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Roots of  
Nonlinear Equations 
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Examples of nonlinear equations 

one-dimensional equations 

two-dimensional equation 

Solving nonlinear equations = lots of fun in algebra classes? 
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Part 1. 
Real Roots of a Single 

Variable Function 
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1.1 Introduction 



5 

Behavior of Nonlinear Functions  

a)  a single real root 
b)  no real roots exist (but complex roots may exist) 
c)  two simple roots  
d)  three simple roots  
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Behavior of Nonlinear Functions (cont.)  

e)  two multiple roots  
f)  three multiple roots  
g)  one simple root and two multiple roots  
h)  multiple roots 
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Prelude for root finding   
1. All non-linear equations can only be solved iteratively. 

2. We must guess an approximate root to start an iterative 
procedure. 
The better we guess, the more chances we have to find 
the right root in shorter time. 
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1.  Graphing the function  
2.  Incremental search  
3.  Past experience with the 

problem or a similar one 
4.  Solution of a simplified 

approximate model  
5.  Previous solution in a 

sequence of solutions  

Bounding the solution involves 
finding a rough estimate of the 
solution that can be used as the 
initial approximation, in an iterative 
procedure that refines the solution 
to a specified tolerance.  

If possible, the root should be 
bracketed between two points at 
which the value of the nonlinear 
function has opposite signs.  

"The hardest thing of all is to find a black cat in a dark room, 
especially if there is no cat.“ Confucius (551-479 AD) 



9 

Two types of methods:  
1.  Closed domain 

(bracketing) methods  
2.  Open domain  

(non-bracketing) 
methods  

Iterative refining the solution 
involves determining the solution 
to a specified tolerance by a 
systematic procedure. 

There are numerous pitfalls in 
finding the roots of nonlinear 
equations. 

Important question: 
How to stop an 
iteration? 
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1.2 Closed Domain (Bracketing) Methods  
Methods start with two values of x which bracket the root in 
the interval [a,b]. If f(a) and f(b) have opposite signs, and if 
the function is continuous, then at least one root must be in 
the interval. 

Most common closed domain methods: 
1. Interval halving (bisection)  
2. False position (regula falsi)  

Bracketing methods are robust (they are guaranteed to 
obtain a solution since the root is trapped in the closed 
interval).  
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1.2.1 Bisectional method 
the simplest but the most robust method! 

  let f(x) be a continuous function on [a,b] 

  let f(x) changes sign between a and b, f(a)f(b) < 0 

Example:  function 
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Bisectional method - algorithm 
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Bisectional method – summary 
The root is bracketed within the bounds of the interval, so 
the method is guaranteed to converge 

On the each bisectional step we reduce by two the interval 
where the solution occurs. After n steps the original interval 
[a,b] will be reduced to the (b-a)/2n interval. The bisectional 
procedure is repeated till (b-a)/2n is less than the given 
tolerance. 

The major disadvantage of the bisection method is that the 
solution converges slowly.  

The method does not use information about actual 
functions behavior.  
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Example: C++ 
 double bisect(double a, double b, double eps) 
{ 
    double xl,x0,xr; 

    if( f(a)*f(b) > 0.0) return 999;  

    xl = a; 
    xr = b; 
    while (fabs(xr - xl) >= eps) 
    { 
      x0 = (xr + xl)/2.0; 
      if((f(xl) * f(x0)) <= 0.0 ) xr = x0; 
      else xl = x0; 
     }    

