
1

Roots of
Nonlinear Equations

2

Examples of nonlinear equations

one-dimensional equations

two-dimensional equation

Solving nonlinear equations = lots of fun in algebra classes?

3

Part 1.
Real Roots of a Single

Variable Function

4

1.1 Introduction

5

Behavior of Nonlinear Functions

a) a single real root
b) no real roots exist (but complex roots may exist)
c) two simple roots
d) three simple roots

6

Behavior of Nonlinear Functions (cont.)

e) two multiple roots
f) three multiple roots
g) one simple root and two multiple roots
h) multiple roots

7

Prelude for root finding
1. All non-linear equations can only be solved iteratively.

2. We must guess an approximate root to start an iterative
procedure.
The better we guess, the more chances we have to find
the right root in shorter time.

8

1.  Graphing the function
2.  Incremental search
3.  Past experience with the

problem or a similar one
4.  Solution of a simplified

approximate model
5.  Previous solution in a

sequence of solutions

Bounding the solution involves
finding a rough estimate of the
solution that can be used as the
initial approximation, in an iterative
procedure that refines the solution
to a specified tolerance.

If possible, the root should be
bracketed between two points at
which the value of the nonlinear
function has opposite signs.

"The hardest thing of all is to find a black cat in a dark room,
especially if there is no cat.“ Confucius (551-479 AD)

9

Two types of methods:
1.  Closed domain

(bracketing) methods
2.  Open domain

(non-bracketing)
methods

Iterative refining the solution
involves determining the solution
to a specified tolerance by a
systematic procedure.

There are numerous pitfalls in
finding the roots of nonlinear
equations.

Important question:
How to stop an
iteration?

10

1.2 Closed Domain (Bracketing) Methods
Methods start with two values of x which bracket the root in
the interval [a,b]. If f(a) and f(b) have opposite signs, and if
the function is continuous, then at least one root must be in
the interval.

Most common closed domain methods:
1. Interval halving (bisection)
2. False position (regula falsi)

Bracketing methods are robust (they are guaranteed to
obtain a solution since the root is trapped in the closed
interval).

11

1.2.1 Bisectional method
the simplest but the most robust method!

  let f(x) be a continuous function on [a,b]

  let f(x) changes sign between a and b, f(a)f(b) < 0

Example: function

12

Bisectional method - algorithm

13

Bisectional method – summary
The root is bracketed within the bounds of the interval, so
the method is guaranteed to converge

On the each bisectional step we reduce by two the interval
where the solution occurs. After n steps the original interval
[a,b] will be reduced to the (b-a)/2n interval. The bisectional
procedure is repeated till (b-a)/2n is less than the given
tolerance.

The major disadvantage of the bisection method is that the
solution converges slowly.

The method does not use information about actual
functions behavior.

14

Example: C++
 double bisect(double a, double b, double eps)
{
 double xl,x0,xr;

 if(f(a)*f(b) > 0.0) return 999;

 xl = a;
 xr = b;
 while (fabs(xr - xl) >= eps)
 {
 x0 = (xr + xl)/2.0;
 if((f(xl) * f(x0)) <= 0.0) xr = x0;
 else xl = x0;
 }

 return x0;
}

15

Example for y = x - cos(x) on [0.0,4.0] for eps = 1.0e-6
 i a f(a) b f(b) c f(c)
 1 0.00000 -1.00000 4.00000 4.65364 2.00000 2.41615
 2 0.00000 -1.00000 2.00000 2.41615 1.00000 0.45970
 3 0.00000 -1.00000 1.00000 0.45970 0.50000 -0.37758
 4 0.50000 -0.37758 1.00000 0.45970 0.75000 0.01831
 5 0.50000 -0.37758 0.75000 0.01831 0.62500 -0.18596
 6 0.62500 -0.18596 0.75000 0.01831 0.68750 -0.08533
 7 0.68750 -0.08533 0.75000 0.01831 0.71875 -0.03388
 8 0.71875 -0.03388 0.75000 0.01831 0.73438 -0.00787
 9 0.73438 -0.00787 0.75000 0.01831 0.74219 0.00520
 10 0.73438 -0.00787 0.74219 0.00520 0.73828 -0.00135
 11 0.73828 -0.00135 0.74219 0.00520 0.74023 0.00192
 12 0.73828 -0.00135 0.74023 0.00192 0.73926 0.00029
 13 0.73828 -0.00135 0.73926 0.00029 0.73877 -0.00053
 14 0.73877 -0.00053 0.73926 0.00029 0.73901 -0.00012
 15 0.73901 -0.00012 0.73926 0.00029 0.73914 0.00008
 16 0.73901 -0.00012 0.73914 0.00008 0.73907 -0.00002
 17 0.73907 -0.00002 0.73914 0.00008 0.73911 0.00003
 18 0.73907 -0.00002 0.73911 0.00003 0.73909 0.00001
 19 0.73907 -0.00002 0.73909 0.00001 0.73908 -0.00000
 20 0.73908 -0.00000 0.73909 0.00001 0.73909 0.00000
 21 0.73908 -0.00000 0.73909 0.00000 0.73908 -0.00000
 22 0.73908 -0.00000 0.73909 0.00000 0.73909 0.00000
 iterations root
 22 0.73909

