric charge.

Homework assignment 3.

Suppose we have two sorts of M-mesons with masses M1 and M2 which interact with
π-mesons with the same coupling constant λ so both the M1M1π and M2M2π vertices are
equal to λ. Find the differential and total cross sections of M1M2 ⇒ M1M2 scattering in
the first nontrivial order of perturbation theory (in the c.m. frame).
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4.8 T-matrix and cross section in general case

Let us consider the general process of the πM transition shown in Fig. 56. We have the
m1 M-mesons with momenta p1, p

′
1, ..p

(m1)
1 and n1 π-mesons with momenta k1, k

′
1, ...k

(n1)
1

in the initial state and m2 M-mesons with momenta p2, p
′
2, ..p

(m2)
2 and n1 π-mesons with

momenta k2, k
′
2, ...k

(n2)
2 in the final state.

x

z

w w

w

x

y

y

x

x

y

y

z z

w

z

Figure 56. Mm1πn1 ⇒Mm2πn2 scattering

Using our definition of S-matrix (4.92) and the expressing the U-matrix in terms of the
Green functions according to (4.90) we obtain (cf. eq. (4.93):

S(p2, ...p
(m2)
2 , k2, ...k

(n2)
2 ; p1, ...p

(m1)
1 , k1, ...k

(n1)
1 ) = (4.130)

limt1→−∞, t2→∞
∫

Πj2d
3Rj22 Πl2d

3rl22 Πj1d
3Rj11 Πl1d

3rl11 φ
∗
p
j2
2

(xj22 ) i
↔
d

dx
j2
20

∣∣∣∣
x20=t2

φ∗
k
l2
2

(yl22 ) i
↔
d

dy
l2
20

∣∣∣∣
x20=t2

G(x2, ...x
m2
2 , y2, ...y

n2
2 ;x1, ...x

m1
1 , y1, ...y

n1
1 ) i

↔
d

dx10

∣∣∣∣
x10=t1

φ
p
j1
1

(xj11 )i
↔
d

dy10

∣∣∣∣
x10=t1

φ
k
l1
1

(yl11 )

As we discussed above, at t1 → −∞, t2 →∞ one can write down the corresponding Green
functions in r.h.s.of eq. (4.130) in the form (cf. eq. (4.94):

Gconnected(x2, ...x
m2
2 , y2, ...y

n2
2 ;x1, ...x

m1
1 , y1, ...y

n1
1 ) =∫

Πj2dz
j2
2 Πl2dw

l2
2 Πj1dz

j1
2 Πl1dw

l1
2 L0(x2 − z2)...L0(x

(m2)
2 − z(m2)

2 )K0(y2 − w2)...K0(y
(n2)
2 − w(n2)

2 )

Gamp(z2, ...z
m2
2 , w2, ...w

n2
2 ; z1, ...z

m1
1 , w1, ...w

n1
1 )

L0(z1 − x1)...L0(z
(m1)
1 − x(m1)

1 )K0(w1 − y1)...K0(w
(n1)
1 − y(n1)

1 ) (4.131)
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Using now the formulas∫
d3R2φ

∗
p2(x2)i

↔
d

dx20
L0(x2 − z2) =

1√
2E2

eip2z2
∣∣∣∣
E2≡p20=

√
~p22+M2

= φ∗p2(z2)

∫
d3r2φ

∗
k2(y2)i

↔
d

dy20
K0(y2 − w2) =

1√
2E2

eik2w2

∣∣∣∣
E2≡k20=

√
~k22+m2

= φ∗k2(w2)

∫
d3R1L0(z1 − x1)i

↔
d

dx10
φp1(x1) =

1√
2E1

e−ip1z1
∣∣∣∣
E1≡p10=

√
~p21+M2

= φp1(z1)

∫
d3r1K0(w1 − y1)i

↔
d

dy10
φk1(y1) =

1√
2E1

e−ik1w1

∣∣∣∣
E1≡k10=

√
~k21+m2

= φk1(w1)(4.132)

it is easy to obtain the general element of S-matrix in the form:

Sconnected(p2, ...p
(m2)
2 , k2, ...k

(n2)
2 ; p1, ...p

(m1)
1 , k1, ...k

(n1)
1 ) = (4.133)

Πj2
1√

2E
j2
2

Πl2
1√

2E
l2
2

Πj1
1√

2E
j1
1

Πl1
1√

2E
l1
1

Gamp(p2, ...p
(m2)
2 , k2, ...k

(n2)
2 ; p1, ...p

(m1)
1 , k1, ...k

(n1)
1 )

∣∣∣
E(j)=

√
(~p(j))2+M2,E(l)=

√
(~k(l))2+m2

So, the matrix element of S-matrix for the arbitrary m1 +n1 ⇒ m2 +n2 transition is given
by the amputated Green functions on the mass shell times factors 1

2Ei
for each particle.

The definition of the transition matrix is:

Sconnected(p2, ...p
(m2)
2 , k2, ...k

(n2)
2 ; p1, ...p

(m1)
1 , k1, ...k

(n1)
1 ) =

(2π)4δ(
∑

j2
p

(j2)
2 +

∑
l2
k

(l2)
2 −

∑
j1
p

(j1)
1 −

∑
l1
k

(l1)
1 )Πj2

1√
2E

j2
2

Πl2
1√

2E
l2
2

Πj1
1√

2E
j1
1

Πl1
1√

2E
l1
1

iT (p2, ...p
(m2)
2 , k2, ...k

(n2)
2 ; p1, ...p

(m1)
1 , k1, ...k

(n1)
1 ) (4.134)

If we recall now the connection (4.36) between the Green function G and the reduced Green
function G we see that the transition matrix is the amputated reduced Green function
G(p2, ...p

(m2)
2 , k2, ...k

(n2)
2 ; p1, ...p

(m1)
1 , k1, ...k

(n1)
1 ) on the mass shell 27:

T (p2, ...p
(m2)
2 , k2, ...k

(n2)
2 ; p1, ...p

(m1)
1 , k1, ...k

(n1)
1 ) =

lim(p(j))2→M2, (k(l))2→m2 Πj2 [(p
(j2)
2 )2 −M2]Πl2 [(k

(l2)
2 )2 −m2]

Πj1 [(p
(j1)
1 )2 −M2]Πl1 [(k

(l1)
1 )2 −m2]G(p2, ...p

(m2)
2 , k2, ...k

(n2)
2 ; p1, ...p

(m1)
1 , k1, ...k

(n1)
1 )(4.135)

Eq. (4.135) is the desired general expression for the transition matrix. Together with
Feynman rules I-V for the reduced Green functions it gives a complete set of prescriptions
for calculating of the probability of any transition in our model.

27 Note that Gamp = i(2π)4δ(
∑
p2 +

∑
k2 −

∑
p1 −

∑
k1)(−1)m1+n1+m2+n2Gamp because when we

amputate G we remove 1
i(m2−p2−iε) with each leg, whereas when we amputate G we remove 1

(m2−p2−iε) .
The extra i for each leg accounts for the difference between this formula and eq. (4.36).
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Part XIII

4.9 Cross section for 2⇒ many particles scattering and optical theorem

From the practical point of view, a typical scattering process observed in the accelerator
experiments has two particles in the initial state and arbitrary number of particles in the
final state (as many as the initial energy permits). Let us write down the differential cross
section for such 2⇒ m+n transition shown in Fig. 57 (for definiteness, we take 2 M-mesons
in the initial state)

x

x

y

y

z
x z

w

w

z

x’
z’

Figure 57. MM ⇒Mmπn scattering

The relation between S and T-matrices (4.134) takes the form:

Sconnected(p2, ...p
(m2)
2 , k2, ...k

(n2)
2 ; p1, p

′
1) =

(2π)4δ(
∑

j2
p

(j2)
2 +

∑
l2
k

(l2)
2 − p1 − p′1) 1√

2E1

1√
2E′1

Πj2
1√

2E
(j2)
2

Πl2
1√

2E
(l2)
2

iT (p2, ...p
(m2)
2 , k2, ...k

(n2)
2 ; p1, p

′
1) (4.136)

Similarly to the case of MM ⇒MM scattering, the probability rate of the transition from
the state with momenta p1, p

′
1 to the final states where the momentum of the first M-meson

lies in the interval d3p2 around the momentum ~p2, the second in the interval d3p′2 around
the momentum ~p′2,... and the momentum of n2th π-meson in the interval d3k

(n2)
2 around

~k
(n2)
2 has the form:

1

T
dWfi = Πj2L

3 d3pj22

(2π)32E
(j2)
2

Πl2L
3 d3kl22

(2π)32E
(l2)
2

[(2π)4δ(
∑

j2
p

(j2)
2 +

∑
l2
k

(l2)
2 − p1 − p′1)]2

2E′12E1T

|T̃ (p2, ...p
(m2)
2 , k2, ...k

(n2)
2 ; p1, p

′
1)|2

=
1

L6T
Πj2

d3pj22

(2π)32E
(j2)
2

Πl2

d3kl22

(2π)32E
(l2)
2

[(2π)4δ(
∑

j2
p

(j2)
2 +

∑
l2
k

(l2)
2 − p1 − p′1)]2

2E′12E1

|T (p2, ...p
(m2)
2 , k2, ...k

(n2)
2 ; p1, p

′
1)|2 (4.137)

Here again T = t2 − t1 and we have used the connection

T̃ (p2, ...p
(m2)
2 , k2, ...k

(n2)
2 ; p1, p

′
1) =

1

L3

1

L
3
2

(m+n)
T (p2, ...p

(m2)
2 , k2, ...k

(n2)
2 ; p1, p

′
1) (4.138)
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between T-matrix calculated for the plane waves normalized by the condition of one particle
per volume L3 and the continuum-spectrum condition (3.27). Making again use of the
formula

[(2π)4δ(
∑
j2

p
(j2)
2 +

∑
l2

k
(l2)
2 −p1−p′1)]2 = L3T (2π)4δ(

∑
j2

p
(j2)
2 +

∑
l2

k
(l2)
2 −p1−p′1) (4.139)

(cf. eq. (4.105)) we easily obtain the time rate of the probability in the form:

1

T
dWfi = (4.140)

L−3

4E1E′1
(2π)4δ(

∑
j2
p

(j2)
2 +

∑
l2
k

(l2)
2 − p1 − p′1)|T (p2, ...p

(m2)
2 , k2, ...k

(n2)
2 ; p1, p

′
1)|2Πj2

d3p
j2
2

(2π)32E
(j2)
2

Πl2
d3k

l2
2

(2π)32E
(l2)
2

The last step is to divide this rate by the initial M-meson flux j = I
4E1E′1L

3 (see eqs.
(4.108),(4.109)). Thus, the final answer for the differential cross section ofMM ⇒Mm2πn2

scattering has the form:

dσ =
1

j

dWfi

T
= (4.141)

= 1
IΠj2

d3p
j2
2

(2π)32E
(j2)
2

Πl2
d3k

l2
2

(2π)32E
(l2)
2

(2π)4δ(
∑

j2
p

(j2)
2 +

∑
l2
k

(l2)
2 − p1 − p′1)|T (p2, ...p

(m2)
2 , k2, ...k

(n2)
2 ; p1, p

′
1)|2

Note that this expression is relativistic invariant.
The total cross section is given by integration of Eq. (4.141) over momenta of final

particles

σtot(p1, p
′
1 → any) =

= 1
I

∑
m,n

1
m!n!

∫
Πj

d3p
(j)
2

(2π)32E
(j)
2

Πl
d3k

(l)
2

(2π)32E
(l)
2

(2π)4δ(
∑

j2
p

(j2)
2 +

∑
l2
k

(l2)
2 − p1 − p′1)

T ∗(p2, ..p
(m)
2 , k2...k

(n)
2 ; p1, p

′
1)T (p2, ..p

(m)
2 , k2...k

(n)
2 ; p1, p

′
1) (4.142)

The combinatorial factor 1
m!n! reflects the fact that if you integrate over all the momenta

you’ll count each event m!n! times because mesons of the same kind are indistinguishable
(see the discussion after Eq. (4.123) ).

Let us derive now the optical theorem reflecting the property of conservation of prob-
ability (unitarity of S-matrix). The conservation of the probability for the transition of the
two M-meson state at time t = t1 into everything possible at the time t = t2 is given by eq.
(4.91):

∑
m,n

1
m!n!

∫
Πj

d3p
(j)
2

(2π)3
Πl

d3k
(l)
2

(2π)3
U∗t2,t1(p2, ..p

(m)
2 , k2...k

(n)
2 ; q1, q

′
1)Ut2,t1(p2, ..p

(m)
2 , k2...k

(n)
2 ; p1, p

′
1) =

= (2π)3δ(~p1 − ~q1)(2π)3δ(~p′1 − ~q′1) (4.143)

Taking the limit t2 →∞, t1 → −∞ we obtain:∑
m,n

1
m!n!

∫
Πj

d3p
(j)
2

(2π)3
Πl

d3k
(l)
2

(2π)3
S∗(p2, ..p

(m)
2 , k2...k

(n)
2 ; q1, q

′
1)S(p2, ..p

(m)
2 , k2...k

(n)
2 ; p1, p

′
1) =

= (2π)3δ(~p1 − ~q1)(2π)3δ(~p′1 − ~q′1) (4.144)
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In the matrix notations it reads S†S = 1.
Now, let us separate the connected part of the S-matrix according to eq. (4.136):

S(p2, ...p
(m)
2 , k2, ...k

(n)
2 ; p1, p

′
1) =

δm2δn0[(2π)3δ(~p1 − ~p2)(2π)3δ(~p′1 − ~p′2) + (2π)3δ(~p1 − ~p′2)(2π)3δ(~p′1 − ~p2)

+(2π)4δ(
∑

j2
p

(j2)
2 +

∑
l2
k

(l2)
2 − p1 − p′1) 1√

2E1

1√
2E′1

Πj2
1√

2E
j2
2

Πl2
1√

2E
l2
2

iT (p2, ...p
(m2)
2 , k2, ...k

(n2)
2 ; p1, p

′
1) (4.145)

Substituting the r.h.s. of this eq. into eq. (4.144) we obtain:

iT ∗(q1, q
′
1; p1, p

′
1)− iT (p1, p

′
1; q1, q

′
1) =∑

m,n
1

m!n!

∫
Πj

d3p
(j)
2

(2π)32E
(j)
2

Πl
d3k

(l)
2

(2π)32E
(l)
2

(2π)4δ(
∑

j2
p

(j2)
2 +

∑
l2
k

(l2)
2 − p1 − p′1)

T ∗(p2, ..p
(m)
2 , k2...k

(n)
2 ; q1, q

′
1)T (p2, ..p

(m)
2 , k2...k

(n)
2 ; p1, p

′
1) (4.146)

In order to get the total cross section, let us take the forward-scattering case: q1 = p1, q
′
1 =

p′1. It is easy to see then that the r.h.s. of equation (4.146) is the total MM ⇒everything
cross section up to the invariant flux (4.109) so we finally obtain:

=T (p1, p
′
1; p1, p

′
1) =

I

2
σtot (4.147)

This is the celebrated optical theorem: the total cross section is the imaginary part of the
forward scattering amplitude divided by invariant flux of incoming particles 28.

5 Electrodynamics of scalar particles

Part XIV

5.1 Charged π-mesons and complex Klein-Gordon field

The neutral π-meson π0 is the example of neutral scalar particles which are described by
the real scalar field. In Nature here exist also the charged scalar particles π+ and π− with
mass mπ+ = mπ− = m = 140MeV which can be described by the complex scalar field φ(x)

satisfying the Klein-Gordon equation (� +m2)φ(x) = 0. As we discussed in Sect. 2C, the
general solution of thee Klein-Gordon equation can be decomposed into the plane waves.
Similarly to the case of real scalar field we can write down

φ(x) = φ
π+
+ (x) + φ

π−∗
+ (x) =

∫
d3p

(2π)3

1√
2Ep

(
e−itEp+i~p~rC(~p) + eitEp−i~p~rD∗(~p)

)
(5.1)

28 Note that the optical theorem does not depend on the fact whether the coupling constant is small or
large and it was indeed checked experimentally for the real strong-interacting π-mesons. So, experimen-
tal test of the optical theorem is one of the verifications of our rules for of calculating the probabilities
of transitions and the whole underlying approach originating from the hypothesis of the locality of the
interactions.
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where, as usual, Ep =
√
|~p|2 +m2 29 Note that unlike eq. (3.8), the positive and negative

parts of the field in r.h.s. of eq. (5.1) are not complex conjugate since we no longer have
the condition φ = φ∗. Instead, φ∗(x) is an independent field with the expansion into plane
waves which is c.c. of eq. (5.1):

φ∗(x) = φ
π−
+ (x) + φ

π+∗
+ (x) =

∫
d3p

(2π)3

1√
2Ep

(
e−itEp+i~p~rD(~p) + eitEp−i~p~rC∗(~p)

)
(5.2)

In the case of complex field, we have not one but two quantities to which the probability
meaning can be ascribed. They are:

ρπ+(x) = φ
π+∗
+ (x)i

↔
d

dt
φ
π+
+ (x)

ρπ−(x) = φ
π−∗
+ (x)i

↔
d

dt
φ
π−
+ (x) (5.3)

and it is easy to check using the Klein-Gordon equation that they are conserved
d

dt
ρπ+(t, ~R) = i∇j [φπ+∗+ (t, ~R)∇jφπ++ (t, ~R)− φπ++ (t, ~R)∇jφπ+∗+ (t, ~R)]

d

dt
ρπ−(t, R) = i∇j [φπ−∗+ (t, ~R)∇jφπ−+ (t, ~R)− φπ−+ (t, ~R)∇jφπ−∗+ (t, ~R)] (5.4)

Thus, for the complex scalar field we have two conserved integrals,
∫
d3rρ+(t, ~r) and∫

d3rρ−(t, ~r), rather than one as in the case of real scalar field. Taking into considera-
tion also that for the stationary state φ+(x) = e−iωtφ(~r) both of the quantities (5.3) are
positive everywhere

φ
π+
+ (x) = e−iωtφ

π+
+ (~R) → ρπ+(x) = 2ω|φπ++ (R)|2

φ
π−
− (x) = e−iωtφ

π−
− (~R) → ρπ−(x) = 2ω|φπ−− (R)|2, (5.5)

we conclude that for the free complex field we can construct two quantities (5.3) which have
the meaning of local probability density. As we shall see below, they will correspond to the
density of the π+ and π− particles.

In order to know that this complex scalar field corresponds to charged π-mesons we
must study the interactions of these particles with the electromagnetic field 30. As a first
step, let us recall (and construct where necessary) the free Green functions in our theory.
The Green function of the charged π-meson is the same as for the π0 case considered in
Sect. 3C with a (slightly different) mass corresponding to charged π-mesons. This is due
to the fact that the wave function of the massive scalar particle with definite momentum ~p

has the same form (3.26) for the scalar particles of all sorts since they obey the same Klein-
Gordon equation. So we can simply repeat the steps which lead us from the eq. (3.26) to
propagation function (3.38) and finally to Green function(3.50) and obtain the same result:

G0(p) =
1

m2 − p2 − iε
(5.6)

29We have denoted the second term as D∗(~p) rather than D(~p) in view of the symmetry between eq. (5.1)
and the complex conjugate equation (5.2).

30 Before we have done that, we can claim instead that complex scalar field correspond, say, to the
particles with charm - there is no way to identify charge in the non-interacting theory
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where m is now the mass of charged π-mesons 31.

5.2 Quantum mechanics of photons

In the framework of classical relativistic mechanics the electromagnetic field is described by
the field strength tensor Fµν(x):

Fµν =

 0 Ex Ey Ez
−Ex 0 Hz −Hy
−Ey −Hz 0 Hx
−Ez Hy −Hx 0

 (5.7)

where E and H are electric and magnetic fields and x = (t, ~r) is a four-vector of coordinate.
Classical dynamics of elecromagnetic field is determined by Maxwell equations:

∂νFµν(x) = jµ(x) (5.8)

∂λFµν + ∂νFλµ + ∂µFνλ = 0 (5.9)

The relativistic invariance of Maxwell equations written down in terms of field tensor F is
transparent.

It is convenient to introduce potentials Aµ(x) such as

Fµν = ∂µAν − ∂νAµ (5.10)

then the equation (5.9) is trivially satisfied. However, the definition of the potentials ac-
cording to (5.10) is ambiguous: one can always add the total derivative of an arbitrary
scalar function Λ(x):

Aµ(x)→ Aµ(x) + ∂µΛ(x) (5.11)

It is easy to see that the redefinition (5.11) of the potential does not change electric and
magnetic fields. It is convenient to fix the potentials by additional Lorentz condition:

∂µA
µ = 0 (5.12)

then they satisfy the equations:

�Aµ(x) = jµ(x), �
def≡ ∂α∂

α =
d

dt

2

− d

dxi

d

dxi
(5.13)

For the free electromagnetic field the equation (5.13) reduces to

�Aµ(x) = 0 (5.14)

The combination of the two equations (5.14) and (5.12) is equivalent to the set of Maxwell
equations (5.8),(5.9).

31 As we shall show below, the fact that the masses of positively and negatively charged π-mesons are
equal is a consequence of charge conservation. Anticipating this, we actually included this fact in the
definition of the charged π-meson field from the beginning - we postulated that π+ and π− are described
by the same scalar field.
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Mathematically, the eq. (5.14) is the combination of four d’Alembert equations (one
for each component µ)with the additional constraint (5.12).

The d’Alembert equation
�f(x) = 0 (5.15)

is a Klein-Gordon equation (3.1) with m = 0 so its general solution has the form (cf. eq.
(3.8)

f(x) =

∫
d3k

(2π)3
(a(~k)e−ikx + a∗(~k)eikx)

∣∣∣∣
k0=Ek=|~k|

(5.16)

where a(~k) is an arbitrary function of 3-momentum ~k.
For the electromagnetic field one gets

Aµ(x) =

∫
d3k

(2π)3

( aµ(~k)√
2Ek

e−ikx +
a∗µ(~k)
√

2Ek
eikx

)∣∣∣∣∣
k0=Ek=|~k|

(5.17)

where the functions aµ(~k) satisfy the restriction

kµa
µ(~k) = 0 (5.18)

following from Lorentz condition

∂µAµ(x) = i

∫
d3k

(2π)3
√

2Ek
kµ(−aµ(~k)e−ikx + a∗µ(~k)eikx)

∣∣∣∣
k0=Ek=|~k|

= 0 (5.19)

There are four functions aµ(~k) and one restriction (5.18) which leaves three independent
functions aλ(~k) (λ = 1, 2, 3). It is convenient to choose them in the form

aµ(~k) =
∑

λ=1,2,3

eλµ(~k)aλ(~k) (5.20)

where eλµ(~k) are three vectors satisfying the condition

kµeλµ(~k) = 0 (5.21)

They are called the polarization vectors of the photon. The conventional choice for the
polarization vectors is

e(1)
µ = (0, 1, 0, 0) (5.22)

e(2)
µ = (0, 0, 1, 0) (5.23)

e(3)
µ = kµ (5.24)

in the frame where the Z axis is parallel to ~k (so that kµ = (k, 0, 0, k)). Substituting the eq.
(5.20) in eq. (5.17) we obtain the expansion of the free electromagnetic field in the form
which satisfies the Lorentz condition automatically

Aµ(x) =
∑
λ

∫
d3k

(2π)3

eλµ(~k)
√

2Ek

[
aλ(~k)e−ikx + a∗λ(~k)eikx

]∣∣∣∣∣
k0=Ek

(5.25)
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which satisfies the Lorentz condition automatically.
Next, we demonstrate that the “longitudinal” term in (5.25) proportional to e3

µ(~k) = kµ
can be gauged away by a suitable gauge transformation of the vector potentials Aµ(x).
Let us demonstrate this explicitly. We write down the expansion (5.25) separating the
contributions of the transverse and longitudinal photons:

Aµ(x) =
∑
λ=1,2

∫
d−3k√
2Ek

eλµ(~k)
[
aλ(~k)e−ikx + a∗λ(~k)eikx

]
+ i

∂

∂xµ

∫
d3k

(2π)3
√

2Ek

[
a(3)(~k)e−ikx − a∗(3)(~k)eikx

]
= Atrµ + ∂µΛ(x) (5.26)

We see that the difference between the total field Aµ and the physical transverse part Atrµ
is a gauge transformation. This gauge transformation is allowed even after imposing the
Lorentz condition (5.12). Indeed,

∂µ (∂µΛ(x)) ≡ �Λ(x) = 0 (5.27)

so we can perform the gauge transformation Aµ(x)→ Aµ(x)− ∂µΛ(x) = Atr
µ (x) because it

does not interfere with Lorentz condition due to eq. (5.27)
Performing this transformation, we get the electromagnetic field describing only phys-

ical transversely polarized degrees of freeedom:

Aµ(x) =
∑
λ=1,2

∫
d−3k√
2Ek

eλµ(~k)
(
aλ(~k)e−ikx + a∗λ(~k)eikx

)∣∣∣∣
k0=Ek

(5.28)

Similarly to the case of scalar particles, the positive-frequency part of this field

fµ(x) =
∑
λ=1,2

∫
d−3k√
2Ek

eλµ(~k)aλ(~k)e−ikx (5.29)

can serve as a wavefunction of the superposition of the free-photon states. The wavefunction
of a single photon with momentum ~k and polarization λ (= 1 or 2) has the form

(fλk )µ(x) =
eλµ(~k)√

2|~k|
e−i|

~k|t+i~k~r (5.30)

The wave functions (5.30) are normalized as follows:∫
d3r(fλ~k )∗µ(x)i

↔
d

dt
(fλ

′

~k′
)µ(x) = eλµ(~k)eλ

′µ(~k)(2π)3δ(~k − ~k′) = −δλλ′(2π)3δ(~k − ~k′) (5.31)

As usual, if we want to normalize the wave function (5.30) by the condition to have one
photon in a large box with side L we should multiply it by the factor 1

L3/2 :

(f̃λ~k )µ(x) =
eλµ(~k)√
2|~k|L3

e−ikx (5.32)
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The density of the probability is defined as 32

ρ(x) = −(f̃λ~k )∗µ(x)i

↔
d

dt
(f̃λ~k )µ(x) (5.33)

(where λ = 1 or 2) and it is easy to check that

ρ(t, ~r) = 1
L3 ⇒∫

d3rρ(t, ~r) = 1 (5.34)

so indeed we have one photon in the space. As usually, in practical calculations of Feynman
diagrams the continuous-spectrum normalization (5.31) is more convenient. We will use
the one-photon normalization (5.32) only when we will relate Feynman amplitudes to the
cross sections, as in the scalar case.

Part XV

5.2.1 Propagation function and Green function of a photon

The propagation function for the physical photons is obtained from the general rule (3.36):

K0
µν(x− y) =

∑
λ=1,2

∫
d3k

(2π)3
(fλk )µ(x)(fλk )∗ν(y) (5.35)

Using the orthogonality condition for the photon plane waves (5.31), it is easy to check that
the propagation function (5.35) indeed describes the time evolution of the freely moving
photon:

(fλk )µ(x2) = −
∫
d3r1K

µν
0 (x2 − x1)i

↔
d

dt1
(fλk )ν(x1) (5.36)

Here (-) sign is due to the (-) sign in the orthogonality condition for the plane waves (5.31)
33. Now we can construct the Green function for the photon similarly to the case of the
scalar particles as the sum of the two propagation functions “forward and backward in time”:

Dphys
µν (x− y) = Θ(x0 − y0)Kµν

0 (x− y) + Θ(y0 − x0)Kµν
0 (y − x) (5.37)

Let us check the relativistic invariance of our propagator (5.37). Similarly to the case of
scalar propagator, it can be rewritten in the form of integral over 4-momenta as follows:

Dphys
µν (x− y) =

∫
d4k

(2π)4i

1

−k2 − iε
∑
λ=1,2

(eλk)µ(eλk)νe
−ik(x−y) (5.38)

32The sign in the definition of the density of probability is different from the scalar case considered above
since the wave functions for the photon contain space-like polarization vector eλ the square of which is
e2 = −1

33This (-) sign is an artefact of the relativistic invariant notations in eq. (5.36) because in terms of spatial
components of fµ = (0, ~fi) the sign is (+).
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where we have defined transverse polarization vectors for virtual photon with k2 6= 0 as

e(1)(k) = (0, 1, 0, 0)

e(2)(k) = (0, 0, 1, 0) (5.39)

in the frame where k = (k0, 0, 0, k3).
Unlike the scalar case, we do not see the relativistic invariance since the sum over the

two polarizations depends on the frame for the off-mass-shell photons with k2 6= 0. Indeed,
it is easy to check that∑

λ=1,2

(eλk)µ(eλk)ν = −gµν −
kµkν
~k2

+
k0(kµgν0 + kνgµ0)

~k2
− k2gµ0gν0

~k2
(5.40)

We see that only the first term is relativistic invariant while other terms are frame-dependent.
In order to restore relativistic invariance we will sum over all the polarizations (not only
over the physical ones). First, we define the third (longitudinal) polarization vector as

e(3)(k) = (
k3√
k2
, 0, 0,

k0√
k2

) (5.41)

(in the frame where k = (k0, 0, 0, k3)) so for a virtual photon with k2 6= 0 we have a set of
3 polarization vectors

e(1)(k) = (0, 1, 0, 0)

e(2)(k) = (0, 0, 1, 0)

e(3)(k) = (
k3√
k2
, 0, 0,

k0√
k2

) (5.42)

It is easy to see that eλµkµ = 0 and (eλ)2 = −1 for any polarization vector (5.42).
If in the r.h.s. of Eq. (5.38) we sum over all the polarizations (5.42) we get∑

λ=1,2

(eλk)µ(eλk)ν →
∑

λ=1,2,3

(eλk)µ(eλk)ν = −gµν +
kµkν
k2

(5.43)

and obtain the Green function in the so-called Landau form:

DL
µν(x− y) =

∫
d4k

(2π)4i

1

k2 + iε
(gµν −

kµkν
k2

)e−ik(x−y) (5.44)

The price for the relativistic invariance of this Green function is that it describes now the
propagation not only of the physical photons, but also of the unphysical longitudinal ones
and we should prove in the future that in the case of the interacting theory these unphysical
photons decouple from all physical amplitudes and do not contribute to S-matrix.
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5.2.2 The reason for propagation of non-physical photon in electrodynamics.

