
C++
short reference

for
introductory computational physics

Short introduction to C++
•  Structure of a program
•  Variables, Data Types, and Constants
•  Operators
•  Basic Input/Output
•  Control Structures
•  Functions
•  Arrays
•  Input/Output with files
•  Pointers
•  Classes

Reference books

… and
many
more!!!

Good practice
Have a good reference book for the version of C+
+ you are using.

Refer to this book frequently to be sure you are
aware of the rich collection of C++ features and
you are using these features correctly.

Programming tips
Some books* have very practical advice on
Good programming practices
Common programming errors
Performance tips
Software engineering observations
Testing and debugging tips

* C++ how to program, Deitel & Deitel have
hundreds of valuable tips.

Part 1
Structure of a program

// Simple program
#include <iostream>
using namespace std;
int main()
{
 int x, y;

 x = 2;
 y = x + 4;
 cout <<" x = "<<x<<" x + 4 = "<<y << endl;

 return 0;
}

 x = 2 x + 2 = 4
statements

more complex structure involves programmer-defined functions,
control statements, classes, communication with files, …

Free-format language
C++ is a free-format language like many other
languages.

The compiler ignores ALL spaces, tabs, and new-
line characters (also called “white spaces”)

The compiler recognizes “white spaces” only
inside a string.

Using white spaces allows to better visualize a
program structure (e.g. extra indentation inside if
statements, for loops, etc.) .

Common structure of a program
1.  Comments
2.  Header files
3.  Declare variables
4.  Declare constants
5.  Read initial data
6.  Open files
7.  CALCULATIONS (include calling other functions)
8.  Write results
9.  Closing
10.  Stop

Steps 5 – 9 may call other modules

Part 2
Variables, Data Types, and Constants

Variables, Data Types and Constants

•  Identifiers (names of variables)
•  Fundamental data types
•  Declaration of variables
•  Global and local variables
•  Initialization of variables
•  Constants

Variables
Variable is a location in the computer’s memory
where a value can be stored for use by a
program.

Identifiers – Names of variables

A variable name is any valid identifier.
An identifier is a series of characters consisting of
letters, digits, and uderscore (_) that does not
begin with a digit.
C++ is case sensitive – uppercase and lowercase
letters are different.

Examples:
 abc
 velocity_i
 Force_12

Identifiers: reserved key words

These keywords must not be used as identifiers!
C and C++ keywords

auto break case char const
continue default do double else
enum extern float for

 goto
if int long register return
short signed sizeof static

 struct
switch typedef union unsigned

 void
volatile while

Identifiers: reserved key words II

C++ only keywords

asm bool catch class const_cast
delete dynamic_cast explicit false

 friend
inline mutable namespace new operator
private protected public reinterpret_cast
static_cast template this throw true
try typeid typename using virtual
wchar_t

Variables: Data Types
Each variable has a name, a type, a size and a
value.

Fundamental data types in C++
name description bytes
char Character or small integer 1
short int Short Integer 2
int Integer 4
long int Long integer 4*
bool Boolean 1
float Floating point number 4
double Double precision floating point 8
long double Long double precision 8*
wchar_t Wide character 2

* depends on a system

Range of data types in C++
name range bytes
short int signed: -32768 to 32767

unsigned: 0 to 65535
2

int -2147483648 to 2147483647
unsigned: 0 to 4294967295

4

bool true or false 1
float 3.4e +/- 38 (7 digits) 4
double 1.7e +/- 308 (15 digits) 8
long double 1.7e +/- 308 (15 digits) 8*

Declaration of variables

//declaration of variables
#include <iostream>
using namespace std;
int main()
{
 double a, speed, force_12;
 int i, n;
 ... some operators ...
 return 0;
}

All variables must be declared with a name and a
data type before they can be used by a program.

Global and local variables
A global variable is a variable declared in the main
body of the source code, outside all functions.
Global variables can be referred from anywhere in
the code, even inside functions,

A local variable is one declared within the body of
a function or a block.
The scope of local variables is limited to the block
enclosed in braces {} where they are declared.