 return x0; 
} 
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Example for y = x - cos(x) on [0.0,4.0] for eps = 1.0e-6 
  i    a       f(a)      b       f(b)      c       f(c) 
  1  0.00000 -1.00000  4.00000  4.65364  2.00000  2.41615 
  2  0.00000 -1.00000  2.00000  2.41615  1.00000  0.45970 
  3  0.00000 -1.00000  1.00000  0.45970  0.50000 -0.37758 
  4  0.50000 -0.37758  1.00000  0.45970  0.75000  0.01831 
  5  0.50000 -0.37758  0.75000  0.01831  0.62500 -0.18596 
  6  0.62500 -0.18596  0.75000  0.01831  0.68750 -0.08533 
  7  0.68750 -0.08533  0.75000  0.01831  0.71875 -0.03388 
  8  0.71875 -0.03388  0.75000  0.01831  0.73438 -0.00787 
  9  0.73438 -0.00787  0.75000  0.01831  0.74219  0.00520 
 10  0.73438 -0.00787  0.74219  0.00520  0.73828 -0.00135 
 11  0.73828 -0.00135  0.74219  0.00520  0.74023  0.00192 
 12  0.73828 -0.00135  0.74023  0.00192  0.73926  0.00029 
 13  0.73828 -0.00135  0.73926  0.00029  0.73877 -0.00053 
 14  0.73877 -0.00053  0.73926  0.00029  0.73901 -0.00012 
 15  0.73901 -0.00012  0.73926  0.00029  0.73914  0.00008 
 16  0.73901 -0.00012  0.73914  0.00008  0.73907 -0.00002 
 17  0.73907 -0.00002  0.73914  0.00008  0.73911  0.00003 
 18  0.73907 -0.00002  0.73911  0.00003  0.73909  0.00001 
 19  0.73907 -0.00002  0.73909  0.00001  0.73908 -0.00000 
 20  0.73908 -0.00000  0.73909  0.00001  0.73909  0.00000 
 21  0.73908 -0.00000  0.73909  0.00000  0.73908 -0.00000 
 22  0.73908 -0.00000  0.73909  0.00000  0.73909  0.00000 
 iterations      root 
     22       0.73909 
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Bisectional method and singularity 
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1.2.2 False Position Method 
In the false position method, the nonlinear function f(x) is 
assumed to be a linear function g(x) in the interval (a, b), 
and the root of the linear function g(x), x = c, is taken as 
the next approximation of the root of the nonlinear function 
f(x), x = α. 

The root of the linear function g(x), that is, x = c, is not the 
root of the nonlinear function f(x). It is a false position, 
which gives the method its name.  

The method uses information about the function f(x). 
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False position method - algorithm 
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Example: C++ 
 double false_p(double a, double b, double eps) 
{ 
    double xl,x0,xr; 

    if( f(a)*f(b) > 0.0) return 999;  

    xl = a; 
    xr = b; 
    while (fabs(xr - xl) >= eps) 
    { 
      x0 = xr - f(xr)*(xr - xl)/(f(xr)-f(xl)); 
      if((f(xl) * f(x0)) <= 0.0 ) xr = x0; 
      else xl = x0; 
     }    

 return x0; 
} 
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Example for y = x - cos(x) on [0.0,4.0] for eps = 1.0e-6 

 i    a       f(a)      b       f(b)      c       f(c) 
  1  0.00000 -1.00000  4.00000  4.65364  0.70751 -0.05248 
  2  0.70751 -0.05248  4.00000  4.65364  0.74422  0.00861 
  3  0.70751 -0.05248  0.74422  0.00861  0.73905 -0.00006 
  4  0.73905 -0.00006  0.74422  0.00861  0.73909 -0.00000 
  5  0.73909 -0.00000  0.74422  0.00861  0.73909 -0.00000 
  6  0.73909 -0.00000  0.74422  0.00861  0.73909 -0.00000 
  7  0.73909 -0.00000  0.74422  0.00861  0.73909 -0.00000 
  8  0.73909 -0.00000  0.74422  0.00861  0.73909  0.00000 
 iterations      root 
      8       0.73909 

for bisectional method it takes 22 iterations 

The false position method generally converges more 
rapidly than the bisection method, but it does not give a 
bound on the error of the solution.  
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1.3 Open Domain Methods  
Methods do not restrict the root to remain trapped in a closed 
interval. Consequently, they are not as robust as bracketing 
methods and can actually diverge.  

However, they use information about the nonlinear function 
itself to refine the estimates of the root. Thus, they are 
considerably more efficient than bracketing ones.  

Most popular open domain methods 
1. Newton's method  
2. The secant method  
3. Muller's method  
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1.3.1 Newton’s method 
Newton's method exploits the derivatives f'(x) of the function 
f(x) to accelerate convergence for solving f(x)=0. 