Let us discuss the issue of propagation of non-physical photons. The relevant degrees
of freedom for the photon are electric and magnetic fields E and H. Unfortunately, the
interaction with the π-meson (or electron) field is written in terms of the vector potential
Aµ rather than E and H even in the classical electrodynamics, so we are forced to deal
with these vector potentials which are defined up to a gauge transformation. 34 Working
in terms of Aµ we face with a problem of separation of physical degrees of freedom from
the pure gauge ones (the latter are the artefacts of our description in terms of Aµ instead
of Fµν). This can be done, but it turns out that if we want to have only physical photons,
we should add the non-local instantaneous interaction between electrons (or π-mesons) to
our interacting theory. This is clear from the form of the physical Green function which
can be rewritten as follows (see eqs. (5.38) and (5.40)):

Dµν(x− y) = DL
µν(x− y) (5.45)

+
∫

d4k
(2π)4i

(
kµkνk20
k4~k2

− k0(kµgν0+kνgµ0)

k4~k2

)
e−ik(x−y) + δ(x0 − y0)

∫
d3k

(2π)3i
gµ0gν0
~k2

ei
~k(~x−~y)

The first term in the r.h.s. of this equation is the relativistic invariant Landau propagator
(5.44), the second term proportional to kµ or kν vanishes as we shall see in future lectures,
but the last term does not vanish and leads to the instantaneous (due to δ(x0 − y0))
interaction between the particles which exchange this photon. The relativistic invariance is
restored in a following way: in a consistent formulation of the quantization in this physical
Coulomb gauge there exists an instantaneous Coulomb interaction which exactly cancels
the contribution of the longitudinal gluons (the third term in r.h.s. of eq. (5.45)) in all
Feynman diagrams. Thus, the hypothesis of locality of interactions for gauge theories must
be modified in a following way: there exists a description of the theory in terms of physical
and non-physical particles such that all the interactions are local. The net outcome for
electrodynamics is very simple: for calculation of physical cross sections, we should use the
relativistic invariant propagator (5.44) or (5.46). (In QCD the situation is more complicated:
there are so-called ghost particles which appear in Feynman diagrams only in loops).

5.2.3 Feynman photon propagator

In practical calculations, it is more convenient to simplify the propagator (5.44) even more
and write down the so-called Feynman propagator for the photon:

D0
µν(x− y) =

∫
d4k

(2π)4i

gµν
k2 + iε

e−ik(x−y) (5.46)

Again, it can be checked (and we will do that) that in the theory with electromagnetic
interaction (QED) the terms proportional to the kµkν in the r.h.s. of eq. (5.44) give
vanishing contributions. (Therefore one can use the photon propagator in a more general

34It is possible to write down the interaction of E and H fields with charged particles, but it will be non-
local, and if you start developing the theory with this non-local interaction you’ll face the same problems
as for the description in terms of vector potentials, only they will be hidden better and to solve them would
be more difficult.
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form gµν−ckµkνk2
with arbitrary number c in the numerator - it will lead to the same physical

results) .
Alternatively, one can proceed from the propagation function (5.35) to the Feynman

propagator (5.46) in a following manner. The sum over the physical polarizations in the
r.h.s of eq. (5.38) can be written as follows:∑

λ=1,2

eλµe
λ
ν = −gµν +

kµnν + kνnµ
kn

(5.47)

where n(k) is the light-like vector which has the form n = (k, 0, 0,−k) in the frame where
k = (k, 0, 0, k). (This definition fixes n up to an overall numerical factor which is unessetial
since it drops from eq. (5.47)). Now, let us demand that the interaction with charged
particles satisfies the condition that 35

kµ(amplitude of the production of photon with momentum k and Lorentz index µ) = 0

(5.48)
Now we can drop the terms proportional to kµ and kν in the propagation function. Indeed,
kµ is multiplied either by some amplitude of production of the photon with momentum k (if
this photon propagation function is the internal line of the corresponding Feynman diagram)
or by the polarization vector eλµ (if the propagation function correspond to the external line
of the Feynman diagram). In both cases, being multiplied by kµ, they vanish 36. Thus, if the
interaction satisfies the condition (5.48) one can use the “Feynman” propagation function

(KF
0 )µν(x− y) = − gµν

∫
d3k

(2π)32k0
e−ikx

∣∣∣∣
k0=|~k|

(5.49)

instead of the physical propagation function (5.38). If we define now the Green function in
the usual form (cf. 3.47)

D0
µν = θ(x0 − y0)(KF

0 )µν(x− y) + θ(y0 − x0)(KF
0 )µν(y − x) (5.50)

we will get exactly the Feynman propragator (5.46).
It worth noting that the Feynman propagator (5.46) is a Green function of the d’Alembert

equation in the mathematical sense: it is easy to see that

�D0
µν(x− y) = igµν(2π)4δ(4)(x− y) (5.51)

In what follows we use the photon propagator in the Feynman form.
35 Strictly speaking, the name is not quite right since the photon has polarization λ rather than the

Lorentz index µ and the amplitude of production of such photon is eλµ(the rest of the amplitude)µ. What I
mean here is this "rest"- the amplitude of the production of the photon stripped off its polarization vector
eλµ. The amplitude of emission of the photon will have a Lorentz index after such amputation.

36It looks like here we just imposed the condition (i): the production of any real photon vanishes after
multilying by the photon momentum while above we demanded (ii): the production of any virtual photon
vanishes after such multiplication. (For example, we assumed (ii) for the transition from the Landau
propagator (5.44) to the Feynman one (5.46)). Careful analysis shows, however, that we need the condition
(ii) for both cases (see e.g. Eq. (5.57) below). To be precise, the condition is kµ× [amplitude of production
of virtual (or real) photon] = 0 if all the π-mesons are on the mass shell.
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The reduced Green function for the photon is:

D0
µν(k) =

gµν
k2 + iε

(5.52)

Now we have both Green functions: for the (charged) π-mesons and for the photon. In the
next lecture we will construct the elementary ππγ vertex and then the list of ingredients
for the Feynman rules for the electrodynamics of π-mesons would be complete.

Part XVI

5.3 π-meson - photon interaction

Let us try to guess the form of π-meson-photon vertex from the assumption of the locality
of the interaction similarly to the scalar πM interaction whih we have found in Sect. 4A.
The amplitude of π+ → π+γ transition shown in Fig. 58 should have the form:

y

x

1

2

2

y

z

Figure 58. The π+ ⇒ π+γ transition. The π+ meson is denoted by the dotted line with arrow

Gµ(x2, y2; y1) =

∫
dzG0(y2 − z)D0

µν(x2 − z) Γν(z)G0(z − y1) (5.53)

Note that the vertex should have the Lorentz index µ reflecting the dependence of the
π ⇒ πγ amlitude on the polarization of the emitted photon. Because of the homogenuity
of the space the vertex Γµ should not depend on the position z. It is easy to see that the
only vector which does not depend on the position z is ∂

∂zµ , so the most general form of
this Green function is:

G0(y2−z)ΓµG0(z−y1) = aG0(y2−z)
∂

∂zµ
G0(z−y1)+b

[
∂

∂zµ
G0(y2 − z)

]
G0(z−y1) (5.54)

where a and b are arbitrary numbers so far. In the momentum space it has the form:

Gµ(p1−k2, k2; p1) = − 1

m2 − (p1 − k2)2 − iε
1

k2
2 + iε

(ap1µ+b(p1µ−k2µ)
1

m2 − p2
1 − iε

(5.55)

Now we shall demonstrare that our condition (5.48) requires that a = b. Let us consider
the amputated Green function (5.55) with π-mesons on the mass shell:

Γµ(p1 − k2, k2; p1)
def≡ Gampµ (p1 − k2, k2; p1) = ap1µ + b(p1µ − k2µ)|p21=(p1−k2)2=m2 (5.56)
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The condition (5.48) (see also (ii) in the footnote) requires that

ap1k + b(p1 − k2)k2 =
a− b

2
k2

2 = 0, (5.57)

therefore a = b in electrodynamics. Let us call this constant g for now. In principle, the
numerical value of this constant should be determined from suitable scattering experiment.
In practice, it is convenient to compare the result for the scattering amplitude of π-mesons
(proportional to g2) to the non-relativistic Coulomb scattering amplitude for π-mesons. We
shall see that after such comparison the constant g can be identified as the electric charge
of the π-meson e.

The elementary ππγ vertex has the form

Γµ(p1 − k2, k2; p1) = g(2p1 − k2)µ (5.58)

or, in the coordinate space,

Gµ(x2, y2; y1) = (5.59)

=
∫
dzG0(y2 − z)D0

µν(x2 − z)Γν(z)G0(z − y1) =
∫
dzG0(y2 − z)D0

µν(x2 − z)
↔
∂
∂zν

(z)G0(z − y1)

Now, let us compare the cross section for the π+π+ elastic scattering in the Born approxi-
mation with the non-relativistic result. Calculation of the cross section for the elastic π+π+

scattering by exchange of photon practically does not differ from the calculation of the am-
plitude of elastic MM scattering performed in Sect. 4G. Up to the formula (4.117) we can
simply copy the relevant formulas making substitution M → m when nessesary. We obtain
(in the c.m. frame)

dσ

dΩ
=
|T (p2, p

′
2; p1, p

′
1)|2

256E2
1π

2
(5.60)

The T-matrix in the Born approximation is determined by the two diagrams shown in Fig.
59

p’ p’ +k

k

1

1

p
1

p -k
1

p
1

p -k

p’ +kp’
11 1

p -p’ -k

Figure 59. First-order Feynman diagrams for the elastic π+π+ scattering.

Using our expression (5.58) for the π+π+γ vertex it is easy to get the following result
for the reduced four-pion Green function:

G(p2 = p1 − k, p′2 = p′1 + k; p1, p
′
1) = (5.61)

= g2 1
m2−p21−iε

1

m2−p,21 −iε
1

m2−(p1−k)2−iε
1

m2−(p′1+k)2−iε

[
(2p1−k)(2p′1+k)

k2+iε
+

(p1+p′1+k)(p′1+p1−k)
(p′1+k−p1)2+iε

]
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The T-matrix is obtained by amputating the legs of this reduced Green function:

T (p1 − k, p′1 + k; p1, p
′
1) = g2

(
s− u
t

+
s− t
u

)
(5.62)

Here we have expressed the scalar products of π-meson momenta in terms of Mandelstam
variables s = (p1 + p′1)2, t = (p2 − p1)2, u = (p′2 − p1)2 (see eq. (4.119)):

(2p1 − k)(2p′1 + k) = s− u
(p1 + p′1 + k)(p′1 + p1 − k) = s− t (5.63)

(note that now s + t + u = 4m2). In the c.m. frame s = 4E2
1 , t = −4|~p1|2 sin2( θ2), u =

−4|~p1|2 cos2( θ2) (see eq. (4.121) so our final expression for the differential elasctic π+π+

cross section (5.60) takes the form:

dσ

dΩ
=

g4

256E2
1

∣∣∣∣∣E2
1 + |~p1|2 cos2( θ2)

|~p1|2 sin2( θ2)
+
E2

1 + |~p1|2 sin2( θ2)

|~p1|2 cos2( θ2)

∣∣∣∣∣
2

(5.64)

As we mentioned above, comparing this formula to the result of the experiment on elastic
ππ scattering can give us the value of the constant g in Nature. An easier way is to use
the relevant information from the non-relativistic quantum mechanics. The non-relativistic
limit of eq. (5.64) correspond to the case of small π-meson velocities (→ E1 ' m, s ' 4m2

and t, u� s) so the expression for the cross section (5.64) reduces to

dσ

dΩ
=

g4m2

256π2

(
1

|~p1|2 sin2( θ2)
+

1

|~p1|2 cos2( θ2)

)2

(5.65)

This should be compared with “truly” non-relativistic calculation based on the solution
of Schrödinger equation for the ππ scattering in the Coulomb potential

V (~r) =
e2

4π|~r|
(5.66)

For us, the easiest way to solve this NR scattering problem is to take the cross section
(4.128) of the MM scattering in Yukawa potential

VY (~r) = V0
e−α|~r|

|~r|
(5.67)

and substitute M → m, α = 0, V0 → e2

4π in eq. (4.128). We obtain

dσ

dΩ
=

(
me2

16|~p1|2 sin2( θ2)
+

me2

16|~p1|2 cos2( θ2)

)2

(5.68)

We see now that the constant g in the ππγ vertex can be identified with electric charge of
π-meson e.

The elecric charge is small:

α
def≡ e2

4π
=

1

137
(5.69)
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(in the conventional units α = e2

2hc) and therefore we can safely use the perturbation theory.
In practice, quite often the Born approximation is enough.

Part XVII

5.4 π+-meson and π−-meson : particle and antiparticle.

Let us consider the process of the emission of the photon by π+-meson shown in Fig. 58.
However, as we discussed many times before, one Feynman diagram corresponds to many
different space-time processes. Let us consider this diagram at x20 = t2 < y20 = y10 = t′2
(see Fig.60).

y

y
2

1

x
1

Figure 60. The “pair creation”: γ ⇒ ππ transition.

It describes a process of transition from one-photon state at t = t2 to the two-π-meson
state at t = t′2. However, we cannot say that the state at t = t′2 is the two-π+-meson
state since it would mean non-conservation of the electric charge (we had charge 0 at the
beginning of our transition and we end up with the charge 2e at t = t′2). Therefore, the only
way to interpret the process shown in Fig. 58 is to say that the photon creates a pair of the
particle and antiparticle which have the same masses but opposite charges. Anticipating
this, we have chosen a formalism where π+-meson and π−-meson have the same mass from
the beginning since they correspond to one complex scalar field. It is easy to see, however,
that our arguments about antiparticles are general. Let us consider the emission of the
photon by any charged particle which is described (in the Born approximation) by the
diagram shown in Fig. 61a. However, one Feynman diagram describes may processes at
once and in the different frame this diagram may describe a process of pair creation shown
in Fig. 61b. Then, due to the charge conservation, it should be a pair of particle and
antiparticle with the same masses (because in different frame it is one-particle line) and
opposite charges. Thus, a charged particle must have a partner in the Nature with exactly
the same mass and opposite charge follows directly from the relativistic invariance. This
very important statement actually follows from the relativistic invariance and conservation
of charge only (plus, of course, the hypothesis of the locality of the interaction).

It is instructive to demonstrate that the particle described by real scalar fied (π0-meson
) cannot interact with photon. Indeed , we can start building the π0γ interaction in the
same way as we have done for π+-meson in the previous Section since we have used there
only the Lorentz invariance. This way we will arrive at the same vertex (5.58). Now, let
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(a) (b)

Figure 61. Two different interpretations of the same Feynman diagram: emission of the photon
by a charged particle (a) and parrticle-antiparticle creation (b). A charged particle is denoted by a
line with an arrow.

us show that the constant g for the π0π0γ vertex should be 0. Suppose it is not. Let us
consider then the state resulting from the pair creation showh in Fig. 62

2

x
1

p

k

y
2

y’

p’
2

2

Figure 62. The gedanken γπ0π0 transition.

Wavefunction of this state has the form (cf. (4.89):

φππ(y2, y
′
2) =

∫
d3p2

(2π)3

d3p′2
(2π)3

φp2(y2)φp′2(y′2)U(t2, t1)p2,p′2;k (5.70)

where the evolution martix can be constructed from Green functions using our usual rules
(4.70)

U(t2, t1)p2,p′2;k =

∫
d3r2d

3r′2d
3R1φ

∗
p2(y2)φ∗p2(y′2) i

↔
d

dy20
i

↔
d

dy′20

∣∣∣∣∣∣
y20=y′20=t2

G(y2, y
′
2;x1)i

↔
d

dt1
(fλk )µ(x1)(5.71)

Note that this matrix element must be symmetric in momenta p1 and p2 as it follows from
eq. (5.70) (actually, it is clear even without any formulas since the two π0-mesons are
identical).

Let us calculate this element of the U-matrix. Using our expression for the wavefunc-
tions of the π-meson (3.26) and photon (5.30) and performing the integrations over R1, r2,

– 91 –



and r′2, we obtain:√
2E22E′22EkU(t2, t1)

~p2,~p′2;~k
=∫ dp20

2π
dp′20
2π

dk0
2π e

i(p20+p′20−E2−E′2)t2(p20 + E2)(p′20 + E′2)

Gµ(p2, p
′
2; k)eλµ(~k)(k0 + Ek)e

i(Ek−k0)t1 (5.72)

where, as usual, E2 =
√
m2 + ~p2

2, E
′
2 =

√
m2 + ~p′

2

2, and Ek = |~k|. It is convenient
to proceed from the Green function in the momentum representation to the amputated
reduced Green function

Gµ(p2, p
′
2; k) = −(2π)3δ(~p2 + ~p′2 − ~k)(2π)δ(p20 + p′20 − k10)

1
p220−E2

2+iε
1

(p′20)2−(E′)22+iε
1

k20−(Ek)2+iε
Gamp
µ (p1, p2; k) (5.73)

Then the expression for the U-matrix (5.72) reduces to:√
2E22E′22EkU(t2, t1)

~p2,~p′2;~k
= (5.74)

= (2π)3δ(~p2 + ~p′2 − ~k)
∫ dp20

2π
dk0
2π

ei(k0−E2−E
′
2)t2

(p20−E2−iε)(k0−p20−E′2−iε)
Gamp
µ (p2, k − p2; k)eλµ(~k) e

i(Ek−k0)t1
(k0−Ek−iε)

where the reduced amputated Green function is simply the vertex which in the Born ap-
proximation has the form (5.58) so we obtain

Gamp
µ (p2, p

′
2; k)eλµ(~k) = g(p2 − p′2)µeλµ(~k) = −(~p2 − ~p′2)~eλ(~k) (5.75)

Now we can perform the remaining integrations over p20 and k0 which gives (at t2 > 0, t1 <

0):

U(t2, t1)
~p2,~p′2;~k

= g
(2π)3δ(~p2 + ~p′2 − ~k)√

2E22E′22Ek

(~p2 − ~p′2)~eλ(~k)

Ek − E2 − E′2 − iε
[
ei(Ek−E2−E′2)t2−e−i(Ek−E2−E′2)t1

]
(5.76)

What is essential for us is not the explicit form of this U-matrix element but the fact that,
contrary to our expectations, it is antisymmetric in ~p2 and ~p′2 as it is easy to see from eq.
(5.76):

U(t2, t1)
~p2,~p′2;~k

= −U(t2, t1)
~p′2,~p2;~k

(5.77)

This antisymmetry follows directly from the form of the vertex ∼ g(p2 − p′2)µ which is
dictated by Lorentz invariance and gauge invariance. So, we see that the coupling of
the neutral π0-meson to a photon leads to the wrong properties of the wavefunction and
therefore it should be put equal to 0. 37 On the contrary, if we have the two different
particles – π+-meson and π−-meson – nothing forbids the antisymmetric wave function.

Taking now the Feynman diagram 58 in the region where y20 < y10, x20 we conclude
that it corresponds to the process of emission of photon by the π−-meson . If we choose
the momenta as shown in Fig. 63 the vertex will be

37 Formally, it means that if we will introduce such coupling its contribution to every process would
vanish after taking into account identity of π0-mesons so we may as well not consider it from the beginning.
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Figure 63. Emission of photon by π−-meson .

Γµ(p2 = p1 − k, k; p1) = e[(−p2)µ + (−p1)µ] = −e(p2µ + p1µ) (5.78)

It looks like the same vertex for π+-meson but with opposite charge. The way to remenmber
the sign is that the vertex is + (sum of momenta) if the direction of the arrow coincides
with the chosen direction of the momentum flow.

Let us consider now the process of Compton scattering from the π+-meson . Using our
ππγ vertex we can write down two diagrams

1

k
1

p p
2

k
2

1 1
p  +k  

2
kk

1

p
2

p  -k
2 1

1
p

Figure 64. Two diagrams for the Compton scattering from the π+-meson .

It is easy wo find the reduced Green function according to our rules. The amputated
reduced Green function has the form:

Gamp
µν (p2, k2 = p1 +k1−p2; p1, k1) = e2

(
(2p1 + k1)µ(2p2 + k2)ν
m2 − (p1 + k1)2 − iε

+
(2p1 − k2)ν(2p2 − k1)µ
m2 − (p1 − k2)2 − iε

)
(5.79)

Let us check now the condition (5.48) on the mass shell of the π-mesons:

kµ1G
amp
µν (p2, k2; p1, k1)

∣∣∣
p21=p22=m2

= e2 k1(2p1 + k1)

m2 − (p1 + k1)2
(2p2+k2)ν+e2 k1(2p2 − k1)

m2 − (p2 − k1)2
(2p1−k2)ν

(5.80)
It is easy to see that at p2

1 = p2
2 = m2 the numerators and denominators in r.h.s. of eq.

(5.80) cancel each other so we obtain

kµ1G
amp
µν (p2, k2; p1, k1)

∣∣∣
p21=p22=m2

= 2e2(p1 − p2 − k2)ν = −2e2k1ν (5.81)

Still, this is not 0 while our condition for the interaction was that the l.h.s. of eq. (5.81)
must vanish. It means that we do not have the complete understanding of our interaction -

– 93 –



i.e., we miss smth that should cancel this bad term. Actually, it is not difficult to find such
interaction - it is “next in complexity” to our elementary emission process and it describes
the contact ππγγ interaction:

p
2

k
2

k
1

p
1

Figure 65. Contact-type for the Compton scattering from the π+-meson .

and the corresponding vertex is simply

Γcµν(p2, k2; p1, k1) ≡ (Gamp)cµν(p2, k2; p1, k1) = 2gµνe
2 (5.82)

It is easy to see now that
kµ1 (Gamp)cµν = 2k1µe

2 (5.83)

We see now, that eq. (5.83) exactly cancels the r.h.s. of eq. (5.81). Thus, the total set of
the diagrams for the Compton scattering from the π-meson in the e2 order is shown in Fig.
66

pp p p

k kk k

p

k
1

1 2

2

1

p
2

k
2

1

1

2

2

1

Figure 66. Total set of diagrams for γπ ⇒ γπ scattering.

so the total contribution to the amputated reduced Green function corresponding to
the sum of these three diagrams shown in Fig. 66 has the form:

Gamp
µν (p2, k2; p1, k1) = e2

(
(2p1 + k1)µ(2p2 + k2)ν
m2 − (p1 + k1)2 − iε

+
(2p1 − k2)ν(2p2 − k1)µ
m2 − (p1 − k2)2 − iε

+ 2gµν

)
(5.84)

and it satisfies now the property (5.48).

5.5 Set of Feynman rules for QED of π-mesons

Feynman rules for reduced Green functions in the momentum space.

– 94 –



Let us summarize the Feynman rules in momentum space for the electrodynamics of
π-mesons. The π-meson Green function has the form 38:

G0(p) =
1

m2 − p2 − iε
(5.85)

and the photon Green function in the Feynman form is

Dµν(k) =
gµν

k2 + iε
(5.86)

The vertices are

ππγ : Γµ(p− k, k; p) = e(2p− k)µ

ππγγ : Γµν(p′, p+ k − p′; p, k) = 2e2gµν (5.87)

where it is assumed that for the ππγ vertex the chosen direction of the flow of momentum
p coincides with the direction indicated by the arrow on the π-meson line (if it is opposite,
the vertex would have the opposite sign, see eq. (5.78)). 39

The Feynman rules for the reduced Green functions are our usual rules I-V where we
put Dµν(k) for the photon propagator and Γµ and Γµν for the ππγ and ππγγ vertices,
respectively.

Feynman rules in coordinate space and combinatorial factors.
Sometimes there are non-trivial combinatorial factors for diagrams with identical pho-

ton lines. The example of such diagram with combinatorial factor 1
2 is shown in Fig. 67

The contribution of this diagram has the form:

k k

Figure 67. An example of the diagram for ππ scattering with the non-trivial combinatorial factor
1
2

Gamp =
1

2

∫
d4k

i(2π)4
2gµν

gνα

k2 + iε
2gαβ

gbeµ

k2 + iε
=

1

2

∫
d4k

i(2π)4

16

(k2 + iε)2
(5.88)

As usual, the easiest way to take into account these combinatorial factors is to start drawing
the diagrams in the coordinate space using the initial set of Feynman rules, namely:

In order to draw all the diagrams for the Green function with m photon legs and n

π-meson ones G(x1, x2...xm; y1, y2...yn) one should perform the following steps:
38 Note that the different sign of (momentum)2 in the photon propagator (5.86) is due to the fact that

the sum over physical polarizations of photon is actually −gµν+ longitudinal terms, see eq. (5.40).
39 The πγ interaction described by these vertices is called the “minimal” interaction. One can, in principle,

invent more complicated interactions described by more complicated πmγn vertices but they are (1) non-
renormalizable, and (2) do not exist in Nature.
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1. Draw the m+ n end points (marking which of them correspond to π-mesons and which
to photons).
2. Draw any number (N1) of ππγ vertices and any number N2 of ππγγ vertices. Each ππγ

vertex in a point z comes with the factor Gµ(z) = e
↔
d
dzµ

where we first differentiate the
π-meson Green function in the direction of the arrow on the pion line. Each ππγγ vertex
comes with the factor ie2gµν = i1

22gµν . This 1
2 factor reflects identity of the two photons

(compare the 1
2 factor in the set of Feynman rules in coordinate space for the πM model

with identical M-mesons) and there is an integration over all the space over the position of
each vertex.
3. Draw all possible connections between m + n end points and N = N1 + N2 vertices.
Each line will be the Green function G0 (3.50) or D0 (5.46) depending on the type of the
line. The charge of π-meson is indicated by the arrow on the line.
4. Divide the result by N1!N2!.

This 1
N1!N2! (and the factor 1/2 in front of each ππγγ vertex) are the combinatorial

factors that will go away in the final answer - however in some cases not entirely, so it is
better to keep trace of them. After performing the Fourier transformation, we return to
the Feynmman rules in the momentum space described above.

Part XVIII

5.6 Cross sections in scalar QED

Let us derive the rules for getting the S-matrix elements from Green functions for the
processes involving photons. These rules are actually very similar to the case of our πM
model (see Sect. 4.F). For definiteness we will consider the Compton scattering discussed
in previous lecture. The matrix element of the S-matrix can be written down similarly to
eq. (4.93). The only difference is that we must replace, when nessesary, the wavefunctions
of the scalar particles (3.26) by the photon wavefunctions (5.30) 40.

Sλ1,λ2(p1, k1 → p2, k2) = limt1→−∞, t2→∞
∫
d3R2d

3r2d
3R1d

3r1 (5.89)

(fλ2k2 )∗ν(x2)φ∗p2(y2) i
↔
d

dx20
i
↔
d

dy20

∣∣∣∣
x20=y20=t2

Gµν(x2, y2;x1, y1) i
↔
d

dx10
i
↔
d

dy10

∣∣∣∣
x10=y10=t1

(fλ1k1 )µ(x1)φp1(y1)

Similarly to the πM case (4.94) we can represent the Green function as

Gµν(x2, y2;x1, y1) = (5.90)

=
∫
dz2dz

′
2dz1dz

′
1D

µα
0 (x2 − z2)G0(y2 − w2)Gampαβ (z2, w2; z1, w1)Dβν

0 (z1 − x1)G0(z′1 − x′1)

where the Gamp(z2, w2; z1, w1) is the Green function with amputated legs, see Fig. 54
Again, since t1 → −∞, t2 → ∞ we can replace each of the Green functions G0 and

Dξη
0 in eq. (5.90) by the corresponding propagation function K0 (see eq. (3.38)) and KFξη

0

40Since the orthogonality condition for the photon wavefuctions (5.31) is essentially the same as the eq.
(4.68) for the scalar plane waves, the form of the equation expressing the S-matrix element through the
Green functions remains the same.
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Figure 68. S-matrix from the Green function for the πγ ⇒ πγ scattering

(see eq. (5.49)) Using the formula∫
d3R2(fλ2k2 )∗µ(x2)i

↔
d

dx20
(KF

0 )µα(x2 − z2) = (fλ2k2 )∗α(z2)∫
d3R1(KF

0 )βν(z1 − x1)i

↔
d

dx10
(fλ1k1 )ν(x1) = (fλ1k1 )β(z1) (5.91)

and similar formulas (4.97) for π-meson legs we can reduce the expression (4.93) to the
Fourier transform of the amputated Green function times some simple factors:

S(p2, p
′
2; p1, p

′
1) =

= 1√
2E2

(eλ2 (k2))α√
2|~k2|

1√
2E1

(eλ1 (k1))β√
2|~k1|

Gamp
αβ (p2, k2; p1, k1)

∣∣∣
p22=p21=m2, k21=k22=0

(5.92)

Quite similarly it can be demonstrated that the general rule for obtaining the ma-
trix elements of the S-matrix for the transition from m1 π-mesons with initial momenta
p1, ..p

(m1)
1 and n1 photons with momenta k1, ...k

(n1)
1 and polarizations λ1, ...λ

(n1)
1 to the final

state of m2 π-mesons with momenta p1, ..p
(m1)
1 and n2 photons with momenta k1, ...k

(n2)
2

and polarizations λ2, ...λ
(n2)
2 has the form(cf. eq. (4.133)):

Sλ2,...λ
(n2)
2 ;λ1,...λ

(n1)
1 (p2, ...p

(m2)
2 , k2, ...k

(n2)
2 ; p1, ...p

(m1)
1 , k1, ...k

(n1)
1 ) = (5.93)

=
∏
j2

1√
2E

j2
2

∏
l2

e
λ
(l2)
2

µl2
(~k

(l2)
2 )√

2|~k(l2)2 |

∏
j1

1√
2E

j1
1

∏
l1

e
λ
(l1)
1

µl1
(~k

(l1)
1 )√

2|~k(l1)1 |

× (Gamp)µ2,...µ
(n2)
2 ;µ1,...µ

(n1)
1 (p2, ...p

(m2)
2 , k2, ...k

(n2)
2 ; p1, ...p

(m1)
1 , k1, ...k

(n1)
1 )

∣∣∣
E(j)=

√
(~p(j))2+m2,E(l)=|~k(l)|

So, the matrix element of S-matrix for the arbitrary m1 +n1 ⇒ m2 +n2 transition is given
by the amputated Green functions on the mass shell times factors 1√

2Ei
for each π-meson

and e
λi
µi

(~ki)√
2Ei

for each photon. Recalling the definition of the transition matrix (4.134) and the
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Figure 69. A general m1 + n1 ⇒ m2 + n2 scattering in QED of π-mesons

connection (4.36) between the Green function G and the reduced Green function G we see
that the transition matrix is the amputated reduced Green function G(p2, ...k

n2
2 ; p1, ..k

n1
1 )

on the mass shell - just as in the scalar case:

T λ2,...λ
(n2)
2 ;λ1,...λ

(n1)
1 (p2, ...p

(m2)
2 , k2, ...k

(n2)
2 ; p1, ...p

(m1)
1 , k1, ...k

(n1)
1 ) =

=
∏
l2
e
λ
(n2)
2
µ(l2)

(~k
(l2)
2 )

∏
l1
e
λ
(l1)
1

µl1
(~k

(n1)
1 )

(Gamp)µ2,...µ
(n2)
2 ;µ1,...µ

(n1)
1 (p2, ...p

(m2)
2 , k2, ...k

(n2)
2 ; p1, ...p

(m1)
1 , k1, ...k

(n1)
1 )

∣∣∣
p2i=m

2,k2i=0
(5.94)

This is the general expression for the transition matrix in the scalar eletrodynamics. To-
gether with Feynman rules for the reduced Green functions it gives a complete set of pre-
scriptions for calculating of the probability of any transition in the electrodynamics of
π-mesons. The cross section for the arbitrary 2 ⇒ m + n scattering in terms of T-matrix
looks exactly the same as for scalar particles (4.141) except for trivial differences in masses
(and hence different flux (4.109). The same is true also for the optical theorem (4.147).