// test on global and local variables
#include <iostream>
using namespace std;
void f12(void);
int nglobal = 1;
int main()
{
 cout << "main 1: nglobal = " << nglobal <<endl;
 nglobal = 2;
 cout << "main 2: nglobal = " << nglobal <<endl;
 f12();
 cout << "main 3: nglobal = " << nglobal <<endl;

}
void f12()
{
 cout << "f12 : nglobal = " << nglobal <<endl;
 nglobal = 3;
}

main 1: nglobal = 1
main 2: nglobal = 2
f12 : nglobal = 2
main 3: nglobal = 3

Initialization of variables

When declaring a regular local variable, its value is
by default undetermined.
Initialization 1:
type identifier = initial_value;

Initialization 2:
type identifier (initial_value) ;

float sum = 0.0;

float sum (0.0);

Constants
Declared constants
const type identifier = initial_value ;
Constant variable can not be modified thereafter.

Define constants
#define identifier value

#define PI 3.14159265

const double pi = 3.1415926;

Example
//declaration of variables (example)
#include <iostream>
using namespace std;
#define PI 3.1415926
const float Ry = 13.6058;
int main()
{
 float a, speed, force_12;
 int i, n;
 float angle = 45.0;
 ... some operators ...
 return 0;
}

Part 3
Operators

Operators
•  Assignment (=)
•  Arithmetic operators (+, -, *, /, %)
•  Compound assignation (+=, -=, *=, /=, %=)
•  Increment and decrement (++, --)
•  Relational and equality operators (==, !=, >, <,

>=, <=)
•  Logical operators (!, &&, ||)
•  Conditional operator (?)
•  Comma operator (,)
•  Precedence of operators

Assignment operator (=)
The assignment operator assigns a value to a
variable.

// operator (=)
#include <iostream>
using namespace std;
int main ()
{
 int a, b;
 a = 12;
 b = a;
 cout << " a = " << a
 << " b = " << b <<endl;
 return 0;
} a = 12 b = 12

Arithmetic operators

There are five arithmetic operators
Operator Symbol C++ example
addition + f + 7
subtraction - p - c
multiplication * b * k
division / x / y
modulus % r % s

Precedence of arithmetic operators

Operator Operation Order
() Parentheses Evaluated first
*, / ,% Multiplication Evaluated second

 Division (if more than one
 Modulus then left-to-right)

+, - Addition Evaluated last
 Subtraction (if more than

one
 then left-to-right)

Arithmetic assignment operators

There are five arithmetic assignment operators
Operator C++ explanation
+= a += 7 a = a + 7
-= b -= 4 b = b - 4
*= c *= 5 c = c * 5
/= d /= 3 d = d / 3
%= e %= 9 e = e % 9

The increment/decrement operators

Operator called C++
++ pre increment ++a
++ post increment a++
-- pre decrement --a
-- post decrement a--

Equality and relational operators
Equality operators in decision making

 C++ example meaning
= == x == y x is equal to y

 != x != y x is not equal to y
Relational operators in decision making

 C++ example meaning
> > x > y x is greater than y
< < x < y x is less than y

 >= x >= y x is greater or equal to y
 <= x <= y x is less than or equal to y

Logical operators

C++ provides logical operators that are used to
form complex conditions by combining simple
conditions.
Operator Symbols C++ example
and && if (i==1 && j>=10)
or || if (speed >= 10.0 || t <=2.0)

Condition operator ?

The conditional operator evaluates an expression
returning a value if that expression is true and a
different one if the expression is evaluated as
false. Its format
condition ? result1 : result2

// conditional operator
#include <iostream>
using namespace std;

int main ()
{
int a,b,c;
 a=2;
 b=7;
 c = (a>b) ? a : b;
 cout << " c = " << c;
 return 0;
}

c = 7

Part 4
Basic Input/Output

Input/Output
The C++ libraries provide an extensive set of
input/output capabilities.

C++ I/O occurs in stream of bytes.

Iostream Library header files

<iostream.h> contains cin, cout, cerr, clog.