16

Bisectional method and singularity

17

1.2.2 False Position Method
In the false position method, the nonlinear function f(x) is
assumed to be a linear function g(x) in the interval (a, b),
and the root of the linear function g(x), x = c, is taken as
the next approximation of the root of the nonlinear function
f(x), x = α.

The root of the linear function g(x), that is, x = c, is not the
root of the nonlinear function f(x). It is a false position,
which gives the method its name.

The method uses information about the function f(x).

18

False position method - algorithm

19

Example: C++
 double false_p(double a, double b, double eps)
{
 double xl,x0,xr;

 if(f(a)*f(b) > 0.0) return 999;

 xl = a;
 xr = b;
 while (fabs(xr - xl) >= eps)
 {
 x0 = xr - f(xr)*(xr - xl)/(f(xr)-f(xl));
 if((f(xl) * f(x0)) <= 0.0) xr = x0;
 else xl = x0;
 }

 return x0;
}

20

Example for y = x - cos(x) on [0.0,4.0] for eps = 1.0e-6

 i a f(a) b f(b) c f(c)
 1 0.00000 -1.00000 4.00000 4.65364 0.70751 -0.05248
 2 0.70751 -0.05248 4.00000 4.65364 0.74422 0.00861
 3 0.70751 -0.05248 0.74422 0.00861 0.73905 -0.00006
 4 0.73905 -0.00006 0.74422 0.00861 0.73909 -0.00000
 5 0.73909 -0.00000 0.74422 0.00861 0.73909 -0.00000
 6 0.73909 -0.00000 0.74422 0.00861 0.73909 -0.00000
 7 0.73909 -0.00000 0.74422 0.00861 0.73909 -0.00000
 8 0.73909 -0.00000 0.74422 0.00861 0.73909 0.00000
 iterations root
 8 0.73909

for bisectional method it takes 22 iterations

The false position method generally converges more
rapidly than the bisection method, but it does not give a
bound on the error of the solution.

21

1.3 Open Domain Methods
Methods do not restrict the root to remain trapped in a closed
interval. Consequently, they are not as robust as bracketing
methods and can actually diverge.

However, they use information about the nonlinear function
itself to refine the estimates of the root. Thus, they are
considerably more efficient than bracketing ones.

Most popular open domain methods
1. Newton's method
2. The secant method
3. Muller's method

22

1.3.1 Newton’s method
Newton's method exploits the derivatives f'(x) of the function
f(x) to accelerate convergence for solving f(x)=0.

It always converges if the initial approximation is sufficiently
close to the root, and it converges quadratically.

Its only disadvantage is that the derivative f'(x) of the
nonlinear function f(x) must be evaluated.

23

Key idea: A continuous function f(x) around the point
x may be expanded in Taylor series

24

Newton’s method - algorithm

25

Example: C++
double newton(void(*f)(double, double&,
double&),double x, double eps, int& flag)
{
 double fx, fpx, xc;
 int i, iter=1000;
 i = 0;
 do {
 i = i + 1;
 f(x,fx,fpx);
 xc = x - fx/fpx;
 x = xc;
 if(i >= iter) break;
 } while (fabs(fx) >= eps);
 flag = i;
 if (i == iter) flag = 0;
 return xc;
}

26

Example for y = x - cos(x) on [0.0,4.0] for eps = 1.0e-6
initial point is 1.0

iterations root
 4 0.73909

for bisectional method it takes 22 iterations
for false position – 8 iterations

Newton's method has excellent local convergence
properties. (4 iterations above for a good guess)

However, its global convergence properties can be very
poor, due to the neglect of the higher-order terms in the
Taylor series

27

possible problems
a very slow approach to the solution
when f'(x) → 0 around the root

difficulty with local minima, sending
the next iteration value xk+1 far away

lack of convergence for asymmetric
functions
f(a+x)=-f(a-x)

28

Comments to Newton’s method
Newton's method is an excellent method for polishing roots
obtained by other methods which yield results polluted by
round-off errors

Newton's method has several disadvantages.
  Some functions are difficult to differentiate analytically,

and some functions cannot be differentiated analytically
at all.

  If the derivative is small the next iteration may end up
very far from the root
Practical comment: In any program we must check the
size of the step for the next iteration. If it is improbably
large – then reject it (or switch to some other method)

29

1.3.2 Method of secants

The secant method is a variation of Newton's method
when the evaluation of derivatives is difficult.