Homework assignment 4.
Find the differential cross section for the π+π− ⇒ π+π− scattering in the first nontrivial
order in perturbation theory.

Part XIX

5.7 Compton scattering , π+π−-annihilation and crossing symmetry

Let us finish now our calculation of the cross section for the Compton scattering from the
π+-meson in the first order in α ≡ e2

4π . The corresponding diagrams were shown in Fig. 66.
The amputated reduced Green function is given by eq. (5.84) so the relevant element of
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the T-matrix has the form:

T λ1λ2(p2, k2; p1, k1) =

e2
(

4(eλ1 (k1)·p1)(eλ2 (k2)·p2)
m2−(p1+k1)2−iε + 4(eλ2 (k2)·p1)(eλ1 (k1)·p2)

m2−(p1−k2)2−iε + 2eλ2(k2) · eλ1(k1)
)

(5.95)

where we used the fact that e(ki) · ki = 0. From the HW3 and Appendix A we know that
the cross section of the elasctic two-particle scattering in the c.m. frame has the form:

dσ

dΩ
=
|T |2

64π2s
(5.96)

To calculate the T-matrix (5.95) let us choose the polarization vectors as shown in Fig. 70
41.

1

k 1

2k

  

2
p

p

e  (k  )

e  (k  )
2

1
e  (k  )

2 2

1

2

1

1

e  (k  )

θ

Figure 70. Kinematics for Compton scattering in the c.m. frame

It is instructive to present the result in terms of the Mandelstam variables (4.119).
Using the formulas:

|~pi| = |~ki| =
s−m2

2
√
s

e(i)(k1) · p1 = e(i)(k2) · p2 = e(2)(k2) · p1 = e(2)(k1) · p2 = 0

−e(1)(k1) · p2 = e(1)(k2) · p1 =
s−m2

2
√
s

sin θ

m2 − (p2 − k1)2 = 2p2k1 =
(s−m2)2

2s

(
s+m2

s−m2
+ cos θ

)
(5.97)

we easily obtain

T 1,2(s, θ) = T 2,1(s, θ) = 0, T 2,2 = − 2e2,

T 1,1 = − 2e2
[
− 2|~p|2 sin2 θ

u−m2
+ cos θ

]
= − 2e2

[
1 +

2st

(s−m2)2
+

2t

u−m2
+

2st2

(s−m2)(u−m2)

]
= − 2e2

[
1 +

2t

u−m2
+

2st(u+ t−m2)

(s−m2)(u−m2)

]
= − 2e2

[
1− 2tm2

(u−m2)(s−m2)

]
(5.98)

41 One may note that it is inconvenient to choose the initial polarization vectors e1 and e2 depending on
the direction of the final momenta (as it was actually done in Fig. 70 where the final momenta determines
the plane orthogonal to e(2)(k1)). However, we will use this choice of e(i) as an intermediate step to obtains
the helicity amplitudes (defined below) which are independent of the choice of polarization vectors.
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since s+ t+ u = 2m2 and cos θ = 1 + 2ts
(s−m2)2

. Thus, the transition matrix takes the form

T λ1,λ2(s, t) = −2e2δλ1λ2

[
δ1λ1

(
1− 2tm2

(u−m2)(s−m2)

)
+ δ2λ1

]
(5.99)

In terms of energy and angle θ it reads as

T λ1,λ2(s, θ) = −2e2δλ1λ2

[
δ1λ1

(
cos θ +

sin2 θ
s+m2

s−m2 + cos θ

)
+ δ2λ1

]
(5.100)

In the high-energy physics often the results are expressed in terms of so-called helicity
amplitudes. Let us define two circular polarization vectors:

~e+(k) =
~e(1)(k) + i~e(2)(k)√

2
; ~e−(k) =

~e(1)(k)− i~e(2)(k)√
2

(5.101)

These vectors are light-like: (e+)2 = (e−)2 = 0 and the normalization condition is e−e+ = 1

(note that (e+)∗ = e−). The helicity is defined as the component of the spin along the
direction of the momentum of the particle, see Fig. 71.

s

s

Y

Z

X

Y

Zk k

(a) (b)

X

Figure 71. Photon with positive (a) and negative (b) helicity.

Suppose we make a rotation on the angle φ around the axis OZ which we choose to be
parallel to the vector ~k. The components of any 4-vector a are transformed as follows:( a0

a1
a2
a3

)
⇒

 1 0 0 0
0 cosφ − sinφ 0
0 sinφ cosφ 0
0 0 0 1

( a0
a1
a2
a3

)
(5.102)

where the non-trivial block is simply a matrix of rotation on the angle φ in XY-plane. Now,
let us check how the circular polarization vectors (5.101) transform under this rotation. Let
us start from the x-component of the vector e+. Under the rotation (5.102) it transforms
as follows:

e+
x = e(1)

x + ie(2)
x → [e(1)

x cosφ− e(1)
y sinφ] + i[e(2)

x cosφ− e(2)
y sinφ] (5.103)
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Since vectors e(1) and e(2) are orthogonal e(1)
x = e

(2)
y and e(2)

x = −e(1)
y so we get

e+
x = [e(1)

x cosφ+ e(2)
x sinφ] + i[e(2)

x cosφ− e(1)
x sinφ]

→ e(1)
x (cosφ− i sinφ) + ie(2)

x (cosφ− i sinφ)→ e+
x e
−iφ (5.104)

Similarly, one can show that e+
y → e+

y e
−iφ, e−x → e−x e

iφ, and e−y → e−y e
iφ. Thus, the circular

polarization vectors transform under the rotations around the OZ ‖ ~k direction as follows:

e+ → e−iφe+, e− → eiφe− (5.105)

and since this rotation does not affect the photon momentum ~k ‖ OZ, the same will be
true for the photon wavefunctions (f

(+)
k )µ =

e+µ (k)√
2Ek

e−ikx and (f
(−)
k )µ =

e−µ (k)√
2Ek

e−ikx:

(f
(+)
k )µ → e−iφ(f

(+)
k )µ,

(f
(−)
k )µ → eiφ(f

(−)
k )µ (5.106)

From the quantum mechanics we (should) remember that the state has a the projection sz
of the spin on the OZ axis if under the active rotation (see the footnote on page 113) on
the angle φ around this axis the wavefunction is multiplied by phase factor proportional to
φ with the coefficient of the proportionality sz being the z-component of the spin:

〈φ|Ψ〉 → e−iφsz〈φ|Ψ〉 (5.107)

So we see that the helicity (≡ projection of the photon spin on the direction of the photon
momentum) is +1 for the circular polarization (e+) and −1 for the circular polarization
(e−) 42.

Then the T-matrix for the transition between the states with definite helicities T h1,h2

has the form:

T++ = (e+
µ (k2))∗e+

ν (k1)(Gamp)µν(p2, k2; p1, k1) =
1

2
(T 11 + T 22)

T−− = (e−µ (k2))∗e−ν (k1)(Gamp)µν(p2, k2; p1, k1) =
1

2
(T 11 + T 22)

T−+ = (e−µ (k2))∗e+
ν (k1)(Gamp)µν(p2, k2; p1, k1) =

1

2
(T 11 − T 22)

T+− = (e+
µ (k2))∗e−ν (k1)(Gamp)µν(p2, k2; p1, k1) =

1

2
(T 11 − T 22) (5.109)

42 It is worth noting that for a massive particle with spin 1 (like Z0 boson which is a “massive photon” in
a sense) there are three possible components of the projection of the spin on the direction of momentum:
+1,−1, and 0. For the massless particles, however,we see that the third opportunity is missing. It is related
to the fact that for the massive vector particles with mass µ we have the three polarization vectors (which
in the frame where k = (k0, 0, k3) can be chosen as :

e(1)(k) = (0, 1, 0, 0), e(2)(k) = (0, 0, 1, 0), e(3) = (k3/µ, 0, 0, k0/µ) (5.108)

cf. eq. (5.42)) while in the case of massless particle the third opportunity corresponding to the helicity 0 is
actually the unphysical gauge degree of freedom.

– 101 –



Thus, we obtain

T++(s, t) = T−−(s, t) = −2e2

(
1− tm2

(u−m2)(s−m2)

)
= − e2

(
1 + cos θ +

sin2 θ
s+m2

s−m2 + cos θ

)
T+−(s, t) = T−+(s, t) = −2e2

(
− tm2

(u−m2)(s−m2)

)
= e2

(
1− cos θ − sin2 θ

s+m2

s−m2 + cos θ

)
(5.110)

and using the formula (5.96) we can easily get the relevant cross sections:(
dσ

dΩ

)++

=

(
dσ

dΩ

)−−
=

e4

16π2s

(
1 + cos θ +

sin2 θ
s+m2

s−m2 + cos θ

)2

(
dσ

dΩ

)+−
=

(
dσ

dΩ

)−+

=
e4

16π2s

(
1− cos θ − sin2 θ

s+m2

s−m2 + cos θ

)2

(5.111)

The advantage of the helicity amplitudes (5.109) is that they are relativistic invariant up
to an overall phase factor (which disappears if we calculate the cross sections). Let us
prove it. Suppose we have the circular polarization vectors e±(~k) = (e(1)(~k)± ie(2)(~k))/

√
2

in a certain frame. If we perform a Lorentz boost, the Lorentz transforms L(e(1)) and
L(e(2)) are no longer the physical polarization vectors in a new frame where the photon
momentum is L(k) ≡ k′ (for example, they have the time component while the vectors of
physical polarization should not have it). However, we can choose new physical polarization
vectors e(i)

new(k′) in such a way that that L(e(1)) = e
(1)
new(k′) + const · k′µ and similarly

for e(2) 43. Since the multiplication of Tµν by k′µ vanishes due to Ward identity we get
e

(i)
µ Tµνe

(j)
ν = (e

(i)
new)µT

µν(e
(j)
new)ν . In general, the choice of physical polarization vectors for

k′ may differ from e
(i)
new(k′) by the overall rotation around the direction of the momentum

and therefore the corresponding circular polarization vectors differ by a phase factor

e(±)(k′) = e(±)
new(k′)e±iφ (5.113)

where the phase φ depends on our concrete choice of physical polarization vectors in two
frames. Therefore, when we change the frame we get

T++ → T++, T−− → T−−, T+− → e2iφT+−, T−+ → e−2iφT−+ (5.114)

The cross sections with definite helicities are proportional to |T |2 so they are relativistic
invariant.

43 We can choose

~e(1)new = L(~e(1))− L(~e(1))0
k′0

~k′

~e(2)new = L(~e(2))− L(~e(2))0
k′0

~k′ (5.112)

It is easy to check that (e
(i)
new)2 = −1, (~e

(1)
new · ~e(2)new) = 0, (~e

(i)
new · ~k′) = 0, and (~e

(i)
new)0 = 0 (by construction)

so they can serve as a physical polarization vectors for the photon with momentum k′.
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If we are making an experiment with initial photon beam polarized in some fixed
direction (say, along x axis while the momentum in c.m. frame is along the z axis) we
must at first decompose in helicity amplitudes, and then calculate the cross section ∼ |T |2.
For example, let the initial photon be polarized along the x axis while the direction of the
momentum in c.m. frame is along the z axis and supppose we are interested in positive-
helicity photon in the final state (see Fig. 72). Then first we write

k 1

2k

  

2
p

p

e  (k  )
2

1

1

θ

e  (k  )1
2

e  (k  )
1

1
e  (k  )22

φ

e
x

e
y

Figure 72. Asimuthal dependence for Compton scattering in the c.m. frame

~e(x) =
1√
2

(~ε+ + ~ε−) (5.115)

where ~ε± = 1√
2
(~ex ± i~ey). Second, we must relate our circular vectors ε+ and ε− to the

similar vectors e+ and e− but defined according to the picture in the Fig. 70 which means
that they are related by the rotation on the asimuthal angle φ around the OZ ‖ ~k1 axis.
Fortunately, for the circular polarizations corresponding to definite helicity the rotation
properties are trivial:

ε± = e±iφe± (5.116)

(see eq. (5.105)) so the relevant amplitude of transition from the polarization ex to positive
helicity in the final state is

T x+ = exµT
µ+ =

1√
2

(e+eiφ + e−e−iφ)µT
µ+ =

1√
2

(eiφT++ + e−iφT−+) (5.117)

This is enough for calculation of the cross section:

dσ

dΩ

x+

=
1

64π2s

(
|T++|2 + |T−+|2 + 2 cos 2φ|T++T−+|

)
(5.118)

So, using the helicity amplitudes, we can easily take into account the dependence on the
asimuthal angle (if we set so our polarization experiment).

Sometimes it is useful to know the cross section calculated in the rest frame of the
π-meson . The initial 4-momentum of the pion is then (p1 = (m, 0, 0, 0)) and suppose it is
striked by a photon moving along the Z axis with momentum k1 = (|~k1|, 0, 0,~k1). In this
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case the expression for the differential cross section has the form:(
dσ

dΩ

)Compton

lab

=
|T |2

64π2

1

[m+ |~k1|(1− cos θ)]2
(5.119)

(see Appendix B) and the corresponding T-matrix element is:

T++(s, t) = T−−(s, t) = −2e2

(
1− tm2

(u−m2)(s−m2)

)
= −e2(1 + cos θ)

T+−(s, t) = T−+(s, t) = −2e2

(
− tm2

(u−m2)(s−m2)

)
= e2(1− cos θ) (5.120)

where we have used the fact that the helicity amplitudes are relativistic invariant and
plugged in the explicit expressions for Mandelstam variables in the lab frame (8.17) 44.

Homework assignment 5.
Find the T-matrix for the Compton scattering in the lab frame in the leading order in α by
direct calculation of r.h.s. of eq. (5.95) in the lab frame. For simplicity, choose polarization
vectors as in Fig. 90.

5.7.1 π+π−-annihilation and crossing symmetry.

Let us now conside the process of π+π−-annihilation into a pair of photons. The relevant
diagrams in the first order in α are shown in Fig. 73. Let us choose the polarization vectors

k’

k p

p  -k

p’p’
p’ k’

k

1

1 2

1
2

2 1

1

2

2k’
2

p
1 k 2 p

1

1 2
p  -k’

Figure 73. Feynman diagrams for π+π−-annihilation .

in the c.m. frame as shown in Fig. 73
Using our Feynman rules, it is easy to write down the reduced Green function for this

process:

(Gamp)µν(k2, k
′
2; p1, p2) =

e2
(

(2p1−k2)µ(−2p′1+k′2)ν
m2−(p1−k2)2−iε +

(2p1−k′2)ν(−2p′1+k2)µ
m2−(p1−k′2)2−iε + 2gµν

)
(5.121)

44 In general, there may be a phase factor eiφ in the expressions fot T+−and T−+ (see eq. (5.114) but if
we choose the polarization vectors as shown in Fig.90 this phase factor is absent.
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Figure 74. Kinematics for π+π−-annihilation into photons in the c.m. frame

Actually, it is the same amplitude (5.84) only with the renamed momenta:

(Gamp)µνannihilation(k2, k
′
2; p1, p2) =

(Gamp)µνCompton(p2 → −p′1, k2 → k′1; p1 → p1, k1 → −k1) (5.122)

The T-matrix for the π+π−-annihilation has the form:

T λ2λ
′
2(k2, k

′
2; p1, p

′
1) =

e2

(
−4(eλ2 (k2)·p1)(eλ

′
2 (k′2)·p′1)

m2−(p1−k2)2−iε − 4(eλ
′
2 (k′2)·p1)(eλ2 (k2)·p′1)
m2−(p1−k′2)2−iε + 2eλ

′
2(k′2) · eλ2(k2)

)
(5.123)

Using the formulas e(2)(ki) · pj = e(2)(ki) · kj = 0 and |~p1| = |~p′1| = 1
2

√
s− 4m2 we get

e(1)(k2) · p1 = −e(1)(k2) · p′1 = −e(1)(k′2) · p1 = e(1)(k′2) · p′1 =
1

2

√
s− 4m2 sin θ (5.124)

and therefore

T 12 = T 21 = 0, T 22 = − 2

T 11 = e2
(

2− s(s− 4m2)

(m2 − u)(m2 − t)
sin2 θ

)
= − 2

[
1− 2m2s

(m2 − t)(m2 − u)

]
(5.125)

where we have used the formula u− t = 4|~p1||~k2| cos θ ⇒

cos2 θ =
(u− t)2

s(s− 4m2)
⇒ sin2 θ =

4(m2 − t)(m2 − u)− 4m2s

s(s− 4m2)
(5.126)

Thus, one gets

T λ2,λ
′
2 = −2δλ2λ′2

(
δ1λ2

(
1− 2m2s

(t−m2)(u−m2)

)
+ δ2λ′2

)
(5.127)

In terms of energy and angles it reads as

T λ2,λ
′
2 = −2e2δλ2λ′2

[
δ1λ2

(
1− 2

cos2 θ + s
4m2 sin2 θ

)
+ δ2λ2

]
(5.128)
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Finally, let us present the helicity amplitudes:

T+−(s, t) = T−+(s, t) =
1

2
(T 11 + T 22) = −2e2

(
1− sm2

(u−m2)(t−m2)

)
T++(s, t) = T−−(s, t) =

1

2
(T 11 − T 22) = −2e2

(
− sm2

(u−m2)(t−m2)

)
(5.129)

It is easy to see that (5.129) coincide with the T-matrix (5.110) for the Compton
scattering after change s↔ t 45:

T
h2,h′2
annihilation(s, t, u) = T

−h′2,h2
Compton(t, s, u) (5.130)

where h, h′ are the helicities of the photons (+ or −). (The change of helicity is due to the
fact that we multiply by e∗λ′2(k′2) in the final state but by eλ1(k1) in the initial state). This
property is called crossing symmetry - the transition amplitude for the particle-antiparticle
annihilation coincide with the amplitude of Compton scattering of the photon from the
particle. Note, however, that this is an unphysical region for the Compton scattering since
the initial photon and final π+-meson has negative energy. So, it is better to say that the
amplitudes of annihilation and Compton scattering are related by analytical continuation.
In the first order in perturbation theory considered above this statement may apppear
trivial, but nontrivial fact is that the crossing symmetry is exact - it is valid in all orders in
perturbation theory and even in the theories with strong interactions such as QCD where
it is related to the so-called CPT theorem. In general, the crossing symmmetry reads

T (A+B ⇒ C +D) = T (A+ C̄ ⇒ B̄ +D) (5.131)

where B̄ means antiparticle (with 4-momentum = − momentum of the particle).
Now that we know the T-matrix element, it is easy to write down the differential cross

section in the c.m. frame. We can start with the expression (4.112).

dσ =
1

I

d3k2

(2π)34E2E′2
2πδ(E2 + E′2 − E1 − E′1)|T (k2, k

′
2; p1, p

′
1)|2 (5.132)

Now, in the c.m. frame ~k2 = ~k′2 (⇒ E2 = E′2) and also ~p1 = ~p′1 (⇒ E1 = E′1) but for
the π+π−-annihilation |~k2| 6= |~p1|. Pefrorming the integration over | ~k2| with the help of δ -
function one obtains:

dσ

dΩ
=

1

64π2s

√
s

s− 4m2
|T h2,h′2(s, θ)|2 (5.133)

and together with eq. (5.129) it gives us the answer for the differential cross section of
π+π−-annihilation into photons.

45 It is very convenient to compare the helicity amplitudes (5.109) since they do not depend on our
particular choice of e(1) and e(2) for the initial or final photons
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Part XX

5.8 Ward identity

Now that we know how to calculate S-matrix elements in scalar electrodynamics we can
return to the origins and prove the property which was promised in Section 5C - proof that
we do not produce the unphysical photons in the collisions of physical particles. In principle,
there is a danger of such production since in order to make our Green fuction relativistic
invariant we have added to the terms describing the propagation of physical transverse
photons (see eq. (5.38) the terms corresponding to the propagation of the unphysical
longitudinal photons and so th nonphysical particles are present in our diagrams - but not
in the S-matrix, as we will show in this Section.

First, let us prove the Ward identity (5.48) which can be carefully formulated as follows:
Ward identity:
Suppose we have a general amputated Green function 46 Gamp

µ1,...,µm(k1, ...km, p1, ...pl)

with all the π-meson momenta p1, ...pl on the mass shell (p2
i = m2). Then

kµii G
amp
µ1,...,µm(k1, ...km, p1, ...pl) = 0 (5.134)

We will prove the Ward identity (5.134) order by order in e, by looking directly at the
Feynman diagrams that contribute to G. The identity is generally not true for individual
Feynman diagrams; we must sum over the diagrams for G at any given order.

Consider a typical diagram for a typical amputated Green function G(N) (where N is
the order in perturbation theory ≡ number of vertices) shown in Fig. 75

q

Figure 75. A typical Feynman diagram for scalar QED.

If we remove the photon with momentum ki, which we will call q from now on, we
obtain a simpler diagram for the (amputated) Green function G(N−1). If we reinsert this

46 Note that usually the name “Ward identity” is reserved for a more general formula relating different
off-shell Green functions of which our property (5.134) is a consequence.
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photon somewhere else iside the simpler diagram, we again obtain a contribution to G(N).
The crucial observation is that by summing over all the diagrams that contribute to G(N−1),
then summing over all the possible points of the insertion in each of these diagrams, we get
back the original Green function G(N). The Ward identity (5.134) is true individually for
each diagram contributing to G(N−1); this is what we will prove.

When we insert our photon into one of the diagrams of G(N−1), it must attach either
to an electron line that runs out of the diagram to two external points, ot to an internal
π-meson loop. Let us these opprtunities in turn. In each case, we will consider a typical
example the general proof can be easily reconstructed from these typical examples.

First suppose that the π-meson line runs between external points. Before we insert our
photon with momentum q, the line looks like shown in Fig. 76. The three pion propagators

p p’

k k k

p pp

k k

1

2 3 4 65

2 3

k
1

Figure 76. A line from the diagram for G(N−1).

have momenta p1 = p − k1, p2 = p − k2 − k3, p3 = p − k2 − k3 − k4 , and finally to
p′ = p− k2 − k3 − k4 − k5 − k6. The corresponding expression had the form:

(p+ p1)ν1G0(p1)2gν2ν3G0(p2)(p2 + p3)ν4G0(p3)2gν5ν6 (5.135)

We can insert our photon in 5 different places as shown in Fig. 77). The π-meson propa-
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Figure 77. Possible insertions of the extra photon in the π-meson line shown in Fig. 55.
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gators to the left of the new photon then have their momenta increased by q.
Let us multiply these diagrams by qµ. The product of qµ with the new ππγ vertex can

be written as:

qµΓµ(pi + q, pi) = q(2pi + q) = (pi + q)2 − p2
i = G−1(pi)− G−1(pi + q)) (5.136)

After multiplication by the adjacent π-meson propagators, we obtain 47

1

m2 − (pi + q2)
q(2pi + q)

1

m2 − p2
i

=
1

m2 − (pi + q2)
− 1

m2 − p2
i

(5.137)

If the corresponding vertex is at one of the ends of the line, there is only one attached
propagator (recall that our line is truncated ≡ multiplied by (m2 − p2)(m2 − (p′)2) since
we consider Gamp) so we get

1

m2 − (p+ q)2
q(2p+ q) = 1, (5.138)

(recall that we consider the pions at the mass shell so p2 = (p′)2 = m2).
Alternatively, if we insert extra photon into the existing ππγ vertex (making it the

ππγγ vertex) the answer is simply

qµ2gµνi = qνi (5.139)

Using the above formulas, it is easy to get the answers for the diagrams shown in Fig. 77
in the following form:

(a) = −(p+ p1 + 2q)ν1G0(p1 + q)2gν2ν3G0(p2 + q)(p2 + p3 + 2q)ν4G0(p3 + q)2gν5ν6

(b) = 2qν1G0(p1 + q)2gν2ν3G0(p2 + q)(p2 + p3 + 2q)ν4G0(p3 + q)2gν5ν6

(c) = (p+ p1)ν1 [G0(p1 + q)− G0(p1)]2gν2ν3G0(p2 + q)(p2 + p3 + 2q)ν4G0(p3 + q)2gν5ν6

(d) = (p+ p1)ν1G0(p1)2gν2ν3 [G0(p2 + q)−G0(p2)](p2 + p3 + 2q)ν4G0(p3 + q)2gν5ν6

(e) = (p+ p1)ν1G0(p1)2gν2ν3G0(p2)2qν4G0(p3 + q)2gν5ν6

(f) = (p+ p1)ν1G0(p1)2gν2ν3G0(p2)(p2 + p3)ν4 [G0(p3 + q)−G0(p3)]2gν5ν6

(g) = (p+ p1)ν1G0(p1)2gν2ν3G0(p2)(p2 + p3)ν4G0(p3)2gν5ν6 (5.140)

By inspection, we see that the sum of all terms cancel. It is clear from the above analysis
that this pattern of cancellations is general and we will have the casimilar cancellation for
the π-meson line with arbtitrary number of photon emissions.

To complete the proof of Ward identity, we must consider the case when photon attaches
to an internal π-meson loop. Before the insertion of the photon, a typical loop looks like
shown in Fig. 78 The π-meson propagators have momenta p, p1 = p− k1, p2 = p− k2− k3,
p3 = p − k2 − k3 − k4 , and of course the sum of all photon momenta should vanish:
k1 + k2 + k3 + k4 + k5 + k6 = 0. The loop integral then has the form:∫

d4p

(2π)4i
G0(p)(p+ p1)ν1G0(p1)2gν2ν3G0(p2)(p2 + p3)ν4G0(p3)2gν5ν6 (5.141)

47 In this section, we will not write down the iε factors in the denominators - instead, we will keep them
always in mind.
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Figure 78. A typical π-meson loop.

Suppose now that we emit the photon with the momentum q between the vertices i and
i + 1. We now have an additional momentum q running around the loop because of the
new vertex. By convention, this momentum enters together with k1 and exits at the new
vertex. The corresponding set of the diagrams is shown in Fig. 79
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Figure 79. Possible insertions into the π-meson loop showh in Fig. 58 .

Using the above formulas, it is easy to get the answers for the diagrams shown in Fig.
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77 in the following form:

(a) = 2qν1G0(p1)2gν2ν3G0(p2)(p2 + p3)ν4G0(p3)2gν5ν6G0(p) (5.142)

(b) = (p+ p1 + q)ν1 [G0(p1 + q)− G0(p1)]2gν2ν3G0(p2)(p2 + p3)ν4G0(p3)2gν5ν6G0(p)

(c) = (p+ p1 + q)ν1G0(p1 + q)2gν2ν3 [G0(p2 + q)− G0(p2)](p2 + p3)ν4G0(p3)2gν5ν6G0(p)

(d) = (p+ p1 + q)ν1G0(p1 + q)2gν2ν3G0(p2 + q)2qν4G0(p3)2gν5ν6G0(p)

(e) = (p+ p1 + q)ν1G0(p1 + q)2gν2ν3G0(p2 + q)(p2 + p3 + 2q)ν4 [G0(p3 + q)−G0(p3)]2gν5ν6G0(p)

(g) = (p+ p1 + q)ν1G0(p1 + q)2gν2ν3G0(p2 + q)(p2 + p3 + 2q)ν4G0(p3 + q)2gν5ν6 [G0(p+ q)−G0(p)]

It is easy to see that all the terms cancel, except the first, the second, and the last, so we
obtain∫ d4p

(2π)4i
(p+ p1 + q)ν1G0(p1 + q)2gν2ν3G0(p2 + q)(p2 + p3 + 2q)ν4G0(p3 + q)2gν5ν6G0(p+ q)−

−
∫ d4p

(2π)4i
(p+ p1 − q)ν1G0(p1)2gν2ν3G0(p2)(p2 + p3)ν4G0(p3)2gν5ν6G0(p) (5.143)

Now, making shift p → p + q of the integration variable in the second term in r.h.s of
eq.5.143 we obtain exactly the first term (with opposite sign) so the result is actually 0.
Again, it is clear that this vanishing will be true any number of photon legs.

We are now ready to finish the proof. Suppose the amputated Green function GN has n
incoming π-meson lines and n outcoming. Let us consider the Green function GN−1 which
lacks the photon with momentum q but is otherwise identical to GN . To form qµGNµ we
must sum over all diagrams that contribute to GN−1, and for each diagram, sum over all
the points at which the photon could be inserted. Summing over insertion points along an
internal loop in any diagram gives zero due to eqs. (5.142) and (5.143) and summing over
all the insertions along the through-line in any diagram gives zero due to eq. (5.140) 48.
Thus, we have proved our Ward identity (5.134).

Now we will use this Ward identity in order to prove that we cannot create the un-
physical longitudinal photons in the physical scattering processes. Indeed, the vector of
polarization of the longitudinal photon is proportional to its 4-momentum, and therefore
the product of this polarization vector and the corresponding amputated Green function
(with all the particles on the mass shell) gives zero 49.