<iomanip.h> information for formatting

<fstream.h> for file processing

Basic Input/Output
cin is an object of the istream class and is
connected to the standard input device (normally
the keyboard)

cout is an object of the ostream class and is
connected to the standard output device
(normally the screen)

Example (output)
// output
#include <iostream.h>
int main ()
{
int a;
 a=2;
 cout << “ a = “ << a << endl;
return 0;
}

a = 2

Example (input/output)
// Input and output
#include <iostream.h>
int main ()
{
int a, b;
 cout << " enter two integers:";
 cin >> a >> b;
 cout << " a = " << a
 << " b = " << b << endl;
return 0;
}

 enter two integers:2 4
 a = 2 b = 4

Elements of formatting
setw set the field width (positions for input/output)

setprecision control the precision of float-point
numbers

setiosflags(ios::fixed | ios::showpoint) sets fixed
point output with a decimal point

cout << setw(5)<< n
<< setw(10)<< setprecision(4)
<< setiosflags(ios::fixed | ios::showpoint)
<< t <<endl;

 2 4.0000 for n = 2 and t = 4.0

Some format state flags
ios :: showpoint Specify that floating-point numbers
should be output with a decimal

ios::fixed Specify output of a floating-point value in
fixed-point notation with a specific number of digits
to the right of the decimal point.

ios::scientific Specify output of a floating-point
value in scientific notation.

ios::left Left justify output in a field.

ios::right Right justify output in a field.

Example
 cout.setf(ios::fixed | ios::showpoint);
 cout.width(10);
 cout.precision(5);
cout << "radius = " << radius << endl;
cout << "diameter = " << diameter<< endl;
cout << "circumf. = " << circumf << endl;
cout << "area = " << area << endl;

radius = 3.00000
diameter = 6.00000
circumf. = 18.84956
area = 28.27433

Part 5
Control Structures

Control Structures
Normally, statements in a program are executed
one after another in the order in which they are
written. This is called sequential execution.

The transfer of control statements enable the
programmer to specify that the next statement to
be executed may be other than the next one in
the sequence.

Sequence, Selection, and Repetition

Three types of selection structures:
•  if single-selection structure
•  if/else double-selection structure
•  switch multiple-selection structure

if - single-selection structure

if (grade >=60)
 cout << "passed";

if (grade >=60) {
 n=n+1;
 cout << "passed";}

The if selection structure performs an indicated
action only when the condition is true; otherwise
the condition is skipped

if/else - double-selection structure

if (grade >=60)
 cout << "passed";
else
 cout << "failed";

The if/else selection structure allows the programmer
to specify that a different action is to be performed
when the condition is true than when the condition is
false.

switch - multiple-selection structure

switch (x) {
case 1:
cout << "x is 1";
break;
case 2:
cout << "x is 2";
break;
default:
cout << "value of x
unknown";
}

Three types of repetition structures:
•  while
•  do/while
•  for

The while repetition structure

int n = 2;
while (n <= 100)
 {n = 2 * n;
 cout << n;}

A repetition structure allows the programmer to
specify an action is to be repeated while some
condition remains true

The do/while repetition structure

int i = 0;
do {
 cout << i;
 i = i + 10;
} while (i <=100);

The loop-continuation condition is not executed
until after the action is performed at least once
.

do {
 statement
} while (condition);

The for repetition structure
The for repetition structure handles all the details
of counter-controlled repetition.

for (i=0; i <=5; i=i+1)
{
 … actions …
}

The break and continue statements

The break and continue statements alter the flow of
the control.
The break statement, when executed in a while,
for, do/while, or switch structure, causes
immediate exit from that structure
The continue statement, when executed in a while,
for, or do/while structure, skips the remaining
statements in the body of the structure, and
proceeds with the next iteration.

// using the break statement
#include <iostream.h>
int main ()
{
int n;
for (n = 1; n <=10; n = n+1)
{
 if (n == 5)
 break;
 cout << n << " ";
}
cout << "\nBroke out of loop at n of " << n;
return 0;
}

1 2 3 4
Broke out of loop at n of 5

// Using the continue statement
#include <iostream.h>
int main()
{
 for (int x=1; x<=10; x++)
 {
 if (x == 5)
 {continue;}
 cout << x << " ";
 }
 cout << "\nUsed continue to skip printing
5" << endl;
 return 0;
}

1 2 3 4 6 7 8 9 10
Used continue to skip printing 5

Good practice:

The while structure is sufficient to provide any form
of repetition.