It always converges if the initial approximation is sufficiently 
close to the root, and it converges quadratically.  

Its only disadvantage is that the derivative f'(x) of the 
nonlinear function f(x) must be evaluated.  
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Key idea: A continuous function f(x) around the point 
x may be expanded in Taylor series 
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Newton’s method - algorithm 
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Example: C++ 
double newton(void(*f)(double, double&, 
double&),double x, double eps, int& flag) 
{ 
    double fx, fpx, xc; 
    int i, iter=1000; 
    i = 0; 
    do { 
        i = i + 1; 
        f(x,fx,fpx); 
        xc = x - fx/fpx; 
        x = xc; 
        if(i >= iter) break; 
        } while (fabs(fx) >= eps);     
    flag = i; 
    if (i == iter) flag = 0; 
    return xc; 
} 
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Example for y = x - cos(x) on [0.0,4.0] for eps = 1.0e-6 
initial point is 1.0 

iterations      root 
      4       0.73909 

for bisectional method it takes 22 iterations 
for false position – 8 iterations 

Newton's method has excellent local convergence 
properties. (4 iterations above for a good guess) 

However, its global convergence properties can be very 
poor, due to the neglect of the higher-order terms in the 
Taylor series  
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possible problems 
a very slow approach to the solution 
when f'(x) → 0 around the root 

difficulty with local minima, sending 
the next iteration value xk+1 far away 

lack of convergence for asymmetric 
functions  
f(a+x)=-f(a-x) 



28 

Comments to Newton’s method  
Newton's method is an excellent method for polishing roots 
obtained by other methods which yield results polluted by 
round-off errors 

Newton's method has several disadvantages.  
  Some functions are difficult to differentiate analytically, 

and some functions cannot be differentiated analytically 
at all.  

  If the derivative is small the next iteration may end up 
very far from the root 
Practical comment: In any program we must check the 
size of the step for the next iteration. If it is improbably 
large – then reject it (or switch to some other method) 
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1.3.2 Method of secants 

The secant method is a variation of Newton's method 
when the evaluation of derivatives is difficult. 

The nonlinear function f(x) is approximated locally by the 
linear function g(x), which is the secant to f(x), and the root 
of g(x) is taken as an improved approximation to the root 
of the nonlinear function f(x).  
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Method of secants - algorithm 

The derivative f' of the continuum function f(x) at point xk 
can be presented by 

from Newton’s method follows 

One has to select two initial points to start 
By the way: the method of secant = the False position method  

the only difference is about the two 
points to select  
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Example: C++ 
double secant (double(*f)(double), double x1, 
               double x2, double eps, int& flag) 
{ 
    double x3;     
    int i, iter=1000; 
    flag = 1; 
    i = 0; 
    while (fabs(x2 - x1) >= eps) 
    { 
     i = i + 1; 
     x3 = x2 - (f(x2)*(x2-x1))/(f(x2)-f(x1)); 
     x1 = x2; 
     x2 = x3; 
     if(i >= iter) break; 
     }  
    if (i == iter) flag = 0;      
    return x3; 
} 
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Example for y = x - cos(x) on [0.0,4.0] for eps = 1.0e-6 
initial point is 1.0 

iterations      root 
      5       0.73909 

for bisectional method it takes 22 iterations, but for Newton 
only 4 iterations. 

The question of which method is more efficient, Newton's 
method or the secant method, was answered by Jeeves. He 
showed that if the effort required to evaluate f(x)’ is less than 
43 percent of the effort required to evaluate f(x), then 
Newton's method is more efficient. Otherwise, the secant 
method is more efficient.  
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1.3.3 Muller's Method  

Muller's method is based on locally approximating the 
nonlinear function f(x) by a quadratic function g(x), and the 
root of the quadratic function g(x) is taken as an improved 
approximation to the root of the nonlinear function f(x).  

Three initial approximations x1, x2, and x3, which are not 
required to bracket the root, are required to start the algorithm.  
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Muller's Method (cont.)  