Second important consequence of Ward identity is that we can use any gauge for the
photon propagator - the physical results will be the same. (Actually, I have already used
this property when we were constructing Feynman propagator DF and promised to prove
it in the future, and now that future came into being). More accurately, if we use the trial
propagator

Dtµν(k) =
1

k2
(gµν + kµaν + bµkν + ckµkν) (5.144)

instead of the Feynman one D =
gµν
k2

the elements of the S-matrix will remain the same.
(Here aν , bµ, and c can be arbitrary functions of k, not even nessesarily relativistic invariant)

48 Of course, I mean here the generalization of these equation to the arbitrary number of photon legs,
which can be easily done.

49 It is sufficient that all the π-mesons are on the mass shell.
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The proof actually repeats the above steps. Let us prove this statement by induction
in number of internal photon lines I. First, consider I=1. This photon line can connect
two through-going π-meson lines (or the photon may be attached to just one line), or one
through-going line and one internal pion loop, or two loops (or both ends of the photon line
may be attached to the same loop). Let us consider the term aµkµ in the propagator. In
all of these cases, let us fix the attachment to the end corresponding to aµ. Then we must
first sum over all the attachments of the second tail (multiplied by kµ) to the through-going
line, or to the loop 50. In both cases, we obtain zero as proved above (see eqs. (5.140) and
(5.142)).

Now, let us proceed by induction. Suppose we have proved this statement (that we
can use the propagator (5.144) instead of the Feynman one) for all the diagrams with I-1
internal photon lines. Let us take now an arbitrary diagram with I internal lines and let us
remove an arbitrary line from this diagram. We will get then the diagram with I-1 internal
lines (this diagram may turn out to be disconnected after such removal, but it will make no
difference for us). Let us call that diagram GI−1. Now, if we reinsert the removed photon in
all possible ways, we will obtain a certain subset of the total set of diagrams with I internal
photon lines. We will prove now that in this subset we can replace the photon propagator
D =

gµν
k2

by (5.144).
First, note that due to induction proposal we can make this replacement of the propa-

gator in all the photon lines except the reattached line. Next, let us take, say, the term aµkν
in this reattached propagator. We must sum over all the attachments of the two photon
lines to the π-mesons. Let us at first sum over all the attachments of the end which goes
multiplied by kµ. Then, again, we have two possibilities, and the sum over all the insertions
of this end into (a) through-going line and (b) internal line gives 0 after multiplication by
kν . By induction, we have proved our property.

Part XXI

6 Relativistic particles with spin 1
2

6.1 Non-relativistic spinors

The spin-1
2 particle such as electron can be described by two wave functions ψ1 and ψ2

which are amplitudes of probability to observe this particle with z-component of the spin

+1
2 or −1

2 . They can be assembled into one two-componennt wave function
(
ψ1

ψ2

)
The

wavefunction of the spin-1
2 particle at rest is therefore

Ψ0 =

(
ψ1

ψ2

)
e−imt (6.1)

50 After that, we must sum over all the attachmments of the first tail, but we will get the desired zero
already at the first step.
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In the case of spin-0 particle we have found the wavefuction of a moving particle - it has
the form (3.26)

Ψp(x) =
e−ipx√

2p0
(6.2)

Now we must find the wavefunction of the moving spin-1
2 particle . From general grounds,

one should expect the two-component wavefunction of the same type:

Ψp(x) =

(
ψ1(p)
ψ2(p)

)
e−ipx√

2p0
(6.3)

where the relativistic spinor ψα(p) is transformed under Lorentz transformations in a way
compatible with the known physical properties of spin-1

2 particles (such as that the two of
them can merge either in spin-0 or in spin-1 particle).

To warm up, let us recover in this way the transformation properties of the non-
relativistic spinors. Suppose we make a rotation 51

xi → Rijxj (6.4)

The amplitude to discover the particle with spin up (or down) the new z′ axis should
be a linear combination of the corresponding amplitudes to discover spin parallel and an-
tiparallel to the "old" z axis. Indeed, let us write down

|state〉 = ξ1| ↑z〉+ ξ2| ↓z〉
|rotated state〉 = ξ1′ | ↑z′〉+ ξ2′ | ↓z′〉 (6.5)

Since | ↑z′〉 = c1| ↑z〉 + c2| ↑z〉 (and similarly for | ↓z′〉), the components of the spinor
ξ′ and η′ in the new coordinates should be linear functions of the components in the old
coordinates:

ξ1′ = aξ1 + bξ2, ξ2′ = cξ1 + dξ2 (6.6)

where complex numbers a, b, c, d are functions of the parameters of the rotation R (6.4).
They can be assembled to one 2× 2 matrix

U(R) =
(
a b
c d

)
(6.7)

so the transformation of spinor is(
(ξ′)1(p)
(ξ′)2(p)

)
=
(
a b
c d

)(
ξ1(p)
ξ2(p)

)
(6.8)

51 Following the majority of the textbooks on quantum mechanics, we define here a matrix R fior the so-
called active rotation. This means that when we write xi → Rikxk we have in mind the following. Suppose
we have a certain vector ~r with the coordinates xi. The active rotation means that we grab this vector by
hand and rotate it intil it fits into some new position specified by vector ~r′ with the coordinates x′i = Rikxk.
For example, namely for such definition the matrix for the rotation on the angle φ around the z axis has
the form (5.102). Similarly we define the active rotation R of the state: we take the state |Ψ〉 and rotate
it in such a way that the nearby vector x would fit into Rikxk. Then this state undergoes transformation
into some other state |Ψ′〉 = U(R)Ψ〉. The wave function 〈~r|Ψ〉 is transformed then into 〈~r|U(R)|Ψ〉 so it
appears that the arguments of the wavefunction are rotated by the U† matrix in the opposite direction.
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Let us now find the explicit form of these matrices using 3 pieces of the information:
(i) two spin-1

2 particles can form a spin-0 particles,
(ii) probability density to discover the particle in any of the spin states should be a scalar,
and
(iii) two spin-1

2 particles can form a spin-1 state.
Let us start from the first property. Consider the two spinors ξα and ηβ which we would

like to merge in one spin-0 state. A general state of two spin-1
2 particles can be decomposed

as follows (
ξ1| ↑〉+ ξ2 ↓〉

)(
η1| ↑〉+ η2 ↓〉

)
=

ξ1η2 − ξ2η1

√
2

| ↑〉| ↓〉− ↓〉 ↑〉√
2

(6.9)

+ ξ1η1| ↑〉 ↑〉+
ξ1η2 + ξ2η1

√
2

| ↑〉| ↓〉+ ↓〉 ↑〉√
2

+ ξ2η2| ↓〉 ↓〉

The first term in the r.h.s. can be identified with the spin-0 combination of two spins 1
2

and −1
2

1√
2

(| ↑〉 | ↓〉 − | ↓〉| ↑〉) (6.10)

and therefore the “spinor” corresponding to the spin-0 state has the form

ξ1η2 − ξ2η1 (6.11)

It is easy to check that under the rotation (6.8) this combination transforms as

ξ1η2 − ξ2η1 ⇒ (ad− bc)(ξ1η2 − ξ2η1) (6.12)

which will be a scalar if our our U-matrix (6.7) has determinant 1. So, detU = 1 is
the first property of matrix U which we established. Let us make here some technical
refinements which we will need in the relativistic case. In order to give the convolution
(6.11) a form similar to the scalar product of vectors let us introduce the spinors with lower
(contravariant) indices:

ξ1
def≡ ξ2, ξ2

def≡ −ξ1 (6.13)

Then the spin-0 combination (6.11) is written as a "scalar product" of spinors:

ξληλ = −ξληλ (6.14)

where λ = 1, 2 and the summation over the repeating indices is implied as usual. The
relation between the spinors with upper and lower indices can be put in the form re-
sembling the relation between covariant and contravariant components of the 4-vector
aµ = gµνaν , aµ = gµνaν :

ξλ = ελρξρ , ξλ = ελρξ
ρ (6.15)

where εαβ is the antisymmetric tensor in two dimensions. (From the eq. (6.13) we see that
ε12 = −ε21 = 1 and ε12 = −ε21 = −1 while ε11 = ε22 = ε11 = ε22 = 0). Also, εαλελβ = δαβ .
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The second property of the matrices (6.7) follows from the fact that total probability
density to discover our spin-1

2 particle in any of the states (with spin up or spin down)

ρ(x) = ρup + ρdown = ξ1∗ξ1 + ξ2∗ξ2 ≡ ξ†ξ (6.16)

should not change under rotations. Here we introduced the Hermitian conjugate spinor

ξ† =
(
ξ1∗, ξ2∗) (6.17)

which transforms under rotations with the help of the Hermitian conjugate matrix U †:

ξ → Uξ ⇒ ξ† → ξ†U † (6.18)

Therefore, the requirement for the probability (6.16) to be a scalar is translated into the
requirement of the unitarity of the matrix U:

ξ†ξ → ξ†U †Uξ = ξ†ξ ⇒ U †U = 1 (6.19)

It is instructive to note that the complex conjugate spinors transform like the spinors with
lower indices. This follows from the fact that both ξ†ξ and ξαηα are scalars:

ηα → (Uη)α

ξαη
α − scalar

}
⇒ ξα →

(
ξU †

)
α

(6.20)

ξα → (Uξ)α

ξ†αξα − scalar

}
⇒ ξ†α →

(
ξ†U †

)α
(6.21)

Now, we have two conditions: that our matrix U is unitary and has determinant 1.
Let us count the number of real parameters in this matrix. We have four complex numbers
(a,b,c,d) which means 8 real parameters, but we have 2 conditions that detU = ad− bc = 1

(both < and =) and 3 more conditions follow from unitarity:

U † = U−1 ⇒
(
a∗ c∗

b∗ d∗
)

=
(
d −b
−c a

)
(6.22)

which means that we only have 3 independent real numbers which may be related to the
three parameters defining the rotation. Now we shall fix these numbers using the require-
ment that two spin-1

2 particles can form the spin-1 particle.
The wavefunction of the massive vector (≡ spin-1) meson is described by the polariza-

tion vector which in the rest frame has the form (5.108):

~e1 = (1, 0, 0), ~e2 = (0, 1, 0), ~e3 = (0, 0, 1) (6.23)

(and time components of all the polarizaion vectors vanish in rest frame). As we saw above,
the state with projection 1 on the spin on z axis corresponds to the circular polarization
e+ and the state with sz = −1 - to e−. (Similarly, it can be checked that projection 0
corresponds to e3). Thus, the identification between spinors, states with projections of the
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spin on the z axis, and polarization vectors has the form 52

sz = 1
sz = 0
sz = −1

⇔
ξ1η1

1√
2
(ξ1η2 + ξ2η1)

ξ2η2

⇔
| ↑〉 | ↑〉

1√
2

(| ↑〉| ↓〉+ | ↓〉| ↑〉)
| ↓〉| ↓〉

⇔
− |e

1〉+i|e2〉√
2

|e3〉
|e1〉−i|e2〉√

2

(6.24)

Thus, the meson states corresponding to definite polarization vectors ~e1, ~e2 , and ~e3

are:

|~e1〉 = − 1√
2
(|sz = 1〉 − |sz = −1〉) = − 1√

2
(| ↑〉| ↑〉 − | ↓〉| ↓〉)

|~e2〉 = i√
2
(|sz = 1〉+ |sz = −1〉) =

i√
2

(| ↑〉| ↑〉+ | ↓〉| ↓〉)

|~e3〉 = 1√
2
|sz = 0〉 =

1√
2

(| ↑〉| ↓〉+ | ↓〉| ↑〉) (6.25)

and they should transform under (active) rotations as vectors 53. We get

~e
(k)
i → Rij~e

(k)
j ⇔ |~e(k)〉 → |~e(j)〉Rjk (6.26)

In principle, it is easy to figure out the transformation law of the spinor states directly
from this formula, but it is more convenient to compare the transformation laws for the
spinor and vector components of a certain spin-1 state described by symmetrical spinor
ξαηβ(symmetrical means that ξαηβ = ξβηα so the projection on spin 0 is absent):

(ξ1| ↑〉+ ξ2| ↓〉)(η1| ↑〉+ η2| ↓〉) =

ξ1η1| ↑↑〉+ ξ2η2| ↓↓〉+ ξ1η2+ξ2η1√
2

1√
2
(| ↑↓〉+ | ↓↑〉) =

1√
2
(ξ2η2 − ξ1η1)|~e1〉+ −i√

2
(ξ1η1 + ξ2η2)|~e2〉+ 1√

2
(ξ1η2 + ξ2η1)|~e3〉 (6.27)

Thus, the three combinations of spinor components

1√
2

(ξ2η2 − ξ1η1)

−i√
2

(ξ1η1 + ξ2η2)

1√
2

(ξ1η2 + ξ2η1) (6.28)

should transform as a component of some 3-vector ~a:

ai → Rikak (6.29)

52 Actually, we can determine the relation between, say, | ↑〉| ↑〉 and |e
1〉+i|e2〉√

2
only up to an arbitrary

phase factor eiα. The particluar choice (6.24) correspond to the conventional set of Pauli matrices in eq.
(6.31) below.

53 In principle, one can prove that the states − 1√
2
(|sz = 1〉 − |sz = −1〉), i√

2
(|sz = 1〉+ |sz = −1〉), and

1√
2
|sz = 0〉 transform as a three components of a vector using the known transformation properties for the

spin-one system, but we will use the physically motivated “proof” that the state of a vector meson labeled
by a given polarization vector behaves under rotations as this polarization vector.
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The combinations (6.28) become very nice if we use the spinors with lower indices. It
is easy to see that

ξ2η2 − ξ1η1 = (ξ1 ξ2)
(

0 1
1 0

)(
η1

η2

)
−iξ1η1 − iξ2η2 = (ξ1 ξ2)

(
0 −i
i 0

)(
η1

η2

)
ξ1η2 + ξ2η1 = (ξ1 ξ2)

(
1 0
0 −1

)(
η1

η2

)
(6.30)

which can be written down as
ξα~σ

α
βη

β (6.31)

where σi are the usual Pauli matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(6.32)

So, we see that our spinors (ξ and η) should transform under rotations in such a way as
to make the combination (6.31) to behave like a vector. In terms of the rotation matrix U
this condition takes the form:

U †σiU = Rijσj (6.33)

The solution of this equation is well-known from group theory. If the rotation R is on the
angle φ around the direction specified by unit vector ~n then

U(R) = e−
iφ
2
~σ·~n (6.34)

Let us verify it for the rotation around z axis. We must prove that

e
iφ
2
σzσxe

− iφ
2
σz = σx cosφ− σy sinφ

e
iφ
2
σzσye

− iφ
2
σz = σx sinφ+ σy cosφ

e
iφ
2
σzσze

− iφ
2
σz = σz (6.35)

(see the expression (5.102) for the matrix R for the rotation around the z axis). As to the
third equation, it is trivial. Let us check the first one (the second is quite similar). First,
let me remind the properties of Pauli matrices:

σ2
i = 1, σxσy = iσz, σyσz = iσx, σzσx = iσy (6.36)

We will need also the explicit form of the transformation matrix U(R) in r.h.s. of eq. (6.34).
It can be easily otained using the properties (6.36):

e
iφ
2
~σ·~n = I cos

(
φ

2

)
+ i~σ · ~n sin

(
φ

2

)
(6.37)

where I is the unit 2× 2 matrix. Now, substituting eq. (6.37) in eq. (6.35) we obtain:

e
iφ
2
σzσxe

− iφ
2
σz =[

I cos
(
φ
2

)
+ iσz sin

(
φ
2

)]
σx

[
I cos

(
φ
2

)
− iσz sin

(
φ
2

)]
(6.38)
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Using the properties (6.36) this can be easily reduced to[
σx cos2

(
θ
2

)
− 2σy sin

(
θ
2

)
cos
(
θ
2

)
− σx sin2

(
θ
2

)]
= [σx cos θ − σy sin θ] (6.39)

Q.E.D. Similarly, the property (6.33) can be checked for other rotations. So, from the three
requirements (i)-(iii) we have found the transformation properties of non-relativistic spinor
- the spin part of the wavefunction of the non-relativistic particle. In the next Section we
will do the same thing for the relaticvistic spinor - the spin part of the wavefunction of the
relativistic particle.

Part XXII

6.2 Lorentz transformations

Let us at first recall the properties of Lorentz transformations. The Lorenz transformations
are the linear transformations of the coordinates

x′µ = Λ ν
µ xν (6.40)

which preserve the space-time interval

gµνx
,µx,ν = gµνx

µxν ⇒ gµνΛµαΛνβ = gαβ (6.41)

If we will think about Λµα (and gµν) as a matrix [Λ] ([g]) with indices row=µ, column=ν,
this property takes the form

[ΛT ][g][Λ] = [g] (6.42)

Since det[Λ] = det[ΛT ] we get det Λ = ±1.
Among those Lorentz transformations are three rotations R and three Lorentz boosts L.

We already know the matrices for the rotations. For example, the matrices corresponding
to the rotation on angle φ around z, x, or y axis have the form (5.102):

Rzφ =

 1 0 0 0
0 cosφ − sinφ 0
0 sinφ cosφ 0
0 0 0 1

 , Rxφ =

 1 0 0 0
0 1 0 0
0 0 cosφ − sinφ
0 0 sinφ cosφ

 , Ryφ =

 1 0 0 0
0 cosφ 0 − sinφ
0 1 0 0
0 sinφ 0 cosφ


(6.43)

The arbitrary rotation (on the angle θ around arbitrary direction speccified by unit
vector ~n) can be represented as the product of three rotations (6.43). The three Lorentz
boosts in z,x, and y directions are given by the matrices:

Lzv =

 coshφ 0 0 sinhφ
0 1 0 0
0 0 1 0

sinhφ 0 0 coshφ

 , Lxv =

 coshφ sinhφ 0 0
sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

 , Lyv =

 coshφ 0 sinhφ 0
0 1 0 0

sinhφ 0 coshφ 0
0 0 0 1


(6.44)

where tanh of the angle being the boost velocity: tanhφ = v. The Lorentz boost in
arbitrary direction can be obtained by superposition of the boosts (6.44). Formally, the

– 118 –



Lorentz boost (for example, Lz ) is the rotation on the complex angle -iφ in the corre-
sponding plane (made of z and it). Note that both rotations and boosts have det Λ = 1
54

Apart from those continuous Lorentz transformations there are so-called discrete Lorentz
transformations – space reflection P: ~r → −~r and time reflection T:t → −t. The corre-
sponding matrices are

ΛP =

 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , ΛT =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (6.47)

These transformations are called discrete because you cannot obtain P or T by any super-
position of continuous Lorentz transformations (6.43),(6.44). If is especially clear if we note
that det ΛP = det ΛT = −1. Then if, say, P could have been obtained by a superposition of
any number of rotations and boosts, its determinant would be 1 since the determinant of
each rotation and boost is 1 (and the determinant of product of matrices is a product of de-
terminants). So, to get P as a product of any number of rotations and boosts is impossible.
In conclusion, note that the total reflection PT x→ −x corresponding to the matrix

ΛPT =

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (6.48)

with all -1 on the diagonal also cannot be obtained by any superposition of rotations and
boosts (although its determinant is OK). In order to prove that, let us take the unit vector
n = (1, 0, 0, 0) and apply any number of rotations and boosts. It is clear from the formulas
(6.43),(6.44) that neither rotation no boost can flip the sign of the first component of this

54 To be precise, let us we define formally X1 = x1, X2 = x2, X3 = x3, and X4 = ix0 and forget for a
second that X4 is imaginary. Then we will obtain that the interval x20 − x21 − x22 − x23 which is conserved
under Lorentz transformations can be rewritten as x2 = −(X2

1 + X2
2 + X2

3 + X2
4 ) so it is the usual ~r2 in

the usual four-dimensional space up to a minus sign. (The name is for the usual space is "Euclidean space"
in order to distinguish it from the space-time which is called "Minkowski space"). So, one should expect
that the Lorentz transformations should be the rotations in these notations. Indeed, let us take the Lorentz
boost in z direction (6.44) and rewite it in X1 ÷ X4 notations. It takes the form:−iX4

X1
X2
X3

→
 coshφ 0 0 sinhφ

0 1 0 0
0 0 1 0

sinhφ 0 0 coshφ

−iX4
X1
X2
X3

 (6.45)

which can be rewitten asX4
X1
X2
X3

→
 coshφ 0 0 i sinhφ

0 1 0 0
0 0 1 0

−i sinhφ 0 0 coshφ

X4
X1
X2
X3

 =

 cos(iφ) 0 0 sin(iφ)
0 1 0 0
0 0 1 0

− sin(iφ) 0 0 cos(iφ)

X4
X1
X2
X3

 (6.46)

which is an usual rotation in the X3, X4 plane - only on imaginary angle −iφ. So, the Lorentz boosts with

the speed v in the x3 (or x1,or x2) directions (6.44) are the rotations in the X4, X3 (or X4, X1, X4, X2)
plane on the angle φ = −iarctanhv
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vector so n′0 > 0 after any number of rotations and boosts, and after PT the n0 is −1, so
PT cannot be obtainesd by continuous Lorentz transformations. It can be proved, however,
that rotations + boosts + one of P, T, or PT give all the Lorentz transformations.

6.3 Relativistic spinors

Let us turn now to the relativistic spinors. Similarly to the non-relativistic case, we de-
fine the relativistic spinor as a pair of (complex) numbers which change under Lorentz
transformations

x′µ = Λ ν
µ xν (6.49)

in such a way that they can represent a wavefunction of the physical particle with spin
1
2 . First, from the superposition principle we conclude that the dependence of the new
components of the wavefunction on the old ones is linear, so(

ξ1

ξ2

)
⇒ U(Λ)

(
ξ1

ξ2

)
(6.50)

In the non-relativistic case we had three requirements which fix the form of the 2 × 2

matrix U: (i) two spin-1
2 particles can form a spin-0 particle, (ii) two spin-1

2 particles can
form a spin-1 particle, and (iii) the density ξ†ξ should not change upon rotations. In the
relativistic case, the condition (iii) is absent. Indeed, as we know from the theory of the
relativistic scalar (and vector) particles, the density

ρ(t, ~r) = φ∗+(t, ~r)i

↔
d

dt
φ+(t, ~r) (6.51)

is a zero component of a four-vector

ρµ(x)
def≡ φ∗+(x)i

↔
d

dxµ
φ+(x) (6.52)

rather than a scalar - and there is every reason to expect that the probability density to
find the spinor particle (with any spin) will also transform like the time component of the
vector rather than like a scalar (we will indeed see it later). It means that we no longer
have a condition (6.19) that the matrix U is unitary. Still, the combination (6.11) of two
spinors

ξαηα = ξ1η2 − ξ2η1 (6.53)

transforms via itself (see eq. (6.12) so it may be identified with the scalar particle made
from the two spin-1

2 particles, provided the (ad − bc) = detU = 1, and this gives us the
first restriction on the matrix U. Actually, it is also the last restriction since we have 8-2=6
real parameters for the matrix U which can be fixed in a unique way by 6 parameters of
Lorentz rotations. Now we will find the explicit form of the dependence of the elements of
this U-matrix on the parameters of Lorentz transformation using the requrement that two
spin-1

2 particles can merge in a vector particle with spin 1. Note that since the probability is
not a scalar anymore, the complex conjugate spinor is no longer transformed as the spinor
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with lower indices (see eq. (6.20), (6.21)). In order to label the indices of the complex
conjugate spinor we put the dot over the index, so

ξα → Uαβξ
β (6.54)

(ξ∗)α̇ → (U †) α̇
β̇

(ξ∗)β̇ (6.55)

Let me stress that the dot here has no extra meaning rather than being a label to remember
that this index belongs to the spinor which transforms according to eq. (6.55) rather than
the eq. (6.54). (I could have written these indices in a different color instead).

In order to guess the form of matrix U let us recall, that the Lorentz boosts look like
rotations on the complex angle arctanhv. The crucial mathematical property for the vector
to be formed from two spinors was the following property of the U matrices:

U †σiU = Rikσk (6.56)

(where U = exp iθ2 ~σ · ~n for the rotation R on the angle θ around the direction ~n). If so, the
combination ξ†σiη of two spinors ξ and η transforms like a vector under rotations:

(ξ†σiη)→ Rik(ξ
†σkξ) (6.57)

Let us write down this property for the rotation around z axis (see (6.35)):

U †σxU = cos θσx − sin θσy

U †σyU = sin θσx + cos θσy (6.58)

Now, since Lorentz boost in z direction looks like the rotation on the complex angle iθ we
may try

U(iθ) = e
1
2
σzθ (6.59)

as a candidate for the U-matrix rotating the spinors under z-boost. Let us try. We must
form a 4-vector from 2 spinors ξ and η and demonstrate that it is transformed in a proper
way under Lorentz boost . An educated guess for this 4-vector formed by two spinors is

V µ = (V0, ~V ) = (ξ†η, ξ†~ση) (6.60)

Indeed, it is easy to check that if we use our guess (6.59) for the U-matrix, we obtain for
the boost in z-direction (cf. eq. (6.35):

V0 = ξ†η → ξ†e
1
2
σzθe

1
2
σzθη = ξ†eσzθη = cosh θ(ξ†η) + sinh θ(ξ†σzη) = V0 cosh θ + V3 sinh θ

V3 = ξ†σzη → ξ†e
1
2
σzθσze

1
2
σzθη = ξ†σze

σzθη = sinh θ(ξ†η) + cosh θ(ξ†σzη) = V0 sinh θ + V3 cosh θ

V1 = ξ†σxη → ξ†e
1
2
σzθσxe

1
2
σzθη = ξ†

(
cosh

θ

2
+ σz sinh

θ

2

)
σx

(
cosh

θ

2
+ σz sinh

θ

2

)
η = ξ†σxη = V1

(6.61)

(and V2 → V2 is obtained similarly to the the last line in the above equation). So, the
four combinations (6.60) transform like components of the four-vector under the Lorentz
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boost in the z-direction. Similarly, one can check that this property will be true for the
two remaining boosts in x and y directions. It is convenient to use the covariant notation
σµ = (1, ~σ) then the vector formed by two spinors takes the nice form:

V µ = ξ†σµη ≡ (ξ†)α̇(σµ)α̇βη
β (6.62)

where we have displayed the spinor indices explicitly. So, the transformation of the spinor
under the Lorentz boost with velocity v in the direction specified by vector n has the form:

ξα →
(
e

1
2
~σ·~nθ

)α
β
ξβ

(ξ†)α̇ → (ξ†)β̇
(
e

1
2
~σ·~nθ

) α̇

β̇
(6.63)

where θ = arctanh v. We will need also the transformation law for the spinors with lower
indices. It is easy to demonstrate that they are transformed in the opposite way:

ξα → ξβ

(
e−

1
2
~σ·~nθ

)β
α

ξ†α̇ → ξ†
β̇

(
e−

1
2
~σ·~nθ

) β̇

α̇
(6.64)

Indeed, let us take the same Lorentz boost in z direction as an example. We have:(
ξ1

ξ2

)
→
(
e
θ
2 0

0 e
−θ
2

)(
ξ1

ξ2

)
(6.65)

If we rewrite this transformation in terms of spinors with lower components we get:(−ξ2
ξ1

)
→
(
e
θ
2 0

0 e
−θ
2

)(−ξ2
ξ1

)
(6.66)

Rearranging it in a proper way, we obtain:(
ξ1
ξ2

)
→
(
e
−θ
2 0

0 e
θ
2

)(
ξ1
ξ2

)
(6.67)

which corresponds to the transformation law (6.64). Similarly, the validity of eq. (6.64)
can be checked for other Lorentz boosts.

The eq. (6.64) can be formally proved using the identity

εαβε
µν = −δµαδνβ + δναδ

µ
β (6.68)

We get

ξα = εαβξ
β → εαβ

(
e

1
2
~σ·~nθ

)β
γ
ξγ = εαβε

γλ
(
e

1
2
~σ·~nθ

)β
γ
ξλ = (−δγαδλβ + δλαδ

γ
β)
(
e

1
2
~σ·~nθ

)β
γ
ξλ =

Tr
(
e

1
2
~σ·~nθ

)
ξα −

(
e

1
2
~σ·~nθ

)β
α
ξβ =(

2 cosh
θ

2
−
(

cosh
θ

2
+ ~σ · ~n sinh

θ

2

))β
α
ξβ =

(
e−

1
2
~σ·~nθ

)β
α
ξβ (6.69)
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One may also define the matrices
(
e

1
2
~σ·~nθ

)
with two upper or two lower indices using

the antisymmetric tensor εαβ to raise the index and εαβ to lower the index. For example,
by lowering the index in the first eq. (6.63) one obtains

?ξα →
(
e

1
2
~σ·~nθ

)
αβ
ξβ =(

e
1
2
~σ·~nθ

) γ

α
εγβξ

β =
(
e

1
2
~σ·~nθ

) γ

α
ξγ (6.70)

It is easy to see that(
e

1
2
~σ·~nθ

) β

α
= ?εαγε

βλ
(
e

1
2
~σ·~nθ

)γ
λ

=
(
e−

1
2
~σ·~nθ

)β
α

(6.71)

in agreement with eq. (6.64).

Part XXIII

6.4 Neutrinos and Weyl equation

In the previous Section we learned that there are two types of relativistic spinors which
can be written down with covariant or contravariant indices : ξα or ξα and ηα̇ or ξα̇.
(Mathematically, they correpspond to two different representation of Lorentz group). Under
the rotations on the angle φ around the ~n axis, they transform as follows:

ξα →
(
e−i

1
2
~σ·~nφ

)α
β
ξβ ξα → ξβ

(
ei

1
2
~σ·~nφ

)β
α

ηα̇ → ηβ̇
(
ei

1
2
~σ·~nφ

) α̇

β̇
ηα̇ →

(
e−i

1
2
~σ·~nφ

) β̇

α̇
ηβ̇ (6.72)

Similarly, under Lorentz boosts in the direction specified by ~n and the velocity corresponding
to θ (arctanhθ = v) they transform in a following way:

ξα →
(
e

1
2
~σ·~nθ

)α
β
ξβ ξα → ξβ

(
e−

1
2
~σ·~nθ

)β
α

ηα̇ → ηβ̇
(
e

1
2
~σ·~nθ

) α̇

β̇
ηα̇ →

(
e−

1
2
~σ·~nθ

) β̇

α̇
ηβ̇ (6.73)

The complex conjugate spinors are transformed according to the “mnemonic rule”

(ξα)† = (ξ†)α̇, (ξα)† = (ξ†)α̇, (ηα̇)† = (η†)α, (ηα̇)† = (η†)α, (6.74)

as can be easily seen from the complex conjugation of formulas (6.72) and (6.73). For
example,

ξα
rotation→

(
e−i

1
2
~σ·~nφ

)α
β
ξβ ⇒ (ξα)∗ →

(
ei

1
2
~σ·~nφ

) α

β
(ξβ)∗

ξα
boost→

(
e

1
2
~σ·~nθ

)α
β
ξβ ⇒ (ξα)∗ →

(
e

1
2
~σ·~nθ

) α

β
(ξβ)∗ (6.75)
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which gives to the first mnemonic rule in Eq. (6.74) since the behavior of (ξα)∗ under
rotations and boost corresponds to that of ηα̇ as can be seen from Eqs. (6.72) and (6.73).