Part 6
Functions

Functions

The best way to develop and maintain a large
program is to construct it from smaller parts
(modules).
Modules in C++ are called functions and classes.
C++ standard library has many useful functions.
Functions written by a programmer are
programmer-defined-functions.

Math Library Functions

Math library functions allows to perform most
common mathematical calculations
Some math library functions:
cos(x) sin(x) tan(x) sqrt
(x)
exp(x) log(x) log10(x) pow(x,y)
fabs(x) floor(x) fmod(x,y) ceil(x)

Header files

Each standard library has a corresponding header
file containing the function prototypes for all
functions in that library and definitions of various
types and constants
Examples
old styles and new styles
<math.h> <cmath> math library
<iostream.h> <iostream> input and
output
<fstream.h> <fstream> read and write (disk)
<stdlib.h> <cstdlib> utility functions
… and many more

#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>
#include <math.h>

examples

#include <iostream>
#include <fstream>
#include <iomanip>
#include <cmath>
using namespace std;

old style

new style (note – add a line)

Functions prototypes

A function-prototype tells the compiler the name of
the function, the type of data returned by the
function, the number of parameters, the type of
parameters, and the order of parameters.
Function prototype:
value-type function-name (par-type1, par-type2, …)
The compiler uses function prototypes to validate
function calls.

Functions definitions

Function definition:
return-value-type function-name(parameter-list)
{
 declarations and statements (function body)
}
A type must be listed explicitly for each parameter
in the parameter-list of a function
All variables declared in function definitions are
local variables – they are known only in the
function.

//example: a programmer-defined function
#include <iostream.h>
int square(int); // function prototype
int main()
{
 for (int x = 1; x <= 10; x++)
 cout << square(x) << " ";
 cout << endl;
 return 0;
}
// Function definition
int square(int y)
{
 int result;
 result = y * y;
 return result;
}

1 4 9 16 25 36 49 64 81 100

Functions definitions

If a function does not receive any values
parameter-list is void or left empty
If a function does not return any value, then
return-value-type of that function is void both in
the function prototype and function definition

//example: a "void" case
#include <iostream.h>
void out2(void); // function prototype
int main()
{
 out2();
 return 0;
}
// Function definition
void out2(void)
{
 cout << "output from function out2";
 return;
}

output from function out2

References and Reference Parameters

There are two ways to invoke functions:
call-by-value – a copy of the argument’s value is
made and passed to the called function. Changes
to the copy do not affect the original variable’s
value in the caller. (This this the common way)
call-by-reference – the caller gives the called
function the ability to directly access the caller’s
data, and to modify that data if the called function
so chooses.

call-by-reference

A reference parameter is an alias for the
corresponding argument.
To indicate that place & after the parameter's type
in the function prototype, and the function
definition.

// call-by-reference
#include <iostream.h>
void f12(int&, int&);
int main()
{
 int a, b;
 a = 12;
 b = a;
 cout << "a = "<< a << " b = " << b <<endl;
 f12(a, b);
 cout << "a = "<< a << " b = " << b <<endl;
 return 0;
}
void f12(int& out1, int& out2)
{
 out1 = out1*2.0;
 out2 = out1 +3;
}

a = 12 b = 12
a = 24 b = 27

Default Arguments

Function calls may pass a particular value of an
argument. The programmer can specify that such an
argument is a default argument with a default value.
When a default argument is omitted in a function call,
the default value is automatically inserted by the
compiler and passed in the call.
Default argument must be the rightmost arguments in
a function’s parameter list.
Default arguments normally are specified in the
prototype int function2(int a=2);

Part 7
Arrays

Arrays

An array is a consecutive group of memory
locations that all have the same name and the
same type.
To refer to a particular location or element in the
array, we specify the name of the array and the
position number of the particular element in the
array.
The first element in the every array is the 0th
element.