The only difference between Muller's method and the secant 
method is that g(x) is a quadratic function in Muller's method 
and a linear function in the secant method.  
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1.3.4 Summary for the open methods 

All three methods converge rapidly in the vicinity of a root. 
When the derivative f'(x) is difficult to determine or time 
consuming to evaluate, the secant method is more efficient. 

In extremely sensitive problems, all three methods may 
misbehave and require some bracketing technique.  

All three of the methods can find complex roots simply by 
using complex arithmetic.  
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Complications 
there are no roots at all (see “the black cat” story) 

there is one root but the function does not change the sign, 
as in the equation x2-2x+1=0 

there are two or more roots on an interval [a,b] 

What will happen if we apply the bisectional method here? 
How about Newton’s method? 
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More complications 
there are many roots on an interval [a,b] 

What root will you find with the bisectional method? 
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1.4 Multiple roots: brute force method  

The brute force method is a good 
approach for dealing with multiple 
roots.  

You split the original interval [a,b] 
into smaller intervals with some 
step h applying some of the 
methods for single roots to the 
each h. 
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Step size in brute force method  

If the step size is too large we may miss multiple zeros. 

Choosing too small steps may result in time consuming 
calculations.  

A graphical analysis of the equation may help to decide for 
the most reasonable step for h. 

A good idea – evaluate roots for steps h and h/10 whether 
the number of roots stay the same. 
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Part 2. 
Roots of Polynomials 
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Short notes on polynomials  

The fundamental theorem of algebra states that a nth-
degree polynomial has exactly n zeros, or roots.  

The roots may be real or complex. If the coefficients are all 
real, complex roots always occur in conjugate pairs. The 
roots may be single (i.e., simple) or repeated (i.e., multiple).  
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Short notes on polynomials (cont.)  

Descartes' rule of signs, which applies to polynomials 
having real coefficients, states that the number of positive 
roots of Pn(x) is equal to the number of sign changes in the 
nonzero coefficients of Pn(x), or is smaller by an even 
integer.  

The number of negative roots is found in a similar manner 
by considering Pn(-x).  
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The bracketing methods for Pn(x) 

The bracketing methods (bisection and false position), 
cannot be used to find repeated roots with an even 
multiplicity, since the nonlinear function f(x) does not 
change sign at such roots. 

Repeated roots with an odd multiplicity can be bracketed by 
monitoring the sign of f(x), but even in this case the open 
methods are more efficient.  
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The open methods for Pn(x) 

The open can be used to find the roots of polynomials: 
Newton's method, the secant method, and Muller's 
method.  

These three methods also can be used for finding the 
complex roots of polynomials, provided that complex 
arithmetic is used and reasonably good complex initial 
approximations are specified.  
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The open methods for Pn(x) 

There are various modifications of Newton’s method for 
polynomials 

Other methods for polynomials: Bairstow's method, 
Laguerre’s method, Eigenvalue method, …  



46 

Part 3. 
Nonlinear systems of equations 
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Short note on nonlinear systems  

“There are no good, general methods for solving systems of 
more than one nonlinear equation” 
Numerical recipes in C by W. H Press et al. 

Bracketing methods are not readily extendable to systems of 
nonlinear equations.  

Newton's method, however, can be extended to solve systems 
of nonlinear equations. Quite often you need a good initial 
guess. 
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Newton method 
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Example: C++ 
void newton2(double& x1, double& y1, double eps, int& i) 
{ 
   double     f1, g1, fx, fy, gx, gy; 
   double     del, x2, y2, dx, dy; 
   int iter = 99; 
   i = 0; 
   do { 
       i = i + 1; 
       fg(x1, y1, f1, g1, fx, fy, gx, gy); 
       del = fx*gy - fy*gx; 

  dx=(fy*g1-f1*gy)/del; 
  dy=(f1*gx-fx*g1)/del; 
  x2=x1+dx; 
  y2=y1+dy; 

       x1=x2; 
  y1=y2; 

       if(i >= iter) break;    
   } while (fabs(dx) >= eps && fabs(dy) >=eps);     
   i = i+1; 
} 
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Example: 
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Example: 
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Example with various initial points 