In the non-relativistic theory, the wavefunction of the paricle is described by the non-
relativistic spinor which transforms under rotations according to eq. (6.34). There are two
relativistic spinors of that sort: ξα and ηα̇. The question is which of these spinors can be
taken as a wavefunction for the relativistic spin-1

2 particle. Let us take the first of them ξα

and make a try.
The Lorentz transformation of spinor κα is

κα →
(
e

1
2
~σ·~nθ

)α
β
κβ =

[
cosh

(θ
2

)
+ ~σ · ~n sinh

(θ
2

)]α
β
κβ (6.76)

so our candidate for the wavefunction of a spinor particle moving with velocity v in the
direction specified by vector ~n has the form:

(φ+
p )α(x) =

1√
2m
√
p0 +m

(p0 +m+ |~p|~σ · ~n)αβκ
β e
−ip0(t−vx3)

√
2p0

(6.77)

where κβ is a certain spinor in the rest frame (
(

1
0

)
or
(

0
1

)
(or any linear combination of

these spinors) and. In the derivation of the above formula we used the equations cosh θ
2 =√

p0+m
2m and sinh θ

2 = |~p|√
(p0+m)2m

which follow from cosh θ = p0
m , sinh θ = |~p|

m . (Here

pµ = (p0,mv~n) is the 4-momentum of the particle). It is convenient to rewrite Eq. (6.77)
in 4-dim notations using the set of four σ-matrices defined as (cf. (6.62) )

(σµ)α̇α = (1, ~σ), (σ̄µ)αα̇ = (1,−~σ) (6.78)

The matrices of transformation under the Lorentz boost (6.73) with velocity v in the direc-
tion specified by vector ~n take the form (pµ = (p0,mv~n))

(
e

1
2
~σ·~nθ)α

β
=

(
m+ σ̄µp

µσ0

)α
β√

2m(p0 +m)
,

(
e

1
2
~σ·~nθ

) α̇

β̇
=

(
m+ σ0σ̄µp

µ
) α̇

β̇√
2m(p0 +m)(

e−
1
2
~σ·~nθ)β

α
=

(
m+ σ̄0σµp

µ
)β

α√
2m(p0 +m)

,
(
e−

1
2
~σ·~nθ

) α̇

β̇
=

(
m+ σµσ̄0p

µ
) α̇

β̇√
2m(p0 +m)

(6.79)

Here the unit matrices (σ0)α̇α and (σ̄µ)αα̇ were introduced to match dotted and undotted
indices in Eq. (6.79) to those of Eq. (6.73)).

In these notations the wavefunction (6.77) reads

(m+ pµσ̄
µσ0)αβ√

2m(p0 +m)
κβ
e−ip0(t−~v·~x)

√
2p0

(6.80)

It is convenient to change slightly the normalization of the spinors - to multiply them by√
2m so the final form of the wavefunction (6.4.3) is

φ+α
p (x) =

(m+ p · σ̄σ0)α β√
2(p0 +m)

κβ
1√
2p0

e−ip0(t−~v·~x) (6.81)

– 124 –



Let us discuss now the behaviour of this candidate for wavefunction under spatial
inversion (parity transformation) P (see eq. (6.47). Consider, for example, the spin-1

2

particle with positive helicity moving with speed v in the +z direction. The corresponding
wavefunction is (second(+) is the helicity):

φ+(+)
p (x) =

p0√
2(p0 +m)

(1 +
m

p0
+ vσz)

(
1
0

) 1√
2p0

e−ip0(t−vx3) (6.82)

We want to find the transformation of the wavefunction (6.82) under spatial reflection.
First, let us note that if we look in a mirror on a particle moving in the z direction and
spinning in counterclockwise we will see a particle moving in the opposite direction but
spinning in the same way (see Fig. 80)

s

s

v

-v

Figure 80. Reflection of a spinning particle.

Therefore, the wavefunction of a reflected positive-helicity particle takes the form 55:

p0√
2(p0 +m)

(1 +
m

p0
+ vσz)

(
1
0

) 1√
2p0

e−ip0(t+vx3) (6.83)

and if we want to have a mirrored paricle moving still in positive z direction it corresponds
to −v in the above formula, so the wavefunction of the reflected particle moving with speed
v in positive z direction is:

χ+(+)
p (x) =

p0√
2(p0 +m)

(1 +
m

p0
− vσz)

(
1
0

) 1√
2p0

e−ip0(t−vx3) (6.84)

The important point is that the wavefuctions (6.84) and (6.82) are different spinors. For-
mally, they transform in a different way under Lorentz boosts. Indeed, in the rest frame

55 One may ask a question why we did not make a substitution v ↔ −v in the spin part of the wavefunc-
tion. The short answer is that we believe the the quantum analog of the classical property that the spin
does not change is that you do not alter the spin part of the wavefunction. A more refined argument is

given below. We know that the probability density ∼ ξ†ξ ∼ (1, 0)
(
p0 + m + vp0σz

)(
p0 + m + vp0σz

)( 1

0
)

transforms like a vector. Therefore, its time component should not change under spacial reflection which
selects the form (6.83) since the alternative form (with −v instead of v in the spin part) does change ξ†ξ.
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the spinors (6.82) and (6.84) coincide, but after the Lorentz boost with velocity v in +z

direction they become different:(
φ+(+)
p

)
→ p0√

2(p0 +m)
(1 +

m

p0
+ vσz)

(
φ+(+)
p

)
= e

1
2
θσz
(
φ+(+)
p

)
(6.85)(

χ+(+)
p

)
→ p0√

2(p0 +m)
(1 +

m

p0
− vσz)

(
χ+(+)
p

)
= e−

1
2
θσz
(
χ+(+)
p

)
(6.86)

The eqs. (6.85) and (6.86) correspond to the different transformation laws, (6.63) and
(6.64). So, the parity reflection of a certain spinor ξα transforming according to (6.63) is a
"dotted" spinor ηα̇ which transforms according to (6.64).

In the case of negative-helicity particle with the wavefunction

φ+(−)
p (x) =

p0√
2(p0 +m)

(1 +
m

p0
+ vσz)

(
0
1

) 1√
2p0

e−ip0(t−vx3) (6.87)

the corresponding wavefunction of the reflected particle is:

χ+(−)
p (x) =

p0√
2(p0 +m)

(1 +
m

p0
− vσz)

(
0
1

) 1√
2p0

e−ip0(t−vx3) (6.88)

The most explicit way to demonstrate the difference between the wavefunctions (6.82)
and (6.84) ( or between (6.87) and (6.89) is to consider a massless spin-1

2 particle - neutrino.
In the case of massless particle v = 1 and only two of the wavefunctions (6.82), (6.84) -

(6.89) survive - the other two vanish. So, we have two possible wavefunctions coresponding
to massless spin-1

2 particle moving in +z direction:

φ+(+)
p (x) =

1

2
(1 + σz)

(
1
0

)
e−ip0(t−x3) =

(
1
0

)
e−ip0(t−x3)

χ+(−)
p (x) =

1

2
(1− σz)

(
0
1

)
e−ip0(t−x3) =

(
0
1

)
e−ip0(t−x3) (6.89)

The first wavefunction φ
+(+)
p (x) describes a particle with positive helicity – antineutrino

("anti" stands for historical reasons). The second function χ+(−)
p (x) can be identified with

wavefunction of the negative-helicity neutrino. So, if we look in a mirror on a neutrino
moving on us we will see an antineutrino running from us. The existence of massless spin-1

2

particles means that, in general, the parity is not an exact symmetry of the Nature.
The wavefunction of antineutrino which moves in the direction specified by polar angle

θ and asimuthal angle φ can be obtained by the rotation of the wavefunction (6.89) on the
angle θ around the axis n̂ = −~e1 sinφ+ ~e2 cosφ (see Fig (81)) 56.

The matrix of rotation (6.34) has the form:

U(R) = e−
iφ
2
~σ·~n = cos(θ/2)+sin(θ/2)(iσx sinφ−iσy cosφ) =

(
cos(θ/2) −e−iφ sin(θ/2)
eiφ sin(θ/2) cos(θ/2)

)
(6.90)

56 This rotation is not unique one can rotate ~e3 to ~p
|~p| in an infinite number of ways. But all of them are

equivalent since the corresponding wavefunctions differ only by the trivial phase factor, see eq. (8.34) in
the Appendix.
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Figure 81. Rotation to the arbitrary ~p.

so the wavefunction of the antineutrino is(
φ+(+)
p

)α
(x) =

(
cos(θ/2)
eiφ sin(θ/2)

)
e−ipx (6.91)

The corresponding expression for the wavefunction of a neutrino has the form(
χ+(−)
p

)
α̇

(x) =

(
cos(θ/2) −e−iφ sin(θ/2)
eiφ sin(θ/2) cos(θ/2)

) (
0
1

)
e−ipx =

(
−e−iφ sin(θ/2)

cos(θ/2)

)
e−ipx

(6.92)
The "dotted" index of the spinor (6.92) corresponds to the transformation law of the P-
inversed spinor. Similarly to the case of charged π-mesons, we will try to describe neutrino
and antineutrino by one complex spinor field ν. As we know from the example of π-mesons
in such type of description the positive-frequency part of the field can be identified with
the wavefunction of the particle (antineutrino) and positive–frequency part of complex
conjugate field ν∗ with wavefunction of the antiparticle (neutrino). Therefore, the classical
neutrino field can be represented as

να =

∫
d3p

(2π)3

(
c(p)(φ+(+)

p )αe−ipx + d∗(p)εαβ(χ−(−)
p )βe

ipx
)

(6.93)

and similar expression for complex conjugate field is

(ν∗)α̇ =

∫
d3p

(2π)3

(
d(p)(χ+(−)

p )α̇)e−ipx + εα̇β̇c
∗(p)(φ−(+)

p )β̇eipx
)

(6.94)

where we have lowered the index α̇ in order to have the neutrino wavefunction (6.73) as the
positive -frequency part of our field. Note that (χ

+(−)
p )∗ = χ

−(−)
p and (φ

+(+)
p )∗ = φ

−(+)
p .

This classical neutrino field satisfies so-called Weyl equation:

σµα̇α
∂

∂xµ
να(x) = 0 (6.95)

where σµ = (1, ~σ) as defined in previous Lecture.
Let us prove this. First, since

σ̄ · p = |~p|
(

1 + cos θ e−iφ sin θ
eiφ sin θ 1− cos θ

)
, σ · p = |~p|

(
1− cos θ − e−iφ sin θ
−eiφ sin θ 1 + cos θ

)
(6.96)
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we get from Eqs. (6.90) and (6.91)

(φ+(+)
p )α = [(σ̄ · p)σ0]αβϕ

βe−ipx and (χ+(−)
p )β̇ = [(σ · p)σ̄0] γ̇

β̇
κγ̇e
−ipx (6.97)

where
ϕβ ≡ 1

2|~p| cos(θ/2)

(
1
0

)
and κγ̇ ≡

1

2|~p| cos(θ/2)

(
0
1

)
(6.98)

We need (χ
−(−)
p )β =

[
(χ

+(−)
p )β

]∗ so from the mnemonic rule (6.74) we obtain

(χp)β̇ = [(p·σ)σ̄0] γ̇
β̇
κγ̇e
−ipx = (p0−~σ·~p) γ̇

β̇
κγ̇e
−ipx ⇒ (χ∗p)β = κγ(p0−~σ·~p)γβe

ipx = κγ [σ̄0(p·σ)]γβe
ipx

since κ is real. Now, using the formula εαβεα̇β̇σµ
β̇β

= (σ̄µ)αα̇ we obtain εαβ(σµ)α̇β =

εα̇β̇(σ̄µ)αβ̇ and therefore

εαβ(χ∗p)β = κγε
αβ(σ̄0)γα̇(p · σ)α̇βe

ipx

= κγεα̇β̇(σ̄0)γα̇(p · σ̄)αβ̇eipx = κγε
γβ(σ0)β̇β(p · σ̄)αβ̇eipx = [(p · σ̄)σ0]αβκ

βeipx (6.99)

Thus, we get

να =

∫
d3p

(2π)3

(
c(p)[(p · σ̄)σ0]αβϕ

βe−ipx + d∗(p)[(p · σ̄)σ0]αβκ
βeipx

)
(6.100)

and the equation (6.93) immediately follows from the fact that in the momentum represen-
tation

pµσ
µ
α̇αp

ν(σ̄ν)αβ̇ = p2 = 0 (6.101)

so if we apply the operator pµσ
µ
α̇α to the r.h.s. of eq. (6.93) we get 0. (Recall that

(σµ)α̇βσ̄
ν)ββ̇ + µ ↔ ν = 2gµνδ

β̇
α̇). This equation was proposed by Weyl in 1929, but was

rejected at that time since it leads to the parity violation.
It should be mentioned that in this case our logic was anti-historical: we started from

guessing of the wavefunctions of neutrinos and then derived the classical equations for the
neutrino field. This is because we cannot observe the classical neutrino field by our eyes
(or simple devices). If we could, then the Weyl equation would probably be called fifth
Maxwell equation or smth of that sort and would be well studied in classical physics. In
this case, we could proceed in a "normal" way: expand the solution of this equation into
plane waves (6.93), (6.94) and make a wild guess that the positive-frequency part of r.h.s.
of eq. (6.93) has a probabilistic interpretation so it can serve as the wavefunction of a
particle "newtrino" which is a quantum of our field (and positive-frequency part of ξ∗ can
be interpreted as a wavefunction of a free "antinewtrino").

Part XXIV

6.5 Bispinors and Dirac equation

Let us return now to the discussion of spin-1
2 particles with mass. If we boost the spinor

ξα which in the rest frame had a form(
1
0

)
e−imt/

√
2p0
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we will get the expression (6.81):

ξα =
1√

2(p0 +m)
(m+ p0 + ~p · ~σ)

(
1
0

) 1√
2p0

e−ipx (6.102)

where ~v specifies the direction of the boost. As we discussed in the previous section, the
spinor corresponding to the reflected particle (moving in the same direction) can be obtained
in two steps: (i) prepare the spinor corresponding to the particle boosted in the opposite
direction

ξα(~v → −~v) =
1√

2(p0 +m)
(m+ p0 − ~p · ~σ)

(
1
0

) 1√
2p0

e−ip0(t+~v·~x) (6.103)

and (ii) reflect the spinor (6.103) in the mirror which changes only the space-time part of
the wavefunction (described by eipx) but does not alter the spin part of the wavefunction
(which transforms under Lorentz boosts according to eq. (6.63), see the discussion in
previous Section):

[ξα(~v → −~v)]reflected =
1√

2(p0 +m)
(m+ p0 − ~p · ~σ)

(
1
0

) 1√
2p0

e−ip0(t+~v·~x) (6.104)

Thus, in this way, we obtain a different relativistic spinor

ηα̇ =
1√

2(p0 +m)
(m+ pµσ

µσ̄0) β̇
α̇ κ

β̇ 1√
2p0

e−ipx (6.105)

which transforms according to (6.73) under Lorentz boosts. So, the parity reflection of our
candidate for the wavefunction of spinor particle ξα transforms as our second candidate for
the wavefunction of this particle ηα̇ (see eqs. (6.72), (6.73). The question is which of them
shall we choose?

In the case of neutrino the asymmetry between the spinor and its reflection in the
mirror was a reflection of the experimentally observed parity asymmetry of weak interactions
(involving neutrinos). However, if we want to describe an electron, which is parity-even, this
asymmetry is unconvenient. For example, let us try to describe the electron with momentum
p and z -projection of the spin 1

2 by the wavefunction (6.102). If we look in the mirror at the
electron moving with velocity −v we will see then the particle with wavefunction (6.105).
On the other hand, physically this should be the same as if we look (without mirror) on
an electron moving with velocity +v which is described by the wavefunction (6.102). So,
we have different formulas for the wavefunction one and the same physical electron which
is no good. Therefore, we must find the description of the electron which respects parity.
Actually, the most trivial way turns out to be the right one: let us describe the electron
by a pair of the spinors (6.102) and (6.105) placed one above the other. We have then the
wavefuncions

ψ(1)(p) =

(
ηα̇(p, 1

2)
ξα(p, 1

2)

)
=

√
1

4p0(p0 +m)

 (m+ pµσ
µσ̄0)

(
1
0

)
(m+ pµσ̄

µσ0)
(

1
0

) e−ipx (6.106)
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for the spin up (1
2) and

ψ(2)(p) =

(
ηα̇(p,−1

2)
ξα(p,−1

2)

)
=

√
1

4p0(p0 +m)

 (m+ pµσ
µσ̄0)

(
0
1

)
(m+ pµσ̄

µσ0)
(

0
1

) e−ipx (6.107)

for the electron with spin down (−1
2). One may object that the upper components of

bispinor are defined in an unique way by the lower ones, so why is this doubling of writing?
The answer is that this double-writing is convenient since under spatial reflection the upper
and lower components of the bispinor (6.106) simply trade places so if we arrange our
formalism to be symmetric under exchange of upper structures and lower structures this
formalism will be explicitly parity-even. The two spinors ξα(p) and ηα̇(p) satisfy a pair of
conneted Weyl-type equations:

pµ(σµ)α̇αξ
α(p) = mηα̇(p)

pµ(σ̄µ)αα̇ηα̇(p) = mξα(p) (6.108)

It is convenient to assemble them in one equation:

pµ

(
0 σµα̇β

(σ̄µ)αβ̇ 0

)(
ηβ̇(p)

ξβ(p)

)
= m

(
ηα̇(p)
ξα(p)

)
(6.109)

where the elements of the 4×4 matrix in the l.h.s. of the eq. (6.109) are the 2×2 matrices.
The four matrices

γµ =

(
0 σµα̇α

(σ̄µ)αα̇ 0

)
(6.110)

are called the Dirac matrices in the spinor representation and the equation

pµ(γµ)λρuρ(p) = muλ(p) (6.111)

is called the Dirac equation (in momentum space). Note that we’ve assembled two pairs of

dotted and undotted indices in one Dirac subscript uλ =
( ηα̇(p)
ξα(p)

)
(where λ=1,2,3,4). The

solutions of this equation are called the Dirac bispinors (for the electron):

u(1)(p) =

 η
(1)
α̇

ξα(1)

 =
1√

2(p0 +m)

 (m+ pµσ
µσ̄0)

(
1
0

)
(m+ pµσ̄

µσ0)
(

1
0

) =

√p · σσ̄0

(
1
0

)
√
p · σ̄σ0

(
1
0

) 

u(2)(p) =

 η
(1)
α̇

ξα(1)

 =
1√

2(p0 +m)

 (m+ pµσ
µσ̄0)

(
0
1

)
(m+ pµσ̄

µσ0)
(

0
1

) =

√p · σσ̄0

(
1
0

)
√
p · σ̄σ0

(
1
0

)
(6.112)

It is convenient to define the so-called γ5 matrix as follows

γ5 ≡
(−I 0

0 I

)
≡
(
−δα̇

β̇
0

0 δαβ

)
(6.113)
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so that 1−γ5
2 and 1+γ5

2 are projectors on the upper and lower sectors, e.g.

1− γ5

2
γµ =

(
0 σµ

0 0

)
,

1 + γ5

2
γµ =

(
0 0
σ̄µ 0

)
(6.114)

It is instructive to write down the relativistic invariant generalization of the operator of the
spin of the electron in the rest frame. Suppose the spin of the electron in the rest frame is
given by the vector

~s = κ†~σκ (6.115)

where κ is our spinor in the rest frame. Let us intoduce formally the four-vector sµ which
coincides with (0, ~s) in the rest frame 57. Note that s2 = −1 and s · p = 0.

With this notation the non-relativistic equation

1

2
~σ · ~sκ(~s) =

1

2
κ(~s) (6.116)

for the spinor κ(~s) is generalized to

1

2
γ5γµs

µu(p, s) =
1

2
u(p, s) (6.117)

where the spinor u(p, s) ≡ u(~s)(p) is given by usual Lorentz transformation of the (bi)spinor(
κ(~s)

κ(~s)

)
u(p, s) =

1√
2(p0 +m)

(
(m+ p0 − ~p · ~σ)κ(~s)

(m+ p0 + ~p · ~̄σ)κ(~s)

)
(6.118)

Indeed,

γ5γ
µsµ =

(−I 0
0 I

)(
0 σµ

σ̄µ 0

)
sµ =

(
0 −σµ
σ̄µ 0

)
sµ =

(
0 −σ · s
σ̄ · s 0

)
(6.119)

so in the rest frame the eq. (6.117) reduces to:

1

2

(
0 ~σ · ~s

~̄σ · ~s 0

)√
m
(
κ(~s)

κ(~s)

)
= λ
√
m
(
κ(~s)

κ(~s)

)
⇔ 1

2
(~σ · ~s)κ(~s) =

1

2
κ(~s) (6.120)

which coincides with the eq. (6.116).
So, the two equations

pµγµu(p, s) = mu(p, s)

γ5γµs
µu(p, s) = u(p, s) (6.121)

fix the Dirac spinor unambigously.
Thus, the wavefunction (6.106) of the electron moving with momentum p and having

spin λ = ±1
2 in his rest frame in terms of Dirac spinors looks like

(ψe)λ~p(x) =
uλ(p)√

2p0
e−ipx (6.122)

57 For example, s = (0, 1, 0, 0) for κ = 1√
2

(
1
1

)
, s = (0, 0, 1, 0) for κ = 1√

2

(
1
i

)
, and s = (0, 0, 0, 1) for

κ =
(

1
0

)
, s = (0, 0, 0,−1) for κ =

(
0
1

)
as we already know.
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so the positive-frequency part of the electron field has the form 58

ψ+(x) =
∑
λ=± 1

2

∫
d3p

(2π)3

uλ(p)√
2p0

e−ipxb(p, λ) (6.123)

and it is easy to see that it satisfies the Dirac equation

iγµ
d

dxµ
ψ+(x) = mψ+(x) (6.124)

The negative-frequency part of the electron field should also satisfy this equation, so if we
write this negative-frequency part in a form similar to (6.123):

ψ−(x) =
∑
λ=± 1

2

∫
d3p

(2π)3

vλ(p)√
2p0

d∗(p, λ)eipx (6.125)

we see that the negative-frequency spinor v should satisfy the equation

pµγ
µv(p) = −mv(p) (6.126)

The solutions of this equation are:

v(1)(p) =

χ
(1)
α̇

ζα(1)

 =
1√

2(p0 +m)

 (m+ pµσ
µσ̄0)

(
1
0

)
(−m− pµσ̄µσ0)

(
1
0

)
v(2)(p) =

χ
(2)
α̇

ζα(2)

 =
1√

2(p0 +m)

 (−m− pµσµσ̄0)
(

0
1

)
(m+ pµσ̄

µσ0)
(

0
1

)  (6.127)

They are related to the positive-frequency solutions u(p) by complex conjugation and mul-
tiplication by matrix iγ2:

v(2)(p) = iγ2
(
u(1)(p)

)∗
, v(1)(p) = iγ2

(
u(2)(p)

)∗
(6.128)

(The role of the matrix iγ2 is especially clear if we write down Dirac bispinor as a pair of
Weyl spinors. Then the matrix iγ2 simply converts the lower indices of Weyl spinors into
upper ones and vice versa).

Now we can write down the total expression for the classical electron field satisfying
the Dirac equation:

ψ(x) =
∑
λ=± 1

2

∫
d3p

(2π)3

(
uλ(p)√

2p0
e−ipxb(p, λ) +

vλ(p)√
2p0

e+ipxd∗(p, λ)

)
(6.129)

where b(p, λ) and d∗(p, λ) are some numerical functions. As in the case of π-mesons , the
wavefunction of the antiparticle are related to the positive-frequency part of the complex
conjugate field

ψ†(x) =
∑
λ=± 1

2

∫
d3p

(2π)3

(
(vλ)†(p)√

2p0
d(p, λ)e−ipx +

(uλ)†(p, λ)√
2p0

b∗(p, λ)eipx
)

(6.130)

58 here u( 1
2
)(p) ≡ u(1)(p), u(− 1

2
)(p) ≡ u(2)(p)
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It is convenient to define so-called Dirac conjugation

ψ̄(x) = ψ†(x)γ0 (6.131)

then the expression for the Dirac conjugate field takes the form:

ψ̄(x) =
∑
λ=± 1

2

∫
d3p

(2π)3

(
v̄λ(p)√

2p0
d(p, λ)e−ipx +

ūλ(p)√
2p0

b∗(p, λ)eipx
)

(6.132)

Let us write down for completeness the Dirac equation for ψ and ψ̄:

iγµ
d

dxµ
ψ(x) = mψ(x) (6.133)

−i d

dxµ
ψ̄(x)γµ = mψ̄(x) (6.134)

So, the wavefunction of a freely moving positron with momentum p (and spin λ = ±1
2 in

the rest frame) is

ψp
~p
(x) =

v̄λ(p)√
2p0

e−ipx (6.135)

where the explicit form of the spinor v̄ = (χα̇, ζα) is:

v̄( 1
2

)(p) = v̄(2)(p) =
(
v(2)(p)

)†
γ0 = 1√

2(p0+m)
((0, 1)(m+ σ0σ̄

µpµ); (0, 1)(−m− σ̄0σ
µpµ))

v̄(− 1
2

)(p) = v̄(1)(p) =
(
v(1)(p)

)†
γ0 = 1√

2(p0+m)
((1, 0)(−m− σ0σ̄

µpµ); (1, 0)(m+ σ̄0σ
µpµ))

(6.136)

The underlined notation for the positron wavefunction is a reminder that it is a row rather
than a column (just as ψ̄e) 59.

We will need also the Dirac conjugates of the electron and positron wave function:

(ψ̄e)λ~p(x)
def≡ (ψp(x))†γ0 =

ūλ(p)√
2p0

eipx, ψ̆p(x)
def≡ γ0(ψp(x))† =

vλ(p)√
2p0

eipx (6.137)

Note that for the antiparticle we have v̄( 1
2

)(p) = v̄(2)(p), v̄(− 1
2

)(p) = v̄(1)(p) while for
the particle the connection was simply u( 1

2
)(p) = u(1)(p), u(− 1

2
)(p) = u(2)(p). This is due

to the fact that under 3–rotations the Hermitian conjugate spinors are transformed in the
opposite way. To illustrate this, let us take an electron described by spinor u(1)(p) and
a positron described by v̄(1)(p) at rest, rotate them on angle φ around the OZ axis and
compare the results. Since at rest the upper and lower parts of Dirac bispinor coincide,
it is suffiient to compare the behavior of 2-component spinors

(
1
0

)
and (1, 0) under this

59 Note that ψp is a row unlike ψe which is a column. Of course, this is merely a convention - we could
instead transpose ψp and it would be a column; but then the vertex for electron-positron annihilation into
photon will be ugly.
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rotation. Since Hermitian conjugate spinors transform under rotations with the help of
Hermitian conjugate matrices (see Eqs. (6.72) and (6.74)) we obtain

ξα =
(

1
0

)
→

(
e−

i
2
σ3φ
)α

β
ξβ = e−iφ/2

(
1
0

)
,

(ξα)† = (ξ†)α̇ = (1, 0) → (ξ†)β̇
(
e
i
2
σ3φ
) α̇

β̇
= eiφ/2(1, 0) (6.138)

So, the Hermitian conjugate spinor (1, 0) describes (anti)particle with z-projection of the
spin = −1

2 .

It is also clear from the transformation rules for Dirac spinors. The spinor ψ =
( η(1)

α̇

ξα(1)

)
is transformed under rotations as given by Eq. (6.72)

ψ =

 η
(1)
α̇

ξα(1)

 =


(
e−i

1
2
~σ·~nφ

) β̇

α̇
ηβ̇(

e−i
1
2
~σ·~nφ

)α
β
ξβ

 (6.139)

According to rules (6.72)-(6.74), the Dirac conjugate spinor

ψ̄ = ψ†γ0 =
(
(η†)β, (ξ

†)β̇
)( 0 δβα

δα̇
β̇

0

)
= ((ξ†)α̇, (η†)α) (6.140)

is transformed under rotations in a way opposite to Eq. (6.139).(
(ξ†)α̇, (η†)α

)
→

(
(ξ†)β̇

(
ei

1
2
~σ·~nφ) α̇

β̇
, (η†)β

(
ei

1
2
~σ·~nφ)β

α

)
(6.141)

which gives Eq. (6.138) again. 60

The explicit form of the Dirac conjugate spinor ūλ(p) is presented in the Appendix (see
eq. (8.31). Using these explicit formulas for the Dirac spinors u and v it is easy to check
the orthogonality conditions

ūλ(p)uλ
′
(p) = 2mδλλ′ = −v̄λ(p)vλ

′
(p) (6.142)

ūλ(p)γµuλ
′
(p) = v̄λ(p)γµvλ

′
(p) = 2pµδλλ′ (6.143)

ūλ(p)vλ
′
(p) = 0 = v̄λ(p)uλ

′
(p) (6.144)

and the conditions of completeness (hereafter we use the common notation 6p def≡ pµγ
µ) 61∑

λ=1,2

(
uλα(p)ūλβ(p)− vλα(p)v̄λβ(p)

)
= 2mδαβ (6.145)∑

λ=1,2 u
λ
α(p)ūλβ(p) = (m+ 6p)αβ (6.146)∑

λ=1,2 v
λ
α(p)v̄λβ(p) = (6p−m)αβ (6.147)

60 Please note that in Eq. (6.140) we use γ0 =
( 0 δβα
δα̇
β̇

0

)
rather than γ0 =

(
0 σµα̇α

(σ̄µ)αα̇ 0

)
- they are

the same matrix γ0 =
(

0 I
I 0

)
but the labeling of indices is different.