Arrays in C/C++

Most of us were not taught by our mothers to
count on our fingers starting with the thumb as
zero!
Accordingly, you will probably make fewer n - 1
errors if you do not use zero subscripts when
dealing with matrices.
F.S. Acton “Real Computing made real”

Declaring Arrays

Arrays occupy space in memory. The programmer
specifies the type of elements and the number of
elements required, so that the compiler may
reserve the appropriate amount of memory.
Example: reserve 12 elements for integer array c

Example: declaration and initialization of an array n
int c[12];

int n[6]={2, 18, 33, 5, 21, 39};

// Initialize array a and fill with numbers
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{ int arraySize = 5;
 int i, a[arraySize];

 cout <<"Element"<<setw(12)<<"Value"<< endl;

 for (i = 0; i < arraySize; i = i + 1)
 { a[i] = 2 * I;
 cout <<setw(7)<<i<<setw(12)<<a[i]<<endl;}
return 0;
}

Element Value
 0 0
 1 2
 2 4
 3 6
 4 8

Multidimensional Arrays

Example: A 2 dimensional table 3 (rows) by 5
(columns) (15 elements)

 0 1 2 3 4
0
1
2

int toys[3][5];

5 4 6 0 6

2 1 4 6 3

5 7 4 21 0

toys [2] [3] = 21;

Passing Arrays to Functions

To pass an array argument to a function, specify
the name of the array without any brackets.
Example for array time and function speed.

C++ passes arrays to functions using simulated
call-by-reference – the called function can modify
the element values in the caller’s original arrays.

float array time[24];
…
 speed(time, 24);

// Passing Arrays to Functions
#include <iostream>
using namespace std;
void print_array (int [], int);
int main ()
{
 int a[] = {1, 2, 3, 4};
 int b[] = {5, 4, 3, 2, 1};

 print_array (a,4);
 print_array (b,5);
 return 0;

}
void print_array (int arg[], int length)
{

 for (int n=0; n<length; n=n+1)
 cout << arg[n] << " ";
 cout << "\n";

}
1 2 3 4
5 4 3 2 1

Static and Automatic Arrays

Arrays that are declared static are initialized when
the program is loaded. If a static array is not
explicitly initialized, that array is initialized to zero
by the compiler.
In functions: static arrays contain the values
stored during the previous function call. For
automatic arrays it does not happen.

static int array_s[10];
int array_a[10];

// Static and Dynamic arrays
#include <iostream>
using namespace std;
void print_array (int [], int);
int main ()
{
 int a[5];
 static int b[5];

 print_array (a,5);
 print_array (b,5);
 return 0;

}
void print_array (int arg[], int length)
{

 for (int n=0; n<length; n=n+1)
 cout << arg[n] << " ";
 cout << "\n";

}
2147340288 4328756 1 256 1
0 0 0 0 0

// my first string
 #include <iostream>
#include <string>
using namespace std;
int main ()
{ string mystring;
mystring = "This is the initial string content";
cout << mystring << endl;
mystring = "This is a different string content";
cout << mystring << endl;
 return 0; }

This is the initial string content
This is a different string content

// cin with strings
#include <iostream>
 #include <string>
 using namespace std;
 int main () {
string mystr;
cout << ”Enter your first and last name \n";
getline (cin, mystr);
cout << "You entered " << "\" "<< mystr << "\" " <<".\n";
 return 0; } Enter your first and last name

Ian Balitsky
You entered “Ian Balitsky”

Part 8
Input/Output with files

File processing (open and write)

To perform file processing in C++, the header files
<iostream> and <fstream> must be included.

Open a file with a name “file1.txt” and write to it

#include <iostream>
#include <fstream>
ofstream outfile (“file1.txt”, ios::out);
…
outfile << a << endl;

File processing (more)

Example 2 (also works)
Open a file with a name “file2.dat” and write to it

#include <iostream.h>
#include <fstream.h>
ofstream outfile;

outfile.open(“file2.dat”);

outfile << a << endl;

File processing (open and read)

Open a file with a name “input.dat” and read from it

#include <iostream>
#include <fstream>
ifstream inputfile (“input.dat”, ios::in);

inputfile >> a;

To close a file

inputfile.close();

File open modes

Mode Description
ios::app Write all output to the end
ios::in Open a file for input
ios::out Open a file for output
ios::nocreate If the file does not exist,
 the open operation fails
ios::noreplace If the file exists, the open
 operation fails

Part 9
Pointers

& and * operators

 When you have e.g. z = z+2 in your code, the computer
1.  looks up the address that the variable z corresponds to
2. goes to that location in memory and gets the value it

 contains
C++ allows us to perform either one of these steps

 independently:
1. &z evaluates to the address of z in memory.
2.  *(&z) takes the address of z and dereferences it –
 it retrieves the value at that location in memory.
 *(&z) is the same thing as z.

