
1323 final exam (34 points). 12/13/18, 12:30 p.m. -3:30 p.m.

Problem 1. True (T) or false (F)?

1. If two events are separated by space-like interval, there is a frame where they occur

simultaneously. (T)

2. The energy of even a massless particle like photon can be arbitrary large. (T)

3. If I know the wave function of some quantum-mechanical system, I can predict the

outcome of any future observation of that system (e.g. position) with certainty. (F)

4. If I measure the energy of a quantum-mechanical system, I will get an answer that is an

eigenvalue of the Hamiltonian of that system. (T)

5. An atom with 12 electrons must have some electrons in n = 3 state. (T)

Problem 2.

Two spaceships approach Earth with speeds 0.8c. One of them goes along x axis, another

along y axis. What is the magnitude and direction of the velocity of one of the ships in

another ship’s frame.

Solution

Let us find the velocity of the ship moving along y axis with respect to frame (second

ship) moving along x axis. Lorentz transformation for velocities from Earth’s frame to ship’s

frame reads

u′x =
ux − v
1− uxv

c2

, u′y =
uy/γ

1− uxv
c2

u′z =
uz/γ

1− uxv
c2

(see Eq. 1-23 from 5th edition). In our case ux = uz = 0 and uy = v = 0.8C so we get

u′x = − v, u′y =
v

γ
u′z = 0 ⇒ |u′| = v

√
2− v2

c2
' 0.93c

The angle with respect to x axis is obtained from

tan θ =
u′y
|u′x|

=
1

γ
= 0.6 ⇒ θ ' 31◦

Problem 3.

Photons from a helium-neon laser λ=632.82 nm collide head on with incident electrons

of energy E1=100 MeV. Some of the photons are scattered back in the direction from which

they came. What is the wavelength of the back-scattered light?

Solution

First, one cannot use Eq. (3.25) since the electron with energy 100 MeV is hardly at rest.

Thus, back to conservation laws.
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The momentum of the photon with λ1=632.82 nm is k1 = h
λ
' 2 eV

c
. Conservation of

momentum and energy for a head-on collision

k2 − p2 = p1 − k1 = p, conservation of momentum

k2c+
√
m2c4 + p2

2c
2 = k1c+ E1 = E, conservation of energy

⇒ k2 =
E2 − p2c2 −m2c4

2c(E − pc)
= k1

E1 + p1c

E1 − p1c+ 2k1c

Since E1 � mc2 we can use approximation E1 =
√
m2c4 + p2

1c
2 ' p1c+ m2c3

2p1
and get

k2 ' k1
p1

k1 + m2c2

4p1

' 3.2× 105 eV

c
' 3.2× 105 eV

c

which corresponds to λ2 ' 3.87×10−12m = 38.7fm.

Problem 4.

The average energy of a proton in a certain nucleus is 20 MeV. Using Heisenberg uncer-

tainty relation, estimate the size of the nucleus. (10 fm)

Solution

The momentum of the proton with average energy 20 MeV is p = 1
c

√
E2 −m2c4 ' 20MeV

c

and therefore

Rnucleus ∼ ∆x ∼ h̄

p
' 10fm

The estimation ∆x ≥ h̄
2p
' 5fm is OK also.

Problem 5.

At t = 0 the one-dimensional harmonic oscillator with Hamiltonian p̂2

2m
+ mω2x2

2
is in the

state
1√
2

[ψ0(x) + ψ1(x)]

a) Show that a later time t the oscillator is still in the 1√
2
[ψ0(x, t) + ψ1(x, t)] state.

b) Find the average momentum 〈p̂〉 at time t.

You may need Gaussian integrals

∫ ∞
−∞

e−ax
2

dx =

√
π

a
,

∫ ∞
−∞

x2e−ax
2

dx =
1

2

√
π

a3

Solution
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(a): Wave function is correct if it satisfies Schrödinger equation and initial condition.

Check of Schrödinger equation

ih̄
d

dt

1√
2

[ψ0(x, t) + ψ1(x, t)] =
1√
2

[ih̄
d

dt
ψ0(x, t) + ih̄

d

dt
ψ1(x, t)]

=
1√
2

[(
− h̄2

2m

∂2

∂x2
+
mω2x2

2

)
ψ0(x, t) +

(
− h̄2

2m

∂2

∂x2
+
mω2x2

2

)
ψ1(x, t)

]
=

(
− h̄2

2m

∂2

∂x2
+
mω2x2

2

) 1√
2

[ψ0(x, t) + ψ1(x, t)]

Thus, ψ(x) = 1√
2
[ψ0(x, t)+ψ1(x, t)] satisfies both Schrödinger equation and initial condition

ψ(x, 0) = 1√
2
[ψ0(x) + ψ1(x)] so it is a correct expression for wave function at any t.