61 When we are dealing with 4 × 4 matrices we define only indices of one sort - say, lower indices. This
lower indices actually include both upper dotted and lower undotted indices of 2-spinors u =

(
ξα̇
ηα
)
and

ū = (ξα̇, ηα). As usual, summation over the repeated indices is assumed.
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In a similar way one can prove that if we take a general spinor defined by 4-vector of
spin sµ according to eq. (6.121) we obtain that

ū(p, s)γµγ5u(p, s) = −v̄(p, s)γµγ5v(p, s) = 2msµ (6.148)

Actually, the above equation can be used for the definition of the spinor (corresponding
to 4-vector sµ) instead of eq. (6.121), see Appendix D. Let us present also another useful
formula:

ū(p, s)γµγ5u(p,−s) = v̄(p, s)γµγ5v(p,−s) = 0 (6.149)

It is worth noting that in many application the explicit form of spinors is not nessesary
- the properties (6.142)-(6.149) are enough.

Sometimes it is convenient to specify not the relativistic invariant 4-vector sµ = (s0, ~s)

but the helicity ~s · ~p of the electron in a certain frame 62.
The helicity operator is defined as

ĥ
def≡ 1

2

~p

|~p|
·
(
~σ 0
0 ~σ

)
(6.150)

The states with definite helicity h = ±1
2 are the eigenstates of this operator. Indeed, the

definition of the state with helicity h is that if we rotate it on the angle φ around the
momentum ~p it is multiplied by the phase factor e−ihφ where h is the helicity (eigenvalue
of the helicity operator (6.150)). Since the operator of usual 3-dimensional rotation for the
bispinor is simply (

e
− i

2
φ ~p
|~p| ·~σ 0

0 e
− i

2
φ ~p
|~p| ·~σ

)
= e−iĥφ (6.151)

we see that if the state is eigenfunction of the helicity operator the action of rotation
operator on this state gives the phase factor e−ihφ. The explicit form of the spinors with
definite helicity is

u[ 1
2

](p) =
1√

2(p0 +m)

(
(m+ pµσ

µσ̄0)ω1

(m+ pµσ̄
µσ0)ω1

)
, u[− 1

2
](p) =

1√
2(p0 +m)

(
(m+ pµσ

µσ̄0)ω2

(m+ pµσ̄
µσ0)ω2

)
(6.152)

where the two-component spinor ω has the form

ω(1) =

(
e−iα cos

(
θ
2

)
ei(φ−α) sin

(
θ
2

) ) , ω(2) =

(
−e−iα sin

(
θ
2

)
ei(φ−α) cos

(
θ
2

) ) (6.153)

where θ and φ are the polar and azimuthal angle of the momentum ~p and α is an arbitrary
phase 63. Note that the particular choice of spinors in Eq. (6.91) corresponds to ω(1) at
α = 0 and in (6.92) to ω(2) at α = φ.

62 The helicity of the massive particle depends on the frame of reference, since one can always boost to a
frame in which its momentum is in the opposite direction (but spin is unchanged). For a massless particle,
which travels at the speed of light, one cannot perform such a boost so helicity is an inherent property of
a massless particle.

63 In order to distinguish these spinors with helicity ± 1
2
from the spinors with z-component of the spin

equal to ± 1
2
we put the helicity ± 1

2
in square brackets.
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Let us verify that the spinors (6.152) are the eigenstates of the helicity operator (6.150).
First, it is easy to check that

1

2

~p

|~p|
· ~σω(1) =

1

2
ω(1),

1

2

~p

|~p|
· ~σω(2) = −1

2
ω(2), (6.154)

Next, using Eqs. (6.154) we can reduce the spinors (6.152) to

u[ 1
2

](p) =
1√

2(p0 +m)

(
(m+ p0 − |~p|)ω(1)

(m+ p0 + |~p|)ω(1)

)
, u[− 1

2
](p) =

1√
2(p0 +m)

(
(m+ p0 + |~p|)ω(2)

(m+ p0 − |~p|)ω(2)

)
(6.155)

and therefore

1

2

~p

|~p|
·
(
~σ 0
0 ~σ

)(
(m+ p0 − |~p|)ω(1)

(m+ p0 + |~p|)ω(1)

)
=

1

2

(
(m+ p0 − |~p|)ω(1)

(m+ p0 + |~p|)ω(1)

)
1

2

~p

|~p|
·
(
~σ 0
0 ~σ

)(
(m+ p0 + |~p|)ω(2)

(m+ p0 − |~p|)ω(2)

)
= −1

2

(
(m+ p0 + |~p|)ω(2)

(m+ p0 − |~p|)ω(2)

)
, (6.156)

Q.E.D.
The complete list for the spinors with definite helicity uh, ūh, vh, v̄h is presented in the

Appendix (see eqs. (8.29)-(8.37)). The orthogonality and completeness conditions for the
spinors with definite helicity have the same form (6.142)-(6.147) only one should replace
λ, λ′ = ±1

2 by h, h′ = ±1
2 .

The states with definite helicity are very convenient for the description of the high-
energy processes since in the limit of large momenta they degenerate into the two-component
spinors of a massless particle. Indeed, let us take the limit |~p| → ∞ in the eq. (6.152).
Then, for helicity h = ±1

2 we obtain

u[ 1
2

](p)→
√

2p0

(
0
ω(1)

)
, u[− 1

2
](p)→

√
2p0

(
ω(2)

0

)
(6.157)

So, very fast electron with positive helicity behave almost as right-handed antineutrino and
with negative helicity as left-handed neutrino (choose α = 0 and compare to eq. (6.90),
(6.91)). In a similar way, the fast-moving positron will have the wavefunction

v̄[ 1
2

](p) = −
√

2p0

(
0, ω(2)†)

)
, v̄[− 1

2
](p) = −

√
2p0

(
ω(1)†, 0

)
(6.158)

so the wavefunction of fast-moving positron with positive helicity resembes the (Dirac con-
jgate) wavefunction of right antineutrino. Similarly, negative–helicity positron looks like
neutrino.

Homework assignment 6.
Problem 1. Write down the wavefunction of the electron moving in Y direction with speed
v if we know that in the the rest frame the spin is pointing in X direction.
Problem 2. Write down the wavefunction of the positron moving in X direction with speed
v if we know that in the the rest frame the spin is pointing in Y direction.
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Part XXV

7 QED

7.1 Propagator of the electron

The Feynman Green function for the electron (and positron) can be constructed in a
straightforward manner just as we have done in the case of (charged) π-mesons. The
propagation amplitude is obtained using the general rule (3.36):

K̃e
αβ(x− y) =

∑
λ=± 1

2

∫
d3p

(2π)3
(ψλp )α(x)(ψλp )†β(y) (7.1)

where λ = ±1
2 are the components of the spin in the rest frame (or it could be helicities –

the result after summation will be the same). I put ψ†β instead of ψ∗β because we want our
propagation function to be 4 × 4 matrix obeying the usual rules of matrix products (and
then we must not only take complex conjugate of ψλp but transpose it as well). Furthermore,
it is convenient to multiply this propagation amplitude by the unitary matrix γ0 from the
right (this corresponds to taking of Dirac conjugation of ψ), so finally the propagation
amplitude of the electron takes the form:

Ke
αβ(x− y) =∑
λ=± 1

2

∫ d3p
(2π)3

(ψλp )α(x)(ψ̄λp )β(y) =
∑

λ=± 1
2

∫ d3p
(2π)32p0

(uλ(p))α(ūλ(p))βe
−ip(x−y)

∣∣∣
p0=Ep

(7.2)

where Ep =
√
|~p|2 +m2 Using the completeness condition (6.145) we obtain:

Ke
αβ(x− y) =

∫
d3p

(2π)32Ep
(m+ 6p)αβe−ip(x−y)

∣∣∣
p0=Ep

(7.3)

Let us now derive the propagation amplitude of the positron. Repeating the same steps,
we have (see eq. (6.137))

Kp
αβ(x− y) =∑
λ=± 1

2

∫ d3p
(2π)3

(
(ψp)λp

)
α

(x)
(

(ψ̆p)λp

)
β

(y) =
∑

λ=± 1
2

∫ d3p
(2π)32Ep

(v̄λ(p))α(vλ(p))βe
−ip(x−y)

∣∣∣
p0=Ep

As we shall see below, usually we need the transposed propagation amplitude

KTp
αβ (x− y) = (7.4)∑
λ=± 1

2

∫ d3p
(2π)32Ep

(vλ(p))α(v̄λ(p))β(y)e−ip(x−y)
∣∣∣
p0=
√
|~p|2+m2

=
∫ d3p

(2π)32Ep
(6p−m)αβe

−ip(x−y)
∣∣∣
p0=Ep

whe we have used the completeness condition (6.147)
Now we must restore Feynman functions from these propagation amplitudes. Let us

recall how we have done it for the first time (for the scalar particle in external field) and
repeat the same steps. Let us consider the scattering of the electron from the external
potential shown in the diagram in Fig. 82 (it may be for example the scatering of the electron
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Figure 82. (Non-Feynman!) diagrams for the scattering of the electron by external potential.
The direction of the flow of the charge is indicated by the arrow on the (solid) line.

from the Coulomb potential created by some heavy nucleus). Here the first contribution of
diagram in Fig. 82a ∫

dzKe
αξ(y2 − z)Vξη(z)Ke

ηβ(z − y1) (7.5)

describes the situation when the electron was created in the point ~r1 at time t = t1 ≡ y10,
propagated to the point ~r where at the the time t ≡ z0 it interacted with the potential and
finally was absorbed in the point ~r2 at the time t2 ≡ y20

64. The second contribution (Fig.
82b) ∫

dzKe
αξ(y2 − z)Kp

βη(y1 − z)Vξη(z) =

∫
dzKe

αξ(y2 − z)Vξη(z)KTp
ηβ (y1 − z) (7.6)

corresponds to the situation when the external potential creates an electron-positron pair
(not two electrons or positrons - it will contradict to the conservation of charge) at the
moment of time t < t1, t2, they propagate and then one of them is annihilated in the point
~r1 at time t1 and the second in ~r2 at time t2. Similarly, the interpretation of the third term
(see Fig. 82c)∫

dzVξη(z)K
e
ηβ(z − y1)Kp

ξα(z − y2) =

∫
dzKTp

αξ (z − y2)Vξη(z)K
e
ηβ(z − y1) (7.7)

is the following: the electron was created at t1, ~r1 and the positron at t2, ~r2 and after that
they propagate to the point t, ~r where they had been absorbed by the potential. Now, the
first term (7.5) is not relativistic invariant and, as in the scalar case, we would like to add the
two additional contributions (7.6) and (7.6) in order to restore the relativistic invariance.
However, in the case of electrons and positrons, we must subtract the two additional terms
(7.6) and (7.6) rather than to add them. This property is related to the fact that inlike
π-mesons, the electrons (and positrons) are Fermi particles obeying the Pauli principle, so
you should not be surprised by the additional (−) signs popping up now and then. I do not
know the good explanation not based on second-quantization approach; one thing that I

64 The interaction with the potential may depend on the spin of electron so V (z) is in general 4 × 4

matrix with spinor indices.
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may say in my excuse is that, if we subtract those terms, we will get the relativistic invariant
answer (see below) while if we add them, the result will not be relativistic invariant (and
recall that in the scalar case we invented the addition of these terms in order to restore the
relativistic invariance).

Thus, if we consider the difference of eqs. (7.5) and eqs. [(7.6)+(7.7)], it can be
rewritten as follows:∫

dz
(
Θ(y20 − z0)Ke(y2 − z)−Θ(z0 − y20)KTp(z − y2)

)
αξ
Vξη(z)(

Θ(z0 − y10)Ke(z − y1)−Θ(y10 − z0)KTp(y1 − z)
)
ηβ

(7.8)

Now, the remarkable result is that the differences in the parentheses are relativistic invariant
. Indeed, it is easy to show that

Θ(x0 − y0)Ke
αβ(x− y)−Θ(y0 − x0)KTp

αβ (y − x) =

Θ(x0 − y0)
∫ d3p

(2π)32Ep
(m+ 6p)αβe−ip(x−y)

∣∣∣
p0=Ep

−Θ(y0 − x0)
∫ d3p

(2π)32Ep
(6p−m)αβe

−ip(y−x)
∣∣∣
p0=Ep

= Θ(x0 − y0)
∫ d3p

(2π)32Ep
(m+ 6p)e−ip(x−y)

∣∣∣
p0=
√
|~p|2+m2

+ Θ(y0 − x0)
∫ d3p

(2π)32Ep
(m+ 6p)e−ip(x−y)

∣∣∣
p0=−Ep

=
∫ d4p

(2π)4i
(m+ 6p)αβ 1

m2−p2−iεe
−ip(x−y) (7.9)

(As usual, Ep ≡
√
|~p|2 +m2). The best way to prove the above equationis to take the final

expression and perform the integration over p0 by taking a residue. The eq. (7.9) is called
the Feynman Green function of the electron (or positron – it describes both of them):

αβ

1
x

β α

1
x

2

0
G   (x  -x  )    =   2

Figure 83. Feynman Green function.

G0(x2 − x1) =

Θ(x20 − x10)Ke(x2 − x1)−Θ(x10 − x20)KTp(x1 − x2) =
∫ d4p

(2π)4i
(m+ 6p) 1

m2−p2−iεe
−ip(x2−x1)(7.10)

Using this Feynman Green function, we can rewrite the sum (7.8) of the three (non-
Feynman) diagrams in Fig. 82 in a usual form as the contribution of one Feynman diagram
shown in Fig. 84 ∫

dzG0(y2 − z)V (z)G0(z − y1) (7.11)

which is of course relativistic invariant . Consequently, same line represents both parti-
cle and antiparticle, depending on the sign of the time difference (and therefore in some
textbooks positron is called the electron flying back in time, but I find such interpretation
confusing). Actually, we could have derived the positron wavefunctions starting from this
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Figure 84. Feynman diagram for the scattering of electron from the external potential. Electron
Green function is dentoted by the solid line with the arrow indicating the flow of charge.

requirement that there should exist the common Green function describing both the propa-
gation of electroms and positrons. (Recall that we have guessed the positron wavefunctions
using the requirement that positron wavefunction correspond to the positive-frequency part
of the conjugated Dirac field just as in the case of charged π-mesons. In this sense, the
relativistic invariant formula (7.10) for the Feynman propagator is the justification of our
guess).

Part XXVI

7.2 S-matrix and Green functions

As we noted above, the probability density for the electrons can be constructed in the
following form:

ρe(t, R) = ψe†(t, R)ψe(t, R) = ψ̄e(t, R)γ0ψ
e(t, R) (7.12)

where ψe(x) ≡ ψ+(x) (as usuall y ≡ (t, r)) is an arbitrary free-electron state — a su-
perposition of the positive-frequency plane waves (see eq. (6.122)). Indeed, it is easy to
demonstrate that

d

dt
ρ(t, R) =

ψ̄e(x)γ0
d
dx0

ψe(x) +
(

d
dx0

ψ̄e(x)
)
γ0ψ

e(x) = ψ̄e(x)
(

[−γi d
dxi
− im] + [−γi d

dxi
+ im]

)
ψe(x)

= − d
dxi

(
ψ̄e(x)γiψ

e(x)
)

(7.13)

where we have used the Dirac equations (6.133) and (6.134) for ψ(x) and ψ̄(x). Therefore

d

dt

∫
d3Rρ(t, R) =

∫
d3R∇i

(
ψ̄e(x)γiψ

e(x)
)

= 0 (7.14)

after integration by parts. So, the quantity (7.12) meets our usual requirements for the
denstity: it is positive-definite and conserved. 65 Similarly, the density of the positrons is

ρp(t, R) = ψp†(t, R)ψp(t, R) (7.15)

65The form of the probability density ψe†(t, R)ψe(t, R) is very similar to the non-relativistic density
(3.14). This is due to the fact that Dirac equation (6.133) is of the first order in time derivative, just like
the Schrödinger eqn (but unlike the second-order Klein-Gordon equation!)
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where

ψp(x) =
∑
λ=± 1

2

∫
d3p

(2π)3

v̄λ(p)√
2p0

d(p, λ)e−ipx (7.16)

is a wavefunction for arbitrary free-positron wave packet. In order to put this to the matrix
form similar to the r.h.s. of eq. (7.12) we will introduce the notation:

ψ̆p(x)
def≡ γ0(ψp(x))† =

∑
λ=± 1

2

∫
d3p

(2π)3

vλ(p)√
2p0

d(p, λ)eipx (7.17)

then the positron density will reduce to the form similar to the electron one:

ρp(t, R) = ψp(t, R)γ0ψ̆
p(t, R) (7.18)

Because of the different form of the expression for the probability density (without
time derivative, compare eqs. (5.3) and (7.12)) the formulas relating time evolution of the
electron (and positron) states to the Green functions will be slightly different from the
meson (and photon) case. First, the orthogonality condition for the electron plane waves
has the form (cf. (4.68)):∫

d3r(ψ̄e)λ~p(t, ~r)γ0(ψe)λ
′

~p′ (t, ~r) = (2π)3δ(~p− ~p′)δλλ′ (7.19)

and similarly for the positron plane waves:∫
d3r(ψp)λ~p(t, ~r)γ0(ψ̆p)λ

′

~p′ (t, ~r) = (2π)3δ(~p− ~p′)δλλ′ (7.20)

It is easy to check these equations using the orthogonality property (6.143) for µ = 0.
Therefore, the time evolution for the one-particle state has the form:

(ψe)λ~p(t2, ~r2) =

∫
d3r1K

e(y2 − y1)γ0(ψe)λ~p(t1, ~r1) =

∫
d3r1G0(y2 − y1)γ0(ψe)λ~p(t1, ~r1)

(ψp)λ~p(t2, ~R2) =

∫
d3r1(ψp)λ~p(t1, ~r1)γ0K

Tp(y2 − y1) = −
∫
d3r1(ψp)λ~p(t1, ~r1)γ0G0(y1 − y2)(7.21)

where we used the general expressions for propagation functions (7.2) and (7.4) (for com-
pleteness, I will write them down them once more):

Ke
αβ(x− y) =

∑
λ=± 1

2

∫
d3p

(2π)3
(ψλp )α(x)(ψ̄λp )β(y)

KTp
αβ (x− y) =

∑
λ=± 1

2

∫
d3p

(2π)32Ep
(ψ̆λp )α(y)(ψλ

p
)β(x) (7.22)

We see that the orthogonality conditions (7.19,7.20) and the one-particle time evolution
(7.21) are similar to the corresponding formulas for the π-mesons (3.27) and (3.35) up to

the replacement of the operator i
↔
d
dt by γ0 (and taking care of spinor indices). Similarly,
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all the formulas for the relation between time evolution of the states and Green functions
will have γ0 instead of i

↔
d
dt . For example, the two-electron component of the wavefunction

of the state that was the two-electron state at t = t1 has the form:

Ψee(y2, y
′
2) =

∫
d3r1d

3r′1G(y2, y
′
2; y1, y

′
1) (γ0ψ

e)~p1 (y1) (γ0ψ
e)~p′1

(y′1) (7.23)

where p1,p′1 are initial momenta and G(y2, y
′
2; y1, y

′
1) is a four-point Green function with four

electron legs. Another example: the electron-positron component of the t = t1 electron-
positron state 66

Ψep(y2, y
′
2) = −

∫
d3r1d

3r′1

(
(ψp)~p′1(y′1)γ0

)
G(y2, y

′
2; y1, y

′
1)(γ0ψ

e)~p1(y1) (7.24)

The projection onto the plane waves will also have extra γ0’s. For example, the element
of the evolution matrix in the first (electron-electron case) is

U(t2, t1)
λ2λ′2;λ1λ′1
p2,p′2;p1,p′1

=∫
d3r1d

3r′1d
3r2d

3r′2

(
(ψ̄e)λ2~p2 (y2)γ0

)(
(ψ̄e)

λ′2
~p′2

(y′2)γ0

)
G(y2, y

′
2; y1, y

′
1) (γ0ψ

e)λ1~p1 (y1) (γ0ψ
e)
λ′1
~p′1

(y′1)(7.25)

while in our second example the U-matrix element is

U(t2, t1)
λ2λ′2;λ1λ′1
p2,p′2;p1,p′1

=∫
d3r1d

3r′1d
3r2d

3r′2

(
(ψ̄e)λ2~p2 (y2)γ0

)(
(ψp)

λ′1
~p′1

(y′1)γ0

)
G(y2, y

′
2; y1, y

′
1)
(
γ0ψ̆

p
)λ′2
~p′2

(y′2) (γ0ψ
e)λ1~p1 (y1)(7.26)

Let us now take the limit t1 → −∞, t2 → ∞ and obtain the relation between Green
functions and matrix elements of the S-matrix. Consider for example the electron-positron
scattering:

Sλ2λ
′
2;λ1λ′1(p2, p

′
2; p1, p

′
1) = lim

t1→−∞, t2→∞
U(t2, t1)

λ2λ′2;λ1λ′1
p2,p′2;p1,p′1

=

lim
t1→−∞, t2→∞

∫
d3r1d

3r′1d
3r2d

3r′2

(
(ψ̄e)λ2~p2 (y2)γ0

)
α

(
(ψp)

λ′1
~p′1

(y′1)γ0

)
η

G(y2, y
′
2; y1, y

′
1)αβ;ηξ

(
γ0ψ̆

p
)λ′2
~p′2,ξ

(y′2) (γ0ψ
e)λ1~p1,β (y1) (7.27)

Similarly to the case of scalar particles (4.94) we can represent the Green function as

Gαβ;ηξ(y2, y
′
2; y1, y

′
1) = (7.28)∫

dw2dw
′
2dw1dw

′
1G

0
αα′(y2 − w2)G0

ξ′ξ(w
′
2 − y′2)Gamp

α′β′;η′ξ′(w2, w
′
2;w1, w

′
1)G0

β′β(w1 − y1)G0
ηη′(y

′
1 − w′1)

where the Gamp(w2, w
′
2;w1, w

′
1) is the Green function with amputated legs, see Fig. 86

66 Actually, there are two different Green functions for the ee and ep case related by crossing symmetry
Gee(y2, y

′
2; y1, y

′
1) = Gep(y2, y

′
1; y1, y

′
2).
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Figure 85. S-matrix from the Green function for the e+e− scattering

Again, since t1 → −∞, t2 → ∞ we can replace each of the Green functions G0 in eq.
(5.90) by the corresponding propagation function Ke or Kp (see eq. (7.9)). Using formulas∫

d3r2

(
(ψ̄e)λ2~p2 (y2)

)
Ke(y2 − w2) =

(
(ψ̄e)λ2~p2 (w2)

)
∫
d3r′1

(
(ψp)

λ′1
~p′1

(y′1)γ0

)
KpT(w′1 − y′1) =

(
(ψp)

λ′1
~p′1

(w′1)
)

∫
d3r1K

e(w1 − y1) (γ0ψ
e)λ1~p1 (y1) = (ψe)λ1~p1 (w1)∫

d3r′2K
pT(y′2 − w′2)

(
γ0ψ̆

p
)λ′2
~p′2

(y′2) =
(
ψ̆p
)λ′2
~p′2

(w′2)

(7.29)

(which can be easily verified using the relations (6.143) we can reduce the expression (7.28)
to the Fourier transform of the amputated Green function times some simple factors:

S(p2, p
′
2; p1, p

′
1) =

ūλ2 (p2)√
2E2

v̄λ
′
1 (p1)√
2E′1

Gamp(p2, p
′
2; p1, p

′
1)u

λ1 (p1)√
2E1

vλ
′
2√

2E′2

∣∣∣
p22=(p′2)2=p21=(p′1)2=m2

(7.30)

So, we see that in comparison to the scattering of scalar particles (4.135), we must put
additional factors

uλ(p) for each incoming electron

v̄λ(p) for each incoming positron

ūλ(p) for each outgoing electron

vλ(p) for each outgoing positron (7.31)

Part XXVII

7.3 Photon-electron interaction

Let us now find the form of elementary eeγ vertex (see Fig. 87) in the same way as we have
done for ππγ vertex. Due to the Lorentz invariance this three-point Green function should
have the form:

Gµ(x2, y2; y1) =

∫
dzG0(y2 − z)D0

µν(x2 − z) Γν(z)G0(z − y1) (7.32)
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Going to momentum space, we obtain:

Gµ(p1 − k, k; p1) =
m+ 6p1− 6k

m2 − (p1 − k)2 − iε
1

k2 + iε
Γµ

m+ 6p1

m2 − p2
1 − iε

(7.33)

Note that the vertex should have the Lorentz index µ reflecting the dependence of the
π ⇒ πγ amlitude on the polarization of the emitted photon. Because of the homogenuity
of the space the vertex Γµ should not depend on the position z. On the other hand, the
only vectors which does not depend on the position z is γµ, kµ, and pµ = (p1 + p2)µ (Due
to the conservation of the momentum the third possibility (p1 − p2)µ can be expressed via
the first two). So, the most general form of this Green function is:

Γµ = aγµ + bpµ + ckµ + dγµ 6p1 + d′ 6p2γµ (7.34)

where a,b,c,d, and d’ are arbitrary numbers so far. (Two other possible terms ∼6p1γµ and
∼ γµ 6p2 reduce to the "d-terms" since due to eq. (8.23)

6p1γµ = pν1γνγµ = pν1(2gµν − γµγν) = 2pµ − γµ 6p1 (7.35)

and similarly for the second contribution ∼ γµ 6p2).
Recall that the price to pay for the description of the photon by Feynman propagator

(5.46) is Ward identity - after constructing the set of diagrams for QED we should prove
that the longitudinal photons are not created. In QED the Ward identity is formulated as
follows:

Suppose we have a general amputated Green function

Πiū(pi)Πj v̄(pj)G
amp
µ1,...,µm(k1, ...km, p1, ...pl)Πmu(pm)Πnv(pn)

with all the electron or positron momenta p1, ...pl on the mass shell (p2
i = m2) and multiplied

by the corresponding spinors u, ū,v, or v̄ according to the rule (7.31). Then

kµil Πiū(pi)Πj v̄(pj)G
amp
µ1,...,µl,...µm

(k1, ...k − l, ...km; p1, ...pl)Πmu(pm)Πnv(pn) = 0 (7.36)

Similarly to the case of π-meson electrodynamics, we will follow the following logic:
first, we fix the elementary vertex Γµ by imposing the Ward identity (7.36) on Γµ, then
construct the total set of Feynman diagrams, and finally prove the Ward identity (7.36) for
the sum of all Feynman diagrams. So, the first step is to require that

kµū(p2)Γµu(p1) = 0 (7.37)
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Before discussing this requirement, let us reduce the number of structures in the vertex
(7.35). First, note that the term proporional to d can be rewritten as

dγµ( 6p1 −m) +mdγµ (7.38)

The second term in the r.h.s. leads to some redefinition of the constant a in the r.h.s. of eq.
(7.34) while the first term vanishes due to the Dirac equation ( 6p1−m)u(p1) = 0. Similarly,
one can get rid of the d′ term so we obtain the general vertex in the form:

Γµ = aγµ + bpµ + ckµ (7.39)

Now let us impose the condition (7.36):

kµū(p2)(aγµ + bpµ + ckµ)u(p1) = 0 (7.40)

First, note that

ū(p− k) 6ku(p) = ū(p− k)[(m− 6p+ 6k)− (m− 6p)]u(p) = 0 (7.41)

due to the Dirac equation. The second term also vanishes since

kµpµ = k(2p1 − k) = p2
1 − p2

2 = 0 (7.42)

and both elecctrons are on the mass shell p2
1 = p2

2 = m2. So, the condition (7.40) reduces
to

k2cū(p2)u(p1) = 0 (7.43)

whih means that c = 0 (recall that in order to avoid the trouble with the photon propagator
we must require Ward identity for all photon momenta, not just for the real photons with
k2 = 0).

Therefore the most general form of the photoemission vertex (7.39) reduces to

ū(p2)(aγµ + bpµ)u(p1) (7.44)

It is instructive to rewrite this vertex in a different way. Using the so-called Gordon relation

ū(p− k)γµu(p) =
(2p− k)µ

2m
ū(p− k)u(p)− i

2m
kν ū(p− k)σµνu(p) (7.45)

(where σµν
def≡ i

2(γµγν − γνγµ)) we can reduce eq. (7.44) to

ū(p2)

(
Aγµ −

i

2m
Bσµνk

ν

)
u(p1) (7.46)

where A = a+ 2bm and B = 2bm. So, from general grounds the interaction of the electron
with the photon can be described by two constants A and B which have a meaning of
electric charge and anomalous magnetic moment of the electron, respectively (we will see it
below). However, from the experiment we know that electron has no anomalous magnetic
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moment (only the composed particles such as nucleon do have it). So, the elementary vertex
of QED is simply 67

Γµ(p2, p1) = Aγµ (7.47)

Now we must show that the constant A is actually the electric charge of the electron.
To this end we will calculate the amplitude of electron-proton scattering and compare it to
Rutherford formula - just as we have done in π-meson electrodynamics. Let us neglect the
effects due to the anomalous magnetic moment of the proton – they become important only
at high electron energies comparable to the proton mass (940 MeV) and we want to compare
to the non-relativistic Rutherford formula for small energies of the electron. Then proton
for our purpose is just the massive positron with mass M = 940MeV . The first-order
diagram for this scattering is shown in Fig. 87

p
1

p
2

1 2

k

p’ p’

Figure 87. The elastic ep scattering . The proton is denoted by the double solid line with arrow
pointing the direction of the charge flow.