Newtons method for two coupled nonlinear equations 
  i     x         y         f         g         dx        dy 
  1   1.00000   1.00000  -1.00000   1.00000  -0.25000  -0.25000 
  2   0.75000   0.75000  -0.28125   0.12500  -0.11905   0.03571 
  3   0.63095   0.78571  -0.02335   0.01545  -0.01276   0.00041 
  4   0.61819   0.78613  -0.00030   0.00016  -0.00016   0.00002 
  5   0.61803   0.78615  -0.00000   0.00000  -0.00000   0.00000 
  6   0.61803   0.78615  -0.00000   0.00000 

Newtons method for two coupled nonlinear equations 
  i     x         y         f         g         dx        dy 
  1   1.00000  -1.00000  -1.00000   1.00000  -0.25000   0.25000 
  2   0.75000  -0.75000  -0.28125   0.12500  -0.11905  -0.03571 
  3   0.63095  -0.78571  -0.02335   0.01545  -0.01276  -0.00041 
  4   0.61819  -0.78613  -0.00030   0.00016  -0.00016  -0.00002 
  5   0.61803  -0.78615  -0.00000   0.00000  -0.00000  -0.00000 
  6   0.61803  -0.78615  -0.00000   0.00000 
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Part 4. 
Summary 
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Summary 1  

  Bisection and false position methods converge very 
slowly, but are certain to converge because the root lies in 
a closed domain. 

  Newton's method and the secant method are both 
effective methods for solving nonlinear equations. Both 
methods generally require reasonable initial  
approximations.  

  Polynomials can be solved by any of the methods for 
solving nonlinear equations.  
However, the special features of polynomials should be 
taken into account.  
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Summary 2  

  Multiple roots can be evaluated using Newton's basic 
method or its variations, or brute force method 

  Complex roots can be evaluated by Newton's method or 
the secant method by using complex arithmetic.  

  Solving systems of nonlinear equations is a difficult task. 
For systems of nonlinear equations which have analytical 
partial derivatives, Newton's method can be used. 
Otherwise, multidimensional minimization techniques may 
be preferred. No single approach has proven to be the 
most effective. Solving systems of nonlinear equations 
remains a difficult problem.  
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Pitfalls of Root Finding Methods  

1.  Lack of a good initial approximation  

2.  Convergence to the wrong root  

3.  Closely spaced roots  

4.  Multiple roots  

5.  Inflection points  

6.  Complex roots  

7.  Ill-conditioning of the nonlinear equation  

8.  Slow convergence  
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Other Methods of Root Finding  

Brent's method uses a superlinear method (i.e., inverse 
quadratic interpolation) and monitors its behavior to ensure 
that it is behaving properly. 

For finding the roots of polynomials: Graeff's root squaring 
method, the Lehmer-Schur method, and the QD (quotient-
difference) method. Two of the more important additional 
methods for polynomials are Laguerre's method and the 
Jenkins-Traub method 
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more comments  
1.  Good initial approximations are extremely important.  
2.  For smoothly varying functions, most algorithms will 

always converge if the initial approximation is close 
enough.  

3.  Many, if not most, problems in engineering and science 
are well behaved and straightforward.  

4.  When a problem is to be solved only once or a few times, 
the efficiency of the method is not of major concern. 
However, when a problem is to be solved many times, 
efficiency of the method is of major concern.  

5.  If a nonlinear equation has complex roots, that must be 
anticipated when choosing a method.  

6.  Analyst's time versus computer time must be considered 
when selecting a method.  
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Root-finding algorithms should contain the 
following features:  
1.  An upper limit on the number of iterations.  

2.  If the method uses the derivative f'(x), it should be 
monitored to ensure that it does not approach zero.  

3.  A convergence test for the change in the magnitude of the 
solution, |xi+1 - xi |, or the magnitude of the nonlinear 
function, |f(xi+1)|, must be included.  

4.  When convergence is indicated, the final root estimate 
should be inserted into the nonlinear function f(x) to 
guarantee that f(x) = 0 within the desired tolerance. 
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Some thoughts  

  Choosing right computational method for finding roots is a 
difficult skill for beginners. 

  A method that was efficient for one equation may fail 
miserably for another 

  Any method should be used intellingently! 