The nonlinear function f(x) is approximated locally by the
linear function g(x), which is the secant to f(x), and the root
of g(x) is taken as an improved approximation to the root
of the nonlinear function f(x).

30

Method of secants - algorithm

The derivative f' of the continuum function f(x) at point xk
can be presented by

from Newton’s method follows

One has to select two initial points to start
By the way: the method of secant = the False position method

the only difference is about the two
points to select

31

Example: C++
double secant (double(*f)(double), double x1,
 double x2, double eps, int& flag)
{
 double x3;
 int i, iter=1000;
 flag = 1;
 i = 0;
 while (fabs(x2 - x1) >= eps)
 {
 i = i + 1;
 x3 = x2 - (f(x2)*(x2-x1))/(f(x2)-f(x1));
 x1 = x2;
 x2 = x3;
 if(i >= iter) break;
 }
 if (i == iter) flag = 0;
 return x3;
}

32

Example for y = x - cos(x) on [0.0,4.0] for eps = 1.0e-6
initial point is 1.0

iterations root
 5 0.73909

for bisectional method it takes 22 iterations, but for Newton
only 4 iterations.

The question of which method is more efficient, Newton's
method or the secant method, was answered by Jeeves. He
showed that if the effort required to evaluate f(x)’ is less than
43 percent of the effort required to evaluate f(x), then
Newton's method is more efficient. Otherwise, the secant
method is more efficient.

33

1.3.3 Muller's Method

Muller's method is based on locally approximating the
nonlinear function f(x) by a quadratic function g(x), and the
root of the quadratic function g(x) is taken as an improved
approximation to the root of the nonlinear function f(x).

Three initial approximations x1, x2, and x3, which are not
required to bracket the root, are required to start the algorithm.

34

Muller's Method (cont.)

The only difference between Muller's method and the secant
method is that g(x) is a quadratic function in Muller's method
and a linear function in the secant method.

35

1.3.4 Summary for the open methods

All three methods converge rapidly in the vicinity of a root.
When the derivative f'(x) is difficult to determine or time
consuming to evaluate, the secant method is more efficient.

In extremely sensitive problems, all three methods may
misbehave and require some bracketing technique.

All three of the methods can find complex roots simply by
using complex arithmetic.

36

Complications
there are no roots at all (see “the black cat” story)

there is one root but the function does not change the sign,
as in the equation x2-2x+1=0

there are two or more roots on an interval [a,b]

What will happen if we apply the bisectional method here?
How about Newton’s method?

37

More complications
there are many roots on an interval [a,b]

What root will you find with the bisectional method?

38

1.4 Multiple roots: brute force method

The brute force method is a good
approach for dealing with multiple
roots.

You split the original interval [a,b]
into smaller intervals with some
step h applying some of the
methods for single roots to the
each h.

39

Step size in brute force method

If the step size is too large we may miss multiple zeros.

Choosing too small steps may result in time consuming
calculations.

A graphical analysis of the equation may help to decide for
the most reasonable step for h.

A good idea – evaluate roots for steps h and h/10 whether
the number of roots stay the same.

40

Part 2.
Roots of Polynomials

41

Short notes on polynomials

The fundamental theorem of algebra states that a nth-
degree polynomial has exactly n zeros, or roots.

The roots may be real or complex. If the coefficients are all
real, complex roots always occur in conjugate pairs. The
roots may be single (i.e., simple) or repeated (i.e., multiple).

42

Short notes on polynomials (cont.)

Descartes' rule of signs, which applies to polynomials
having real coefficients, states that the number of positive
roots of Pn(x) is equal to the number of sign changes in the
nonzero coefficients of Pn(x), or is smaller by an even
integer.

The number of negative roots is found in a similar manner
by considering Pn(-x).

43

The bracketing methods for Pn(x)

The bracketing methods (bisection and false position),
cannot be used to find repeated roots with an even
multiplicity, since the nonlinear function f(x) does not
change sign at such roots.

Repeated roots with an odd multiplicity can be bracketed by
monitoring the sign of f(x), but even in this case the open
methods are more efficient.

44

The open methods for Pn(x)

The open can be used to find the roots of polynomials:
Newton's method, the secant method, and Muller's
method.

These three methods also can be used for finding the
complex roots of polynomials, provided that complex
arithmetic is used and reasonably good complex initial
approximations are specified.

45

The open methods for Pn(x)

There are various modifications of Newton’s method for
polynomials

Other methods for polynomials: Bairstow's method,
Laguerre’s method, Eigenvalue method, …

46

Part 3.
Nonlinear systems of equations

47

Short note on nonlinear systems

“There are no good, general methods for solving systems of
more than one nonlinear equation”
Numerical recipes in C by W. H Press et al.

Bracketing methods are not readily extendable to systems of
nonlinear equations.