(b): Average momentum

〈p̂〉 =
∫
dx

1√
2

[ψ∗0(x, t) + ψ∗1(x, t)](− ih̄ ∂
∂x

)
1√
2

[ψ0(x) + ψ1(x)]

=
∫
dx

1√
2

[
ei

E0
h̄
tψ∗0(x) + ψ∗1(x)ei

E1
h̄
t
]
(− ih̄ ∂

∂x
)

1√
2

[
e−i

E0
h̄
tψ∗0(x) + ψ∗1(x)e−i

E1
h̄
t
]

=
1

2

∫
dx [ψ∗0(x)(− ih̄ ∂

∂x
)ψ0(x) + ψ∗1(x)(− ih̄ ∂

∂x
)ψ1(x)]

+
1

2
e

i
h̄

(E1−E0)t
∫
dx ψ∗1(x)(− ih̄ ∂

∂x
)ψ0(x) +

1

2
e−

i
h̄

(E1−E0)t
∫
dx ψ∗0(x)(− ih̄ ∂

∂x
)ψ1(x)

= 0 + 0 +
1

2
e

i
h̄

(E1−E0)t
∫
dx ψ∗1(x)(− ih̄ ∂

∂x
)ψ0(x)− 1

2
e−

i
h̄

(E1−E0)t
∫
dx ψ1(x)(− ih̄ ∂

∂x
)ψ∗0(x)

= h̄ sin
E1 − E0

h̄
t
∫
dx ψ1(x)

∂

∂x
ψ0(x)

where we used the property that ψ0 and ψ1 are real. Using the explicit form of ψ0 and ψ1

we get

ψ0(x) =
(mω
πh̄

) 1
4 e−

mω
2h̄
x2

, ψ1(x) = 2

√
mω

h̄

(mω
πh̄

) 1
4xe−

mω
2h̄
x2

⇒
∫
dx ψ∗1(x)

d

dx
ψ0(x) =

1√
π

(
mω

h̄
)2
∫
dx x2e−

mω
h̄
x2

=
1

2

√
mω

h̄

and therefore

〈p̂〉 = h̄
∫
dx ψ∗1(x)

d

dx
ψ0(x) =

1

2

√
mωh̄ sinωt

Problem 6.

The electron in a hydrogen atom is in the state described by wave function

1√
2

(ψ100e
−iE1

h̄
t + ψ210e

−iE2
h̄
t), ψnlm = Rnl(r)Ylm(θ, φ)
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(here we disregard spin of the electron). What is the expectation value of L̂2 in this state

at time t?

Solution

〈L̂2〉 =
1

2

∫
d3x(ψ∗100e

i
E1
h̄
t + ψ∗210e

i
E2
h̄
t)L̂2(ψ100e

−iE1
h̄
t + ψ210e

−iE2
h̄
t)

The functions ψnlm are the eigenfunctions of L̂2 operator

L̂2ψnlm = h̄2l(l + 1)ψnlm

so we get

L̂2(ψ100e
−iE1

h̄
t + ψ210e

−iE2
h̄
t) = 0 + 2h̄2ψ210e

−iE2
h̄
t

and therefore

〈L̂2〉 = h̄2
∫
d3x (ψ∗100e

i
E1
h̄
t + ψ∗210e

i
E2
h̄
t)ψ210e

−iE2
h̄
t = h̄2

∫
d3x ψ∗210ψ210 = h̄2

Problem 7.

What are possible values of total angular momentum for the system of three particles

with spin 1
2
? (Assume there is no orbital angular momentum)

Solution

Let us do the addition in two steps: (spin 1
2
+spin 1

2
) +spin 1

2
. When we add two 1

2
spins

we can get spin 0 and spin 1 systems. At the second step, we have a problem of addition

either angular momentum 0 and angular momentum 1
2

or angular momentum 1 andangular

momentum 1
2
. In the first case we can get only angular momentum 1

2
whereas in the second

case we can get 3
2

and 1
2

. Thus, the possible values of total angular momentum are 1
2

or 3
2
.

Problem 8.

Question #1 (p. 322) from Tipler & Llewellyn, 5th ed.

Solution

From Fig. 8-3

vrms =

√
3kT

m
⇒ vH2

rms

vO2
rms

=

√
mO2

mH2

=
√

16 = 4