The amputated reduced Green function for this diagram has the form:

Gamp(p2, p
′
2; p1, p

′
1) =

A2

t+ iε
γµ ⊗ γµ (7.48)

where γµ ⊗ γµ means (γµ)αβ(γµ)ξη – independent incdices. As we mentioned, the matrix
elements of the S-matrix and T-matrix are obtained from the reduced Green functions just
as in the case of scalar theory (see eq. (4.135) only with additional spinor factors (7.31).
Therefore the matrix element of the T–matrix is:

T λ2λ
′
2;λ1λ′1(p2, p

′
2; p1, p

′
1) =

A2

t+ iε
ūλ2(p2)γµu

λ1(p1)V̄ λ′1(p′1)γµV λ′2(p′2) (7.49)

where V (p) means the proton spinor which is given by the usual formulas (8.29,8.30) and
(8.32) with m→M replacement. The cross section of the electron-proton scattering in the

67 There is another form of the vertex compatible with gauge invariance, namely A′ū(p2)γµγ5u(p1).
However, this form is parity-odd (for example, at p2 = p1 we get the pseudovector of spin ū(p1)γµγ5u(p1) =

2msµ) while the photon is parity-even so the coefficient A′ will change sigh after reflection in the mirror
⇒ A′ = 0.
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lab frame is 68 (
dσ

dΩ

)λ2λ′2;λ1λ′1
=

1

64π2M2
|T λ2λ′2;λ1λ′1(p2, p

′
2; p1, p

′
1)|2 (7.51)

In order to compare to Rutherford formula let us calculate the cross section summed
over final polarizations and averaged over the initial ones (both for electron and proton).
This corresponds to the experiment in which polarizations of the particles are not registered.
We have then

1

4

∑
λ1,λ′1

∑
λ2,λ′2

|T λ2λ′2;λ1λ′1(p2, p
′
2; p1, p

′
1)|2 =

A2

4t2

∑
λ1,λ′1

∑
λ2,λ′2

|ūλ2(p2)γµu
λ1(p1)V̄ λ′1(p′1)γµV λ′2(p′2)|2

(7.52)
With the help of completeness relations (8.40) we obtain∑

λ1,λ2

ūλ2ξ (p2)γµξηu
λ1
η (p1)ūλ1ρ (p1)γνρσu

λ2
σ (p2) =

(6p1 +m)ηργ
ν
ρσ(6p2 +m)σξγ

µ
ξη = Tr {(6p1 + m)γν(6p2 + m)γµ}∑

λ′1,λ
′
2

V̄
λ′1
ξ (p′1)γµξηV

λ′2(p′2)ηV̄
λ′2(p′2)ργ

ν
ρσV

λ′1
σ (p′1) =

(6p′1 −M)σξγ
µ
ξη( 6p

′
2 −M)ηργ

ν
ρσ = Tr

{
( 6p′1 −M)γµ( 6p′2 −M)γν

}
(7.53)

so eq. (7.52) can be written as

A2

4t2
Tr {(6p1 + m)γµ( 6p2 + m)γν}Tr

{
( 6p′1 −M)γµ( 6p′2 −M)γν

}
(7.54)

Using now the formula (8.25) for the trace of four γ-matrices we can reduce the product of
traces in r.h.e of eq. (7.54) to

Tr {(6p1 + m)γµ( 6p2 + m)γν}Tr
{

( 6p′1 −M)γµ(6p′2 −M)γν
}

=

16
[
pµ1p

ν
2 + pν1p

µ
2 + (m2 − p1 · p2)gµν

][
p′1µp

′
2ν + p′1νp

′
2µ + (M2 − p′1 · p′2)gµν

]
=

32
(
(p2 · p′2)(p1 · p′1) + (p2 · p′1)(p1 · p′2)−m2(p′1 · p′2)−M2(p1 · p2) + 2M2m2

)
=

16

(
(s−M2 −m2)2 + st+

t2

2

)
(7.55)

Therefore, the eq.(7.52) takes the form

1

4

∑
λ1,λ2

∑
λ′1,λ

′
2

|T λ2λ′2;λ1λ′1(p2, p
′
2; p1, p

′
1)|2 =

4A2

t2

[
(s−M2 −m2)2 + st+ t2

2

]
(7.56)

68 Since m�M we may put m = 0 and use the formula (8.16)(
dσ

dΩ

)Compton

lab

=
|T |2

64π2

1

[M + p1(1− cos θ)]2
(7.50)

Because we are interested in the non-relativistic limit, the momentum of the electron is also much less than
M so this eqn reduces to (7.51).
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so the final result for the (differential) cross section of the unpolarized ep scattering is:

dσ

dΩ
=

A4

16π2st2

(
(s−M2 −m2)2 + st+

t2

2

)
(7.57)

In the low-energy limit when p
def≡ |~pi| � M (so s −M2 − m2 → 2p2 + 2M

√
p2 +m2)

we get the Mott formula for the scattering of the relativistic electrons from the Coulomb
potential:

dσ

dΩ
=

A2

4π2st2
M2[p2 +m2 +

t

2
] =

A2

64π2v2p2 sin4(θ/2)

(
1− v2 sin2(θ/2)

)
(7.58)

In the non-relativistic limit v � 1 the eq. (7.58) reduces to

dσ

dΩ
=

A2

64π2v2p2 sin4(θ/2)
(7.59)

which is the Rutherford cross section (2.85). One can see now that the constant A is indeed
the electric charge e.

Homework assignment 7.
Problem 1. Find the corresponding cross section for the positron-proton scattering .

So, the elementary vertex of QED is eγµ. Let us summarize Feynman rules for QED.

7.4 Final set of Feynman rules for QED

The Feynman rules for reduced Green function in the momentum space G(p1, p2, ...pm, k1, ...kn)

are:
I. Draw all different connected diagrams (without tadpoles). Electrons and positrons

are depicted by straight line with the arrow indicating the flow of charge.
II. Draw momenta flow for each diagram taking into account momentum conservation

in each vertex.
III. Each straight line with momentum p brings factor G0(−p) = m−6p

m2−p2−iε if the chosen
direction of flow of momentum p coincides with direction of the arrow on this line and factor
G0(p) = m+ 6p

m2−p2−iε if the directions of p and arrow are opposite.
IV. Each photon line brings the factor factor Dµν(p) ≡ gµν

k2+iε

V.There is a factor eγµ for each vertex. Note that in our notations e is the electron
charge so our vertex is qelectronγµ.

[
In some textbooks (like Peskin) e denotes the positron

charge, then the vertex is −qpositronγµ = −eγµ in their notations.
]

VI. There is an integration
∫

d4k
(2π)4i

for each loop, and an extra factor (−1) for each
fermion loop.

VI. There is no symmetry coefficients for QED, but there is a sign factor (instead).
Assume sign (+1) for the first graph that you have drawn and put (−1) between the
diagrams which differ only by an interchange of two external identical fermion lines. This
includes not only exchange of identical particles in the final state, but also interchange, for
example, of initial particle and final antiparticle.
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The transition matrix is the amputated Green function G(p2, ...k
n2
2 ; p1, ..k

n1
1 ) on the

mass shell times spinors and polarization vectors according to the rule (7.31) 69. Suppose
we consider scatering of m1 electrons, n1 positrons, and l1 photons into of m2 electrons, n2

positrons, and l2 photons. Then

T
λ2,...λ

(l2)
2 ;λ1,...λ

(l1)
1

h2,...h
(m2)
2 ,H2,...H

(n2)
2 ;h1,...h

(m1)
1 ;H1,...H

(m1)
1

(p2, ...p
(m2)
2 , q2, ...q

(n2)
2 , k2, ...k

(n2)
2 ; p1, ...p

(m1)
1 , q1, ...q

(n1)
2 , , k1, ...k

(n1)
1 )

= Πl2e
λ
(n2)
2
µ(l2)

(k
(l2)
2 )Πm2 ū

h2(p
(n2)
2 )Πn1 v̄

H1(q
(n1)
1 )

Πl1e
λ
(l1)
1

µl1
(k

(n1)
1 )Πm1u

h1(p
(n1)
1 )Πn2v

H2(q
(n2)
2 )

(Gamp)µ2,...µ
(l2)
2 ;µ1,...µ

(l1)
1 (p2, ...p

(m2)
2 , q2, ...q

(n2)
2 , k2, ...k

(n2)
2 ; p1, ...p

(m1)
1 , q2, ...q

(n2)
2 , k1, ...k

(n1)
1 )

∣∣∣
p2i=m

2,k2i=0
(7.60)

where p1, ...p
(m1)
1 and h1, ...h

(m1)
1 are the momenta and the polarizations (or helicities) of ini-

tial electrons, q1, ...q
(m1)
1 and H1, ...H

(m1)
1 of initial positrons, and k1, ...k

(n1)
1 and λ1, ...λ

(l1)
1

of initial photons (and similarly for the final particles).

7.5 Polarization effects in electron collisions

Let us consider the elastic scattering of electrons with positive helicities as an example.
The two relevant diagrams are shown in Fig. 88

p
1

p
2

1 2

k

p’ p’

p
1

p’
1

p
2

p’
2

Figure 88. The elastic ee scattering .

The reduced Green function has the form:

G(p2, p
′
2; p1, p

′
1) =

e2

t+ iε
γµ ⊗ γµ −

e2

u+ iε
γµ ⊗ γµ (7.61)

(note the (-) sign due to the exchange of identical electrons in the final state!). Therefore,
the matrix element of the T-matrix is:

T
1
2

1
2
, 1
2

1
2 (p2, p

′
2; p1, p

′
1) =

e2

t+iε ū
( 1
2

)(p2)γµu[ 1
2

](p1)ū[ 1
2

](p′2)γµu
[ 1
2

](p′1)− e2

u+iε ū
[ 1
2

](p′2)γµu[ 1
2

](p1)ū[ 1
2

](p2)γµu
[ 1
2

](p′1)(7.62)

69 Amputation always mean removing the Green functions G0(p) corresponding to external legs. For the
π -meson it was equivalent to multiplication by (m2 − p2) (see eq. (4.135); for electrons and positrons it is
equivalent to multiplication by (m− 6p) since (m− 6p) m+6p

m2−p2 = 1.
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and so the cross section according to our general formula (8.9) takes the form:(
dσ

dΩ

) 1
2

1
2
, 1
2

1
2

=
1

64π2s
|T

1
2

1
2
, 1
2

1
2 (p2, p

′
2; p1, p

′
1)|2 =

e4

64π2s

(
1
t2
ū[ 1

2
](p2)γµu[ 1

2
](p1)ū[ 1

2
](p1)γνu[ 1

2
](p2)ū[ 1

2
](p′2)γµu

[ 1
2

](p′1)ū[ 1
2

](p′1)γνu
[ 1
2

](p′2)

− 2
tu ū

[ 1
2

](p2)γµu[ 1
2

](p1)ū[ 1
2

](p1)γνu[ 1
2

](p′2)ū[ 1
2

](p′2)γµu
[ 1
2

](p′1)ū[ 1
2

](p′1)γνu
[ 1
2

](p2)

+ 1
u2
ū[ 1

2
](p2)γµu[ 1

2
](p′1)ū[ 1

2
](p′1)γνu[ 1

2
](p2)ū[ 1

2
](p′2)γµu

[ 1
2

](p1)ū[ 1
2

](p1)γνu
[ 1
2

](p′2)
)

(7.63)

Now we must calculate the product of spinors. It can be done by direct use of the formulas
(8.32)-(8.35), but there is a trick that simplifies the calculations a lot.

Let us introduce the 4-vector of spin for the positive-helicity electron according to eq.
(8.41):

ū[ 1
2

](p)γµγ5u
[ 1
2

](p) = 2msµ (7.64)

then it is easy to see that

sµ(p, h =
1

2
) =

(
|~p|
m
,
~pp0

|~p|m

)
(7.65)

so the spatial component of 4-vector of spin is collinear to the direction of motion of the
particle. (Similarly, for the helicity −1

2 the vector sµ(p, h = −1
2) = 1

2m ū
[− 1

2
](p)γµγ5u

[− 1
2

](p)

has the form:
sµ =

(
−|~p|
m
,− ~pp0

|~p|m

)
(7.66)

since the spin is opposite to the direction of motion). Let introduce the so-called projection
operators:

Λ+ =
1 + γ5 6s

2
, Λ− =

1− γ5 6s
2

(7.67)

They have the properties

Λ2
+ = Λ+, Λ2

− = Λ−, Λ+Λ− = 0, Λ+ + Λ− = 1 (7.68)

It is easy to verify that

Λ+u
[ 1
2

](p) = u[ 1
2

](p), Λ+u
[− 1

2
](p) = 0 (7.69)

Then we can replace

u[ 1
2

](p1)ū[ 1
2

](p1) = Λ+(s1)
∑
h

u[ 1
2

](p1)ū[ 1
2

](p1) =
1 + γ5 6s1

2
(m+ 6p1) (7.70)

where s1 is the 4-vector of spin (7.65) for the first electron. After such replacement we can
use the completeness relation (8.40) for each product of spinors in eq. (7.63).

We have then:(
dσ

dΩ

) 1
2

1
2
, 1
2

1
2

=
1

64π2s
|T

1
2

1
2
, 1
2

1
2 (p2, p

′
2; p1, p

′
1)|2 =

e4

1024π2s

(
1
t2

Tr{γµ(1 + γ5 6s1)(m+ 6p1)γν(1 + γ5 6s2)(m+ 6p2)}Tr{γµ(1 + γ5 6s′1)(m+ 6p′1)γν(1 + γ5 6s′2)(m+ 6p′2)}

− 2
tuTr{γµ(1 + γ5 6s1)(m+ 6p1)γν(1 + γ5 6s′2)(m+ 6p′2)γµ(1 + γ5 6s′1)(m+ 6p′1)γν(1 + γ5 6s2)(m+ 6p2)}

+ 1
u2

Tr{γµ(1 + γ5 6s′1)(m+ 6p′1)γν(1 + γ5 6s2)(m+ 6p2)}Tr{γµ(1 + γ5 6s1)(m+ 6p1)γν(1 + γ5 6s′2)(m+ 6p′2)}
)

(7.71)
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where

s1 =
(
p
m ,

~p1E1

pm

)
, s′1 =

(
p
m ,−

~p1E1

pm

)
s2 =

(
p
m ,

~p2E1

m

)
, s′2 =

(
p
m ,−

~p2E1

pm

)
(7.72)

and p ≡ |~p1| = |~p′1| = |~p2| = |~p′2|.
The calculation of traces of γ- matrices in eq. (7.71) is straightforward but tedious.

(Quite often for the calculation of traces of 8 or more γ matrices people use computers).
We will consider consider the simpler case of high-energy scattering when

|~p1| � m (7.73)

Then the vector of spin is approximately collinear to momentum

|~p1| � m⇒ sµ(p, h =
1

2
) =

(
p

m
,
~p1E1

pm

)
' pµ
m
, sµ(p, h = −1

2
) ' −pµ

m
(7.74)

Therefore the projection operators (8.41) reduce to:

u[ 1
2

](p)ū[ 1
2

](p) = 1
2

(
1 + γ5 6s(p, 1

2)
)

(m+ 6p) → 1

2
(1 + γ5)(m+ 6p)

u[− 1
2

](p)ū[− 1
2

](p) = 1
2

(
1 + γ5 6s(p,−1

2)
)

(m+ 6p) → 1

2
(1− γ5)(m+ 6p) (7.75)

For completeness, let us present similar formulas for the projection operators for high-energy
positrons (see Eq. (8.42) from Appendix C):

v[ 1
2

](p)v̄[ 1
2

](p) = 1
2

(
1 + γ5 6s(p, 1

2)
)

(6p−m) → 1

2
(1− γ5)(6p−m)

v[− 1
2

](p)v̄[− 1
2

](p) = 1
2

(
1 + γ5 6s(p,−1

2)
)

(6p−m) → 1

2
(1 + γ5)(6p−m) (7.76)

The projector ΛR
def≡ 1+γ5

2 kills the lower components of the Dirac bispinor and the projector

ΛL
def≡ 1−γ5

2 kills the upper ones (The name “right” and “left” for these projectors is due
to the fact that the bispinor ΛRξ has only upper components and transforms like the 2-
spinor for the right antineutrino while the bispinor ΛLξ has only lower components which
transform like the 2-spinor for left neutrino.)

The projectors ΛR,ΛL satisfy the usual properties

Λ2
R = ΛR, Λ2

L = ΛL, ΛRΛL = 0, and ΛR + ΛL = 1 (7.77)

to calculate the traces in the high-energy limit (7.73) it is convenient to return to eq. (7.71).
Using the property

ΛRγµ = γµΛL (7.78)

– 151 –



and the set of properties (7.77) it is easy to show that all the terms in eq. (7.71) proportional
to mass m vanish (as one should expect at large energies � m) so the answer for the cross
section reduces to:(

dσ

dΩ

) 1
2

1
2
, 1
2

1
2

high−energy

=

e4

64π2s

(
1
t2

Tr{γµ 1+γ5
2 6p1γ

ν 6p2}Tr{γµ 1+γ5
2 6p′1γν 6p′2}

− 2
tuTr{γµ 1+γ5

2 6p1γ
ν 6p′2γµ 6p′1γν 6p2)}+ 1

u2 Tr{γµ 1+γ5
2 6p′1γν 6p2}Tr{γµ 1+γ5

2 6p1γν 6p′2}
)
(7.79)

Now it is easy to calculate the relevant traces. First, the longest trace is the easiest since

Tr{γµ 1+γ5
2 6p1γ

ν 6p′2γµ 6p′1γν 6p2)} = −2Tr{1+γ5
2 6p1 6p′1γµ 6p′2 6p2γ

µ} =

−8(p2 · p′2)Tr{1+γ5
2 6p1 6p′1} = −16(p1 · p′1)(p2 · p′2) (7.80)

where we have used the properties (8.24). Other traces are also not difficult. We obtain:

Tr{γµ
1 + γ5

2
6p1γν 6p2} = 2

(
p1µp2ν + p2µp1ν − gµνp1 · p2 + iεµναβpα1 pβ2

)
(7.81)

so

Tr{γµ 1 + γ5

2
6p1γ

ν 6p2}Tr{γµ 1 + γ5

2
6p′1γν 6p′2} = 16(p1 · p′1)(p2 · p′2)

Tr{γµ 1 + γ5

2
6p1γ

ν 6p′2}Tr{γµ 1 + γ5

2
6p′1γν 6p2} = 16(p1 · p′1)(p2 · p′2) (7.82)

(when multiplying the traces, we used eq. (8.26)). At large energies (p1 · p′1) = (p2 · p′2) ' s
2

since s� m2. Thus, the cross section reduces to(
dσ

dΩ

) 1
2

1
2
, 1
2

1
2

high−energy

=
e4

16π2
s

(
1

t
+

1

u

)2

(7.83)

In a similar way, one can show that(
dσ
dΩ

)− 1
2
,− 1

2
;− 1

2
,− 1

2

high−energy
= e4

16π2s

(
s
t + s

u

)2
(
dσ
dΩ

) 1
2
,− 1

2
; 1
2
,− 1

2

high−energy
=
(
dσ
dΩ

)− 1
2
, 1
2

;− 1
2
, 1
2

high−energy
= e4

16π2s

(
u
t

)2
(
dσ
dΩ

) 1
2
,− 1

2
;− 1

2
, 1
2

high−energy
=
(
dσ
dΩ

)− 1
2
, 1
2

; 1
2
,− 1

2

high−energy
= e4

16π2s

(
t
u

)2 (7.84)

while all other amplitudes are zero(
dσ
dΩ

) 1
2
, 1
2

; 1
2
,− 1

2

high−energy
=
(
dσ
dΩ

) 1
2
, 1
2

;− 1
2
,− 1

2

high−energy
=
(
dσ
dΩ

) 1
2
,− 1

2
;− 1

2
,− 1

2

high−energy
=
(
dσ
dΩ

) 1
2
,− 1

2
; 1
2
, 1
2

high−energy
= 0 (7.85)

At very high energies, when s � t (and t � m2) all t he (nonzero) amplitudes are
equal: (

dσ
dΩ

) 1
2
, 1
2

; 1
2
, 1
2

Regge
=
(
dσ
dΩ

)− 1
2
,− 1

2
;− 1

2
,− 1

2

Regge
=
(
dσ
dΩ

) 1
2
, 1
2

;− 1
2
,− 1

2

Regge
= e4s

16π2t2
(7.86)
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while the 1
2 ,−

1
2 ;−1

2 ,
1
2 cross section joins the majority of vanishing contributions. This

simple structure of the answer is the reflection of the conservation of helicity in Regge limit
(Regge limnit means s� t,m2).

Part XXVIII

7.6 Compton scattering

The cross section of Compton scattering from the electron in the lab frame is given by the
formula (8.16): (

dσ

dΩ

)Compton

lab

=
|T |2

64π2

1

[m+ k1(1− cos θ)]2
(7.87)

For the unpolarized scattering, we must sum over the final polarizations (of electrons and
photons) and average over the initial ones:(

dσ

dΩ

)unpolarized

=
1

4

∑
λ1,h1

∑
λ2,h2

|T λ1,h1 λ2,h2(p2, k2; p1, k1)|2

64π2

1

[mb + k1(1− cos θ)]2
(7.88)

where λ are the photon and electron polarizations. So, we must calculate

|T 2|unpolarized def≡ 1

4

∑
λ1,h1

∑
λ2,h2

|T λ1,h1,λ2,h2(p2, k2; p1, k1)|2 (7.89)

As usual, we start by drawing the relevant diagrams - see Fig. 89
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Figure 89. Lowest-order diagrams for the Compton scattering from the electron.

Second step is to find the reduced amputated Green function which according to our
set of Feynman rules has the form:

Gµν(p2, k2; p1, k1) =
γν(m+ 6p1+ 6k1)γµ

m2 − s− iε
+
γµ(m+ 6p1− 6k2)γν

m2 − u− iε
(7.90)

so the matrix element of the T-matrix takes the form (see the rule (7.60)):

T λ2,h2;λ1,h1(p2, k2; p1, k1) =

ūh2 (p2)6eλ2 (k2)(m+ 6p1+ 6k1)6eλ1 (k1)uh1 (p1)
m2−s−iε + ūh2 (p2)6eλ1 (k1)(m+ 6p1−6k2)6eλ2 (k2)uh1 (p1)

m2−u−iε (7.91)
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where h1, h2 and λ1λ2 are the initial and final polarizations for the electron and photon,
respectively.

Therefore

|T 2|unpolarized =
1

4

∑
λ1,h1

∑
λ2,h2(

ūh2 (p2)6eλ2 (k2)(m+ 6p1+ 6k1)6eλ1 (k1)uh1 (p1)
m2−s−iε + ūh2 (p2)6eλ1 (k1)(m+ 6p1−6k2)6eλ2 (k2)uh1 (p1)

m2−u−iε

)
(
ūh1 (p1)6eλ1 (k1)(m+ 6p1+ 6k1)6eλ2 (k2)uh2 (p2)

m2−s+iε + ūh1 (p1)6eλ2 (k2)(m+ 6p1−6k2)6eλ1 (k1)uh2 (p2)
m2−u+iε

)
(7.92)

If we choose the polarizations as shown in Fig. 90 we have the property
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Figure 90. Kinematics for the Compton scattering.

e(2)(ki) · pj = 0, e(1)(ki) · p1 = 0 (7.93)

(and of course e(i)(k1) · k1 = e(i)(k2) · k2 = 0). Then the expression (7.92) reduces to

|T 2|unpolarized =
1

4

∑
λ1,h1

∑
λ2,h2(

ūh2 (p2)6eλ2 6k1 6eλ1uh1 (p1)
m2−s−iε − ūh2 (p2)6eλ1 6k2 6eλ2uh1 (p1)

m2−u−iε

)
(
ūh1 (p1) 6eλ1 6k1 6eλ2uh2 (p2)

m2−s+iε − ūh1 (p1)6eλ2 6k2 6eλ1uh2 (p2)
m2−u+iε

)
(7.94)

where we used the property

(m+ 6p1) 6e(ki)u(p) =6e(ki)(m− 6p1)u(p) = 0, ū(p) 6e(ki)(m+ 6p1) = ū(p)(m− 6p1) 6e(ki) = 0

(7.95)
After summation over electron polarizations according to (8.40) one obtains (note that
s−m2 = 2p1 ·k1 = 2p2 ·k2 and u−m2 = 2p1 ·k2 = 2p2 ·k1, and t = −2k1 ·k2 = 2m2−2p1 ·p2):

|T 2|unpolarized =

1
2

∑
λ1,λ2

(
1

(2p1·k1)2
Tr{6eλ2 6k1 6eλ1(m+ 6p1) 6eλ1 6k1 6eλ2(m+ 6p2)}

+ 2
(2p1·k1)(2p1·k2)Tr{6eλ2 6k1 6eλ1(m+ 6p1) 6eλ2 6k2 6eλ1(m+ 6p2)}+

1
(2p1·k2)2

Tr{6eλ1 6k2 6eλ2(m+ 6p1) 6eλ2 6k2 6eλ1(m+ 6p2)}
)

(7.96)
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The relevant traces are:

1

4
Tr{6eλ2 6k1 6eλ1(m+ 6p1) 6eλ1 6k1 6eλ2(m+ 6p2)} = 2k1 · p1

(
k2 · p1 + 2(k1 · eλ2)2

)
(7.97)

1

4
Tr{6eλ1 6k2 6eλ2(m+ 6p1) 6eλ2 6k2 6eλ1(m+ 6p2)} = 2k2 · p1

(
k1 · p1 − 2(k2 · eλ1)2

)
1

4
Tr{6eλ2 6k1 6eλ1(m+ 6p1) 6eλ2 6k2 6eλ1(m+ 6p2)} = 2(k1 · p1)(k2 · p1)

(
2(eλ1 · eλ2)2 − 1

)
− 2(k1 · eλ2)2k2 · p1 + 2(k2 · eλ1)2k1 · p1

(The calculation of the third trace is somewhat lengthly).
Putting all the traces together in eq. (7.96) we find the square of the T-matrix for

unpolarized electron in the form:(
|T |2

)unp electron
= 4(eλ1 · eλ2)2 − 2 +

k2 · p1

k1 · p1
+
k1 · p1

k2 · p1
(7.98)

(we will perform the summation over photon polarization later). The corresponding expres-
sion for the cross section is known as the Klein-Nishina formula for the Compton scattering
from unpolarized electron(

dσ

dΩ

)unp electron

=
e4

64π2m2

(
|~k2|
|~k1|

)2 [
|~k2|
|~k1|

+
|~k1|
|~k2|

+ 4
(
eλ1(k1) · eλ2(k2)

)2
− 2

]
(7.99)

where |
~k1|
|~k2|

= 1 + |~k1|
m (1− cos θ), see eq. (8.15) from Appendix B.

In the non-relativistic limit (|~k1| � m) this reduces to the classical Thomson scattering:(
dσ

dΩ

)unp electron

~k1→0

=
e4

16π2m2

(
eλ1(k1) · eλ2(k2)

)2
(7.100)

where
e2

4πmc2
= 2.8× 10−13cm (7.101)

is the classical electron radius (in usual units).
The unpolarized cross section is obtained by final summation over λ2 and averaging

over λ1, so we get(
dσ

dΩ

)unpolarized

=
1

2

∑
λ1,λ2

(
dσ

dΩ

)unp electron

=
e4

32π2m2

(
|~k2|
|~k1|

)2 [
|~k2|
|~k1|

+
|~k1|
|~k2|
− sin2 θ

]
(7.102)
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8 Appendix

8.1 Cross section for general 2⇒ 2 scattering in the c.m. frame.

Let us calculate the differential cross section in the c.m. frame for a general 2⇒ 2 transition.
Suppose we have two particles A and B with masses MA and MB in the initial state and
two particles a and b with masses ma and mb in the final state. We will calculate the
differential cross section

dσ

dΩ
(8.1)

for the particle a (which has mass ma) to fly into the spherical angle dΩ. (Because of the
momentum conservation, the particle b will fly in the opposite direction). We can start
from the eq. (4.112) - everything up to this equation can be repeated without alteration
for our general case.

dσ =
1

I

d3pa
(2π)34EaEb

2πδ(Ea + Eb − EA − EB)|T (pa, pb; pA, pB)|2 (8.2)

where the invariant flux has the form (cf. eq. (4.109):

I = 4EAEB

(
|~pA|
EA

+
|~pB|
EB

)
= 4
√

(pA · pB)2 −M2
AM

2
B = 2

√
(s−MA −MB)2 − 4M2

AM
2
B

(8.3)
As usual, in the c.m. frame we have |~pA| = |~pB| and due to the conservation of momentum

we have that |~pa| = |~pb|
def≡ p2 also. Therefore the expression (8.2) can be written down as:

dσ =
1

I

p2
2dp2dΩ

(2π)34EaEb
2πδ(

√
m2
a + p2

2 +
√
m2
b + p2

2 −
√
s)|T (pa, pb; pA, pB)|2 (8.4)

(recall that the Mandelstam variable s in the c.m. frame is simply (EA + EB)2 Now, we
must perform the integration over p2 using the δ-function

δ(
√
m2
a + p2

2 +
√
m2
b + p2

2 −
√
s) =

(
p?√

p2
? +m2

a

+
p?√

p2
? +m2

b

)−1

δ(p2 − p?) (8.5)

where p? is the solution of the equation:√
m2
a + p2

? +
√
m2
b + p2

? =
√
s (8.6)

It is easy to to see that the explicit form of p? is

p? =
1

2
√
s

√
(s−m2

a −m2
b)

2 − 4m2
am

2
b (8.7)

With formulas (8.5) and (8.7) at hand, the integration over p2 in eq. (8.4) becomes trivial
so we get

dσ

dΩ
=

p2
?

16π2EaEbI

(
p?
Ea

+
p?
Eb

)−1

|T |2 =
p?

16π2(Ea + Eb)I
|T |2 (8.8)
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Recalling the formulas (8.7), (8.3) and the fact that Ea + Eb =
√
s we obtain the final

expression for the cross section in the c.m. frame:

dσ

dΩ
=

1

64π2s

√
(s−m2

a −m2
b)

2 − 4m2
am

2
b√

(s−M2
A −M2

B)2 − 4M2
AM

2
B

|T |2 =
1

64π2s

|~pa|
|~pA|
|T |2 (8.9)

Writing the r.h.s. we used the formula (8.7) for p? = |~pa| (= |~pb|) and similar formula for
|~pA| (= |~pB|) which expresses it through the invariant s and masses MA and MB:

|~pA| =
1

2
√
s

√
(s−M2

A −M2
B)2 − 4M2

AM
2
B (8.10)

This finishes the kinematical part of the job. The rest is the calculation of the corresponding
element of the transition matrix T (pa, pb; pA, pB).