Newton's method, however, can be extended to solve systems
of nonlinear equations. Quite often you need a good initial
guess.

48

Newton method

49

Example: C++
void newton2(double& x1, double& y1, double eps, int& i)
{
 double f1, g1, fx, fy, gx, gy;
 double del, x2, y2, dx, dy;
 int iter = 99;
 i = 0;
 do {
 i = i + 1;
 fg(x1, y1, f1, g1, fx, fy, gx, gy);
 del = fx*gy - fy*gx;

 dx=(fy*g1-f1*gy)/del;
 dy=(f1*gx-fx*g1)/del;
 x2=x1+dx;
 y2=y1+dy;

 x1=x2;
 y1=y2;

 if(i >= iter) break;
 } while (fabs(dx) >= eps && fabs(dy) >=eps);
 i = i+1;
}

50

Example:

51

Example:

52

Example with various initial points

Newtons method for two coupled nonlinear equations
 i x y f g dx dy
 1 1.00000 1.00000 -1.00000 1.00000 -0.25000 -0.25000
 2 0.75000 0.75000 -0.28125 0.12500 -0.11905 0.03571
 3 0.63095 0.78571 -0.02335 0.01545 -0.01276 0.00041
 4 0.61819 0.78613 -0.00030 0.00016 -0.00016 0.00002
 5 0.61803 0.78615 -0.00000 0.00000 -0.00000 0.00000
 6 0.61803 0.78615 -0.00000 0.00000

Newtons method for two coupled nonlinear equations
 i x y f g dx dy
 1 1.00000 -1.00000 -1.00000 1.00000 -0.25000 0.25000
 2 0.75000 -0.75000 -0.28125 0.12500 -0.11905 -0.03571
 3 0.63095 -0.78571 -0.02335 0.01545 -0.01276 -0.00041
 4 0.61819 -0.78613 -0.00030 0.00016 -0.00016 -0.00002
 5 0.61803 -0.78615 -0.00000 0.00000 -0.00000 -0.00000
 6 0.61803 -0.78615 -0.00000 0.00000

53

Part 4.
Summary

54

Summary 1

  Bisection and false position methods converge very
slowly, but are certain to converge because the root lies in
a closed domain.

  Newton's method and the secant method are both
effective methods for solving nonlinear equations. Both
methods generally require reasonable initial
approximations.

  Polynomials can be solved by any of the methods for
solving nonlinear equations.
However, the special features of polynomials should be
taken into account.

55

Summary 2

  Multiple roots can be evaluated using Newton's basic
method or its variations, or brute force method

  Complex roots can be evaluated by Newton's method or
the secant method by using complex arithmetic.

  Solving systems of nonlinear equations is a difficult task.
For systems of nonlinear equations which have analytical
partial derivatives, Newton's method can be used.
Otherwise, multidimensional minimization techniques may
be preferred. No single approach has proven to be the
most effective. Solving systems of nonlinear equations
remains a difficult problem.

56

Pitfalls of Root Finding Methods

1. Lack of a good initial approximation

2. Convergence to the wrong root

3. Closely spaced roots

4. Multiple roots

5. Inflection points

6. Complex roots

7. Ill-conditioning of the nonlinear equation

8. Slow convergence

57

Other Methods of Root Finding

Brent's method uses a superlinear method (i.e., inverse
quadratic interpolation) and monitors its behavior to ensure
that it is behaving properly.

For finding the roots of polynomials: Graeff's root squaring
method, the Lehmer-Schur method, and the QD (quotient-
difference) method. Two of the more important additional
methods for polynomials are Laguerre's method and the
Jenkins-Traub method

58

more comments
1.  Good initial approximations are extremely important.
2.  For smoothly varying functions, most algorithms will

always converge if the initial approximation is close
enough.

3.  Many, if not most, problems in engineering and science
are well behaved and straightforward.

4.  When a problem is to be solved only once or a few times,
the efficiency of the method is not of major concern.
However, when a problem is to be solved many times,
efficiency of the method is of major concern.

5.  If a nonlinear equation has complex roots, that must be
anticipated when choosing a method.

6.  Analyst's time versus computer time must be considered
when selecting a method.

59

Root-finding algorithms should contain the
following features:
1.  An upper limit on the number of iterations.

2.  If the method uses the derivative f'(x), it should be
monitored to ensure that it does not approach zero.

3.  A convergence test for the change in the magnitude of the
solution, |xi+1 - xi |, or the magnitude of the nonlinear
function, |f(xi+1)|, must be included.

4.  When convergence is indicated, the final root estimate
should be inserted into the nonlinear function f(x) to
guarantee that f(x) = 0 within the desired tolerance.

60

Some thoughts

  Choosing right computational method for finding roots is a
difficult skill for beginners.

  A method that was efficient for one equation may fail
miserably for another

  Any method should be used intellingently!