Pointers

Pointers are one of the most powerful features of
the C++ programming language.
Pointers are among the most difficult capabilities
to master.
Pointers enable to simulate call by reference, and
to create and manipulate dynamic data structures.

Declarations
Pointer variables contain memory address as their
values.
Declaration:

int *iPointer, i;
float *xPointer, x;
double *zpntr;

To declare and initialize a pointer named ptr that
points to an integer variable named x:
int *ptr = &x
&x gives physical address of x in the computer

Reference operator &

Dereference operator *

Important: & is address operator that returns the
address of its operand

the statement
assigns the address of the variable y to pointer yptr
Now the statement
print the value of y, namely 5.
And the statement
would assign 9 to y.

Pointer operations

int y = 5;
int * yptr;

yptr = &y;

cout << *yptr << endl;

*yptr = 9;

Pointer arithmetics

Multiple uses of & and *
The * operator is used in two different ways:
1. When declaring a pointer, * is placed before the variable

 name to indicate that the variable is a pointer.
2. When using a pointer, * is placed to dereference it – to

 access or set the value it points to.

Similarly, the & operator is used
1. To indicate a reference data type (e.g. int & x)
2. To take the address of the variable (e.g. int * ptr = &x;)

// Cube a variable using call-by-reference
// with a pointer argument
#include <iostream.h>
void cubeByReference(int *); // prototype
int main()
{
 int number = 5;
 cout << "The side is " << number;
 cubeByReference(&number);
 cout <<"\nThe volume is "<< number << endl;
 return 0;
}
void cubeByReference(int *nPtr)
{
 *nPtr = *nPtr * *nPtr * *nPtr;//cube to main
}

The side is 5
The volume is 125

Function pointers

A pointer to a function contains the address of the
function in memory.
A function name is the starting address in memory
of the code that performs the function’s task
Pointers to functions can be processed to
functions, returned to functions, stored in arrays,
and assigned to other function pointers.

//example: using function pointers
#include <iostream.h>
float av(float, float, float(*)(float));
float x2(float);
int main()
{ float x2average, xmin, xmax;
 xmin = 2.0;
 xmax = 4.0;
 x2average = av(xmin, xmax, x2);
 cout << "average = " << x2average;
 return 0;
}

float av(float a, float b, float (*f)(float))
{ return (f(b)+f(a))/2.0;}

float x2 (float x)
{ return x*x;} average = 10

Examples

// Example 1: calculate values of a function
// and write to a file
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cmath>
using namespace std;

double f(double); //function prototype

int main()
{
 const double pi=3.1415926;
 double a, b, step, x, y;
 int i, n;
 ofstream out2disk; //output to out2disk

see the next slide …

 a = 0.0; //left endpoint
 b = 2.0*pi; //right endpoint
 n = 12; //number of points

 step = (b-a)/(n-1);
 out2disk.open ("table01.dat");
 out2disk <<" x"<<" f(x)"<< endl;
 i=1;
 while (i <= n)
 {x = a + step*(i-1);
 y = f(x);
 out2disk << setw(12) << setprecision(5)
 << setiosflags(ios::fixed|ios::showpoint)
 << x << setw(12) << setprecision(5)
 << setiosflags(ios::fixed|ios::showpoint)
 << y <<endl;

see the next slide …

 i = i+1;
 }
 return 0;
}

// Function f(x)
 double f(double x)
{
 double y;
 y = sin(x);
return y;
}

 x f(x)
 0.00000 0.00000
 0.57120 0.54064
 1.14240 0.90963
 1.71360 0.98982
 2.28479 0.75575
 2.85599 0.28173
 3.42719 -0.28173
 3.99839 -0.75575
 4.56959 -0.98982
 5.14079 -0.90963
 5.71199 -0.54064
 6.28319 -0.00000