8.2 Cross section of elastic scattering in the lab frame

Suppose we have a particle with mass ma scattered from the particle with mass mb which
is originally originally at rest. We measure the cross section for this ma particle to fly in
the spherical angle dΩ (see Fig. 91) Let us derive the formula for the expression of this

p
1

2
p

p’
2

τ

Figure 91. The elastic scattering in lab frame

lab-framee cross section in terms of T-matrix (similar to c.m. frame formula (8.9)). Again,
we can repeat the calculation from nthe previous section up to eq. (8.4), instead of which
we will get 70

dσ =
1

I

p2
2dp2dΩ

(2π)34E2E′2
2πδ

(√
m2
a + p2

2 +
√
m2
b + p2

1 + p2
2 − 2p1p2 cos θ − E1 −mb

)
|T (p1, p

′
1; p2, p

′
2)|2

(8.11)
(see the kinematics in Fig. (91). Performing the integration over p2 with the help of
δ-function (see formula(1.4), we obtain (recall that I = 4p1mb, see eq. (8.3)):(

dσ

dΩ

)
lab

=
p2
∗

64π2p1mb

1

p∗(E1 +ma)− p1E2 cos θ
|T |2 (8.12)

where E2 =
√
p2
∗ +m2

b and p∗ is the solution of the equation√
m2
a + p2

∗ +
√
m2
b + p2

1 + p2
∗ − 2p1p∗ cos θ − E1 −mb = 0 (8.13)

70 In the agrument of T-matrix p1, p2 (and p′1, p′2) mean the 4-vectors while everywhere else p2 ≡ |~p2|,
p1 ≡ |~p1|
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The explicit form of p∗ is:

p∗ =
1

2(s+ p2
1 sin2 θ)

(
p1 cos θ(m2

a + 2E1mb) +
√

(m2
a + 2E1mb)2(s+ p2

1)− 4m2
a(E1 +mb)2(s+ p2

1 cos2 θ)

)
(8.14)

In the important case of Compton scattering we have ma = 0 so

p∗ =
mbk1

mb + k1(1− cos θ)
(8.15)

(we have changed the name of photon momentum to k) and the cross section takes the
form: (

dσ

dΩ

)Compton

lab

=
|T |2

64π2

1

[mb + k1(1− cos θ)]2
(8.16)

For completeness, let us present the explicit form of the Mandelstam variables for Compton
scattering in the lab frame:

s = m2 + 2mk1

t = −2mk1
k1(1− cos θ)

m+ k1(1− cos θ)

u = m2 − 2mk1
m

m+ k1(1− cos θ)
(8.17)

It should be mentioned that in the case when ma 6= 0 but ma � mb one can can still
use the Compton-type formulas (8.15)-(8.17).

8.3 Dirac matrices and spinors in spinor representation

The set of Dirac matrices in the spinor representation is:

γµ =

(
0 σµαα̇

(σ̄µ)α̇α 0

)
(8.18)

Here σµ = (σ0, ~σ), σ̄µ = (σ0,−~σ), where σ0 is a unit matrix and σi are Pauli matrices. In
the explicit form:

γ0 =
(

0 σ0
σ0 0

)
, γ1 =

(
0 σx
−σx 0

)
, γ2 =

(
0 σy
−σy 0

)
, γ3 =

(
0 σz
−σz 0

)
, (8.19)

where

σ0 =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(8.20)

The γ5 matrix has the form:

γ5 = iγ0γ1γ2γ3 =
(−I 0

0 I

)
=

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 (8.21)

and it anticommute with all matrices γµ:

γµγ5 = −γ5γ
µ (8.22)
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Master property of γ-matrices:

γµγν + γνγµ = 2gµν (8.23)

Consequences:

6a 6a = aµa
µ ≡ a2 for any 4− vector a

6aγµ 6a = 2aµ 6a− γµa2

γµγαγ
µ = −2γα

γµγαγβγ
µ = 4gαβ

γµγαγβγξγ
µ = −2γξγβγα (8.24)

Traces:

Tr {γµγν} = 4gµν

Tr {γµγνγλγρ} = 4(gµνgλρ + gµρgνλ − gµλgνρ)
Tr {γµγνγ5} = 0

Tr {γµγνγλγργ5} = 4iεµνλρ

Tr {γµγνγλγργξγη} = 4
(
gµν(gλρgξη + gρξgλη − gλξgρη)− gµλ(gνρgξη + gρξgνη − gνξgρη)

+ gµρ(gνλgξη − gνξgλη + gλξgνη)− gµξ(gρηgνλ + gνηgλρ − gνρgλη)

+ gµη(gλρgνξ + gρξgνλ − gλξgνρ)
)

(8.25)

where ε is totally antisymmetric symbol (ε0123 = 1). Trace of any odd number of γ-matrices
is zero.

Useful formula:
εµναβε

αβλρ = −2
(
δλµδ

ρ
ν − δλν δρµ

)
(8.26)

Complex conjugation:
γ†µ = γ0γµγ0, γ†5 = γ5 (8.27)

and therefore (
ū(p)γµ1 ...γµnu(p′)

)†
= ū(p′)γµn ...γµ1u(p)(

v̄(p)γµ1 ...γµnv(p′)
)†

= v̄(p′)γµn ...γµ1v(p) (8.28)

The explicit form of the spinors with definite z- component of the spin in the rest frame
λ = ±1

2 is:

u( 1
2

)(p) =
1√

2(p0 +m)

 (m+ p0 − ~p · ~σ)
(

1
0

)
(m+ p0 + ~p · ~σ)

(
1
0

)
u(− 1

2
)(p) =

1√
2(p0 +m)

 (m+ p0 − ~p · ~σ)
(

0
1

)
(m+ p0 + ~p · ~σ)

(
0
1

) (8.29)
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v( 1
2

)(p) =
1√

2(p0 +m)

 (−m− p0 + ~p · ~σ)
(

0
1

)
(m+ p0 + ~p · ~σ)

(
0
1

) 
v(− 1

2
)(p) =

1√
2(p0 +m)

 (m+ p0 − ~p · ~σ)
(

1
0

)
(−m− p0 − ~p · ~σ)

(
1
0

) (8.30)

and

ū( 1
2

)(p) =
1√

2(p0 +m)
((1, 0)(m+ p0 + ~p · ~σ); (1, 0)(m+ p0 − ~p · ~σ))

ū(− 1
2

)(p) =
1√

2(p0 +m)
((0, 1)(m+ p0 + ~p · ~σ); (1, 0)(m+ p0 − ~p · ~σ)) (8.31)

v̄( 1
2

)(p) =
1√

2(p0 +m)
((0, 1)(m+ p0 + ~p · ~σ); (0, 1)(−m− p0 + ~p · ~σ))

v̄(− 1
2

)(p) =
1√

2(p0 +m)
((1, 0)(−m− p0 − ~p · ~σ); (1, 0)(m+ p0 − ~p · ~σ)) (8.32)

Here u(λ(p) and v̄λ(p) are the spinors corresponding to electron and positron (respectively)
with spin λ in the rest frame, and ū(λ(p) ,vλ(p) are the Dirac conjugate spinors.

The spinors for the states with definite helicity h = ±1
2 are:

u[ 1
2

](p) =
1√

2(p0 +m)

(
(m+ p0 − |~p|)ω(1)

(m+ p0 + |~p|)ω(1)

)
, u[− 1

2
](p) =

1√
2(p0 +m)

(
(m+ p0 + |~p|)ω(2)

(m+ p0 − |~p|)ω(2)

)
(8.33)

v[ 1
2

](p) =
1√

2(p0 +m)

(
(−m− p0 − |~p|)ω(2)

(m+ p0 − |~p|)ω(2)

)
, v[− 1

2
](p) =

1√
2(p0 +m)

(
(m+ p0 − |~p|)ω(1)

(−m− p0 − |~p|)ω(1)

)
(8.34)

where two-component spinor ω has the form:

ω(1) =

(
e−iα cos

(
θ
2

)
ei(φ−α) sin

(
θ
2

) ) , ω(2) =

(
−e−iα sin

(
θ
2

)
ei(φ−α) cos

(
θ
2

) ) (8.35)

where θ and φ are the polar and asimuthal angle of the momentum ~p and the phase α is
arbitrary (it is convenient to choose α = φ, see eq. (6.152).

Let us present also the explicit form of the Dirac conjugate spinors with definite helicity:

ū[ 1
2

](p) =
1√

2(p0 +m)

(
ω(1)†(m+ p0 + |~p|), ω(1)†(m+ p0 − |~p)|

)
ū[− 1

2
](p) =

1√
2(p0 +m)

(
ω(2)†(m+ p0 − |~p|), ω(2)†(m+ p0 + |~p)|

)
(8.36)

and

v̄[ 1
2

](p) =
1√

2(p0 +m)

(
ω(2)†(m+ p0 − |~p|), ω(2)†(−m− p0 − |~p|)

)
v̄[− 1

2
](p) =

1√
2(p0 +m)

(
ω(1)†(−m− p0 − |~p|), ω(1)†(m+ p0 − |~p|)

)
(8.37)
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where

ω1† =

(
eiα cos

θ

2
, ei(α−φ) sin

θ

2

)
ω2† =

(
−eiα sin

θ

2
, ei(α−φ) cos

θ

2

)
(8.38)

Properties of spinors:
1. Orthogonality

ūλ(p)uλ
′
(p) = 2mδλλ′ = −v̄λ(p)vλ

′
(p)

ūλ(p)γµuλ
′
(p) = v̄λ(p)γµvλ

′
(p) = 2pµδλλ′

ūλ(p)vλ
′
(p) = 0 = v̄λ(p)uλ

′
(p) (8.39)

2.Completeness ∑
λ=1,2

(
uλα(p)ūλβ(p)− vλα(p)v̄λβ(p)

)
= δαβ∑

λ=1,2 u
λ
α(p)ūλβ(p) = (m+ 6p)αβ∑

λ=1,2 v
λ
α(p)v̄λβ(p) = ( 6p−m)αβ (8.40)

If sµ is a four-vector of spin of the particle, then

ū(p, s)γµγ5u(p, s) = −v̄(p, s)γµγ5v(p, s) = 2msµ (8.41)

and also

uα(p, s)ūβ(p, s) =

(
1 + γ5 6s

2
( 6p+m)

)
αβ

, vα(p, s)v̄β(p, s) =

(
1 + γ5 6s

2
(6p−m)

)
αβ

(8.42)
For the particle with helicity 1

2 the 4-vector of spin is sµ(p, h = 1
2) = ( |~p|m ,

~pp0
|~p|m) and for the

particle with helicity −1
2 it is sµ(p, h = −1

2) = (− |~p|m ,−
~pp0
|~p|m)

8.4 Spin of the electron

The state of the non-relativistic spin-1
2 fermion can be specified in two equivalent ways.

First, one may write down this general state as a superposition of the states with spin
parallel OZ and spin antiparallel OZ

|Ψ〉 = κ1| ↑〉+ κ2| ↓〉 (8.43)

and the spinor κα =

(
κ1

κ2

)
determines the state |Ψ〉 completely. Alternatively, the state

may be specifiesd by its spin. We say that the spin in the state |Ψ〉 is directed along unit
vector ~n if this state is an eigenvector of the operator of the projection of the spin on ~n
direction:

~σ · ~n|Ψ〉 = |Ψ〉 (8.44)
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The relation between these two descriptions is as follows. If we know the components of
the spinor ξ then the spin is directed along the vector

~n = κ†~σκ (8.45)

Conversely, the spinor corresponding to the state with the spin pointing in the direction ~n
is given by (8.35)

κ(~n) =

(
e−iα cos(θ/2)
ei(φ−α) sin(θ/2)

)
(8.46)

where θ and φ are the polar and asimuthal angle corresponding to ~n and the phase α is
arbitrary (it is convenient to choose α = φ, see eq. (6.91). It is easy to check that the
spinor (8.46) satisfies the equation (8.44):

~σ · ~nκ(~n) = κ(~n) (8.47)

For example, the spinor corresponding to the state with spin pointing in the x direction is
1√
2

(
1
1

)
.

Similarly, the relativistic spinor can be specified in two ways. First, the state of the

electron moving with velocity ~v can be described by the spinor κα =

(
κ1

κ2

)
in the rest

frame of the electron. (In other words, to determine κ1 and κ2 we must (i) boost ourselves
to the speed v so the electron will be at rest in our frame and (ii) measure the amplitudes
of probability that the electron will have spin parallelor antipapallel OZ - this will be the
components κ1 and κ2). The corresponding Dirac bispinor in the original frame has the
form (6.112):

u(p) =
1√

2(p0 +m)

 (m+ pµσ
µ)

(
κ1

κ2

)
(m+ pµσ̄

µ)

(
κ1

κ2

)
 (8.48)

Alternatively, one can specify the state of the relativistic electron by the four-vector of
spin sµ. This 4-vector is defined as a Lorentz boost of the vector (0, ~n) in the rest frame
(hence s2 = −1 and p · s = 0). In other words, to find the 4-vector of spin for the electron
moving with velocity ~v we must (i) go to the frame where this electon is at rest, (ii) find
the direction ~n where the spin is pointing, and (iii) mabke a boost of this vector (0, ~n) back
to the original frame. As we saw in Sect. 6.5 the relativistic generalization for the equation
(8.44) has the form

γ5γµs
µu(p, s) = u(p, s) (8.49)

where ~p = m~v/
√

1− v2 is the momentum of the electron. Formally, the spinor with spin
pointing in the 4-direction s may be defined as the eigenvector of equation (8.49).

Similarly to the non-relativistic case, one can switch back and forth between these
descriptions. If we know the components of the spinor u(p), then the 4-vector of spin has
the form.

ū(p)γµγ5u(p) = 2msµ (8.50)
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The inverse tramsition is more complicated. Suppose we know the 4-vector of spin for the
electron moving with momentum p. Then in the rest frame the spin is pointing in the
direction

~ns = ~s− ~p~p · ~s
|~p|2

(8.51)

In this frame, the corresponding non-relativistic spinor is given by eq. (8.46):

κ(~n) =

(
cos(θ/2)
eiφ sin(θ/2)

)
(8.52)

where θ and φ are the polar and asimuthal angle corresponding to 3-vector (8.52) (we take
α = 0 for simplicity). The Dirac bispinor in the original frame is given then by eq.

u(p, s) ≡ 1√
2(p0 +m)

 (m+ pµσ
µ)

(
cos(θ/2)
eiφ sin(θ/2)

)
(m+ pµσ̄

µ)

(
cos(θ/2)
eiφ sin(θ/2)

)
 (8.53)

You may note that the expression is rather complicated. However, quite often it is not
nessesary to know this explicit form of the spinor u(p, s) — the set of formulas (8.41),
(8.42) is sufficient for most of the practical calculations.

For completeness, let us present the corresponding formulas for positrons. In the rest
frame, a positron is described by a conjugate spinor κ†. The explicit form of a spinor κ†

describing the positron with spin pointing in the direction of unit vector ~n is:

κ†(~n) =
(
− eiφ sin

θ

2
, cos

θ

2

)
(8.54)

where θ and φ are the polar and asimuthal angle corresponding to ~n. It is easy to check
that the spinor (8.54) is an eigenvector of the operator of the projection of the spin on ~n
direction:

κ†(~n)(−~σ · ~n) = κ†(~n) (8.55)

(Recall that the spin operator for the conjugate spinors is −~σ since they are transformed
in away opposite to usual spinors, see Eq. (6.138)).

In arbitrary frame, the spinor corresponding to 4-vector of spin s =(boost)(0, ~n) takes
the form:

v̄(p, s) =
1√

2(p0 +m)

(
κ†(~n)(m+ pσ̄);κ†(~n)(−m− pσ)

)
(8.56)

which is the eigenvector of the equation

v̄(p, s)γ5 6s = v̄(p, s) (8.57)

It is easy to check that in rest frame this equation reduces to (8.55). Summarising, the
explicit form of the bispinor describing a positron with momentum p and 4-vector of spin
s is:

v̄(p, s) =
1√

2(p0+m)

[(
− eiφ sin θ

2 , cos θ2
)
(m+ pσ̄);

(
− eiφ sin θ

2 , cos θ2
)
(−m− pσ)

]
(8.58)
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where θ and φ are the polar and asimuthal angles for the vector ~ns = ~s− ~p ~p·~s|~p|2 . The inverse
formula is more simple:

v̄(p, s)γµγ5v(p, s) = −2msµ (8.59)

(cf. Eq. (8.50)).

8.5 Calculation of total cross section for MM →MM scattering

The total cross section is obtained by integration of eq. (4.122) over the spherical angle:

σtot =

∫
dθ sin θ

λ4

64sπ2

(
2(m2 + 2|~p1|2)

m2(m2 + 4|~p1|2) + 4|~p1|4 sin2( θ2)
− 1

s−m2

)2

(8.60)

Using the formulas∫ 1

−1
dx

1

a2 − b2x2
=

1

ab
ln
a+ b

a− b∫ 1

−1
dx

1

(a2 − b2x2)2
= − 1

2a

d

da

∫ 1

−1
dx

1

(a2 − b2x2)
=

1

2a3b
ln
a+ b

a− b
+

1

a2(a2 − b2)
(8.61)

we easily obtain∫ π

0
dθ sin θ

2(m2 + 2|~p1|2)

(m2 + 2|~p1|2)2 − 4|~p1|4 cos2( θ2)
=

1

|~p1|2
ln
m2 + 4|~p1|2

m2
(8.62)∫ π

0
dθ sin θ

4(m2 + 2|~p1|2)2

[(m2 + 2|~p1|2)2 − 4|~p1|4 cos2( θ2)]2
=

1

|~p1|2(2|~p1|2 +m2)
ln
m2 + 4|~p1|2

m2
+

4

m2(m2 + 4|~p1|2)

Now it is easy to assemble the answer (4.124) from eqs. (8.60) and(8.62).

8.6 Proof of probablity conservation (4.66)

Let us check the conservation of probability (4.66) in the second order in λ. In this order
the wavefunction of our state (which was a plane wave at t = t1) is a five-row vector (4.63)
in the Fock space:

φM (x2) = (1− iV TB)φp(x2) +

∫
d3R1G(2)(x2 − x1)i

↔
d

dt1
φp(x1)

φMπ(x2, y2) =

∫
d3R1G(1)(y2, x2;x1)i

↔
d

dt1
φp(x1)

φMMM (x2, x
′
2, x”2) =

∫
d3R1G(2)(x2, x

′
2, x”2;x1)i

↔
d

dt1
φp(x1)

φMππ(x2, y2, y
′
2) =

∫
d3R1G(2)(y2, y

′
2x2;x1)i

↔
d

dt1
φp(x1)

φMMMπ(x2, x
′
2, x”2, y2) = G(1)(x

′
2, x”2, y2)

∫
d3R1G0(x2;x1)i

↔
d

dt1
φp(x1) (8.63)
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Thus, the probability to find one M-meson at time t2 is (cf. Eq. (4.52)):

PM (t2) =

∫
d3R2φ

∗
M (t2, R2)i

↔
d

dt2
φM (t2, R2) (8.64)

the probability to find M-meson and one π-meson is given by eq. (4.55) and this exhausts
all the possibilities since the probability to find three particles is at best ∼ λ4 (see eq.
(4.61)). So, if we sum all the probabilities in the order up to λ2, we obtain:

PM (t2) + PMπ(t2) = δ−(~p− ~p′)− iV TBδ−(~p− ~p′) + iV TBδ−(~p− ~p′) (8.65)

+

∫
d3R1d

3R2φ
∗
p′(x2)i

↔
d

dt2
G(2)(x2 − x1)i

↔
d

dt1
φp(x1) +

∫
d3R1d

3R2φ
∗
p′(x1)i

↔
d

dt1
G∗(2)(x2 − x1)i

↔
d

dt2
φp(x2)

+

∫
d3R1d

3R′1d
3R2d

3r2φ
∗
p′(x

′
1)i

↔
d

dt′1
G∗(1)(x

′
1;x2, y2) i

↔
d

dx20
i

↔
d

dy20
G(1)(x2, y2;x1)i

↔
d

dt1
φp(x1)

∣∣∣∣∣∣
x20=y20=t2

+

∫
d3R2d

3R′2d
3R”2d

3r2φ
∗
p′(x

′
2)G∗(1)(x2, x”2, y2) i

↔
d

dx20
i

↔
d

dx′20

i

↔
d

dx”20
i

↔
d

dy20
G(1)(x

′
2, x”2, y2)φp(x2)

∣∣∣∣∣∣
x20=x′20=x”20=y20=t2

It is convenient to rewrite Eq. (8.65) using

φp(x) =

∫
d3R′1N0(x, x′1)i

↔
d

dt′1
φp(x

′
1), φ∗p′(x) =

∫
d3R′1φ

∗
p′(x

′
1)i

↔
d

dt′1
N∗0 (x, x′1) (8.66)

PM (t2) + PMπ(t2) = δ−(~p− ~p′) (8.67)

+

∫
d3R1d

3R′1d
3R2φ

∗
p′(x

′
1)i

↔
d

dt′1
N∗0 (x2 − x′1)i

↔
d

dt2
G(2)(x2 − x1)i

↔
d

dt1
φp(x1)

+

∫
d3R1d

3R′1d
3R2φ

∗
p′(x1)i

↔
d

dt1
G∗(2)(x2 − x1)i

↔
d

dt2
N0(x2 − x′1)i

↔
d

dt′1
φp(x

′
1)

+

∫
d3R1d

3R′1d
3R2d

3r2φ
∗
p′(x

′
1)i

↔
d

dt′1
G∗(1)(x

′
1;x2, y2) i

↔
d

dx20
i

↔
d

dy20
G(1)(x2, y2;x1)i

↔
d

dt1
φp(x1)

∣∣∣∣∣∣
x20=y20=t2

+

∫
d3R1d

3R′1d
3R2d

3R′2d
3R”2d

3r2φ
∗
p′(x

′
1)i

↔
d

dt′1
N∗0 (x′2, x

′
1)G∗(1)(x2, x”2, y2)

× i

↔
d

dx20
i

↔
d

dx′20

i

↔
d

dx”20
i

↔
d

dy20
G(1)(x

′
2, x”2, y2)N0(x2, x1)i

↔
d

dt1
φp(x1)

∣∣∣∣∣∣
x20=x′20=x”20=y20=t2

The explicit expressions for G(1) and G(2) are:

G(1)(x2, y2;x1) = iλ

∫
d4z1N0(x2 − z1)G0(y2 − z1)N0(z1 − x1)

G(2)(x2 − x1) = − λ2

∫
d4z1d

4z2N0(x2 − z2)N0(z2 − z1)G0(z2 − z1)N0(z1 − x1) (8.68)
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Substituting these eqs. into Eq. (8.69) we get

PM (t2) + PMπ(t2) = δ−(~p− ~p′) (8.69)

− λ2

∫
d4zd4z′d3R1d

3R′1d
3R2φ

∗
p′(x

′
1)i

↔
d

dt′1
N∗0 (x2 − x′1)i

↔
d

dt2
N0(x2 − z′)N0(z′ − z)G0(z′ − z)N0(z − x1)i

↔
d

dt1
φp(x1)

− λ2

∫
d4zd4z′d3R1d

3R′1d
3R2φ

∗
p′(x1)i

↔
d

dt1
N∗0 (x1 − z′)N∗0 (z′ − z)G∗0(z′ − z)N∗0 (z − x2)i

↔
d

dt2
N0(x2 − x′1)i

↔
d

dt′1
φp(x

′
1)

+ λ2

∫
d4zd4z′d3R1d

3R′1d
3R2d

3r2φ
∗
p′(x

′
1)i

↔
d

dt′1
N∗0 (z′ − x′1)N∗0 (x2 − z′)G∗0(y2 − z′)

× i

↔
d

dx20
i

↔
d

dy20
N0(x2 − z)G0(y2 − z)N0(z − x1)i

↔
d

dt1
φp(x1)

∣∣∣∣∣∣
x20=y20=t2

where we used G0(x1 − x2) = G0(x2 − x1) and similarly for N0.
Let us consider the second term in Eq. (8.65).

−λ2

∫
d3R1d

3R′1d
3R2φ

∗
p′(x

′
1)i

↔
d

dt′1
L∗0(x2 − x′1)i

↔
d

dt2

∫
d4z1d

4z2N0(x2 − z2)L0(z2 − z1)K0(z2 − z1)N0(z1 − x1)i

↔
d

dt1
φp(x1)

= − λ2

∫
d3R1d

3R′1d
3R2φ

∗
p′(x

′
1)i

↔
d

dt′1
L0(x′1 − x2)i

↔
d

dt2

∫
d4z1d

4z2

[
θ(t2 > z20 > z10 > t1)L0(x2 − z2)L0(z2 − z1)

× K0(z2 − z1)L0(z1 − x1) + θ(t2 > z10 > z20 > t1)L0(x2 − z2)L0(z1 − z2)K0(z1 − z2)L0(z1 − x1)
]
i

↔
d

dt1
φp(x1) (8.70)

(Here d
dt2

does not act on the argument of θ-functions). Using the formula∫
d3R2 L

∗
0(x2 − x)i

↔
d

dt2
L0(x2 − y) =

∫
d3R2 L0(x− x2)i

↔
d

dt2
L0(x2 − y) = L0(x− y)

(8.71)
and equations (8.66) we obtain

Eq.(8.70) = − λ2

∫
d4z1d

4z2 φ
∗
p′(z2)

[
θ(t2 > z20 > z10 > t1)L0(z2 − z1) (8.72)

× K0(z2 − z1) + θ(t2 > z10 > z20 > t1)L0(z1 − z2)K0(z1 − z2)
]
φp(z1)

= − λ2δ−(~p− ~p′) 1

2Ep

∫
d−3k

4EkEp−k

∫
dz10dz20

[
θ(t2 > z20 > z10 > t1)ei(Ep−Ek−Ep−k)z20−i(Ep−Ek−Ep−k)z10

+ θ(t2 > z10 > z20 > t1)ei(Ep+Ek+Ep−k)z20+i(Ep−Ek−Ep−k)z10
]

= − λ2 δ
−(~p− ~p′)

2Ep

∫
d−3k

4EkEp−k

[ it21

Ep − Ek − Ep−k
+

1− eit21(Ep−Ek−Ep−k)

(Ep − Ek − Ep−k)2
+

it21

Ep + Ek + Ep−k
+

1− eit21(Ep+Ek+Ep−k)

(Ep + Ek + Ep−k)2

]
The third term in the Eq. (8.65) is the complex conjugate of the second term so∫

d3R1d
3R2φ

∗
p′(x2)i

↔
d

dt2
G(2)(x2 − x1)i

↔
d

dt1
φp(x1) +

∫
d3R1d

3R2φ
∗
p′(x1)i

↔
d

dt1
G∗(2)(x2 − x1)i

↔
d

dt2
φp(x2)

= − λ2δ−(~p− ~p′) 1

Ep

∫
d−3k

4EkEp−k

[1− cos(t21[Ep − Ek − Ep−k))
(Ep − Ek − Ep−k]2

+
1− cos(it21[Ep + Ek + Ep−k])

(Ep + Ek + Ep−k)2

]
(8.73)
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Now let us turn our attention to the last term in Eq. (8.65)

λ2

∫
d4zd4z′d3R1d

3R′1d
3R2d

3r2φ
∗
p′(x

′
1)i

↔
d

dt′1
L∗0(z′ − x′1)L∗0(x2 − z′)K∗0 (y2 − z′)

× i

↔
d

dx20
i

↔
d

dy20
L0(x2 − z)K0(y2 − z)L0(z − x1)i

↔
d

dt1
φp(x1)

∣∣∣∣∣∣
x20=y20=t2

(8.74)

Using Eq. (8.71) and Eq. (8.66) we obtain

Eq.(8.74) = λ2

∫ t2

t1

dz0dz
′
0

∫
d3zd3z′φ∗p′(z

′)L0(z′ − z)K0(z′ − z)φp(z) = (8.75)

= λ2δ−(~p− ~p′) 1

2Ep

∫
d−3k

4EkEp−k

∫ t2

t1

dz0dz
′
0e
i(Ep−Ek−Ep−k)z′0−i(Ep−Ek−Ep−k)z0

= λ2δ−(~p− ~p′) 1

Ep

∫
d−3k

4EkEp−k

1− cos(t21[Ep − Ek − Ep−k])
(Ep − Ek − Ep−k)2

The last term comes from the diagram shown in Fig. ?. It has the form

∫
d3R1d

3R′1d
3R2d

3R′2d
3R”2d

3r2φ
∗
p′(x

′
1)i

↔
d

dt′1
N∗0 (x′2, x

′
1)G∗(1)(x2, x”2, y2)

× i

↔
d

dx20
i

↔
d

dx′20

i

↔
d

dx”20
i

↔
d

dy20

∣∣∣∣∣∣
x20=x′20=x”20=y20=t2

G(1)(x
′
2, y2, x”2)N0(x2 − x1)i

↔
d

dt1
φp(x1)

=

∫
d3R1d

3R′1d
3R2d

3R′2d
3R”2d

3r2

∫ t2

t1

dz0dz
′
0

∫
d3zd3z′φ∗p′(x

′
1)i

↔
d

dt′1
L∗0(x′2, x

′
1)L∗0(x2 − z)

L∗0(x”2 − z)K∗0 (y2 − z) i
↔
d

dx20
i

↔
d

dx′20

i

↔
d

dx”20
i

↔
d

dy20

∣∣∣∣∣∣
x20=x′20=x”20=y20=t2

L0(x2”− z)L0(x′2 − z)

× K0(y2 − z)L0(x2 − x1)i

↔
d

dt1
φp(x1) (8.76)

Again, using Eq. (8.71) and Eq. (8.66) we get

Eq.(8.74) = λ2

∫ t2

t1

dz0dz
′
0

∫
d3zd3z′φ∗p′(z)L0(z′ − z)K0(z′ − z)φp(z′) =

= λ2δ−(~p− ~p′) 1

2Ep

∫
d−3k

4EkEp−k

∫ t2

t1

dz0dz
′
0e
−i(Ep+Ek+Ep−k)z′0+i(Ep+Ek+Ep−k)z0

= λ2δ−(~p− ~p′) 1

Ep

∫
d−3k

4EkEp−k

1− cos(t21[Ep + Ek + Ep−k])

(Ep + Ek + Ep−k)2
(8.77)

One sees now that the sum of Eq. (8.73), Eq.(8.75), and Eq. (8.77) vanishes.
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8.7 Arrows on the Dirac lines.

AQM lecture notes:
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