
1

Random Processes

Monte Carlo Simulation

2

Random or Stochastic processes
You cannot predict from the observation of one event,
how the next will come out

Examples:

Coin: the only prediction about outcome –
50% the coin will land on its tail

Dice: In large number of throws –
probability 1/6

3

Question: What is the most probable number for
the sum of two dice?

36 possibilities

6 times – for 7

1211109876
111098765
10987654
9876543
8765432
7654321
654321

4

Applications for MC simulation

! Stochastic processes

! Complex systems (science)

! Numerical integration

! Risk management

! Financial planning

! Cryptography

! …

5

How do we do that?

! You let the computer to throw “the coin” and
record the outcome

! You need a program that generates randomly a
variable
… with relevant probability distribution

Part 1

Random number generators

7

Sources of Random Numbers

! Tables

! Hardware (external sources of random numbers –
generates random numbers from a physics process.

! Software (source of pseudorandom numbers)

8

Tables

Most significant

A Million Random Digits with 100,000 Normal Deviates
by RAND

00000 10097 32533 76520 13586 34673 54876 80959 09117 39292 74945
00001 37542 04805 64894 74296 24805 24037 20636 10402 00822 91665
00002 08422 68953 19645 09303 23209 02560 15953 34764 35080 33606
00003 99019 02529 09376 70715 38311 31165 88676 74397 04436 27659
00004 12807 99970 80157 36147 64032 36653 98951 16877 12171 76833
00005 66065 74717 34072 76850 36697 36170 65813 39885 11199 29170
00006 31060 10805 45571 82406 35303 42614 86799 07439 23403 09732
00007 85269 77602 02051 65692 68665 74818 73053 85247 18623 88579
00008 63573 32135 05325 47048 90553 57548 28468 28709 83491 25624
00009 73796 45753 03529 64778 35808 34282 60935 20344 35273 88435
00010 98520 17767 14905 68607 22109 40558 60970 93433 50500 73998
00011 11805 05431 39808 27732 50725 68248 29405 24201 52775 67851
00012 83452 99634 06288 98083 13746 70078 18475 40610 68711 77817
00013 88685 40200 86507 58401 36766 67951 90364 76493 29609 11062
00014 99594 67348 87517 64969 91826 08928 93785 61368 23478 34113
.....

9

Software - Random Number Generators

! There are no true random number generators but
pseudo RNG!

! Reason: computers have only a limited number of bits
to represent a number

! It means: the sequence of random numbers will repeat
itself (period of the generator)

10

Good Random Number Generators

Other (still important) issues
1.  independent of the previous number
2.  long period
3.  produce the same sequence if started with same initial

conditions
4.  fast

Two important issues:
1.  randomness
2.  knowledge of the distribution.

11

Two basic techniques for RNG

The standard methods of generating pseudorandom
numbers use modular reduction in congruential
relationships.
Two basic techniques for generating uniform random
numbers:
1. congruential methods
2. feedback shift register methods.
For each basic technique there are many variations.

12

Linear Congruent Method for RNG

Generates a random sequence of numbers
{x1, x2, …xk} of length M over the interval [0,M-1]

! starting value x0 is called “seed”

! coefficients a and c should be chosen very
carefully

note:

⎟
⎠

⎞
⎜
⎝

⎛ +
=+= −

− M
caxremainderMcaxx i

ii
1

1),mod(

MMbbMb *)/int(),mod(−=

the method was suggested by D. H. Lehmer in 1948

Mxi <≤ −10

13

Example:

a=4, c=1, M=9, x1=3
x2 = 4
x3 = 8
x4 = 6
x5-10 = 7, 2, 0, 1, 5, 3

MMbbMb
Mcaxx ii

*)/int(),mod(
),mod(1

−=

+= −

interval: 0-8, i.e. [0,M-1]
period: 9 i.e. M numbers (then repeat)

14

Random Numbers on interval [A,B]

! Scale results from xi on [0,M-1] to yi on [0,1]

! Scale results from xi on [0,1] to yi on [A,B]

ii xABAy)(−+=

)1/(−= Mxy ii

15

Magic numbers for Linear Congruent Method

! M (length of the sequence) is quite large

! However there is no overflow
(for 32 bit machines M=231 ≈ 2*109)

! Good “magic” number for linear congruent method:

a = 16,807, c = 0, M = 2,147,483,647
for c = 0 “multiplicative congruential generator”:

),mod(1 Mcaxx ii += −

16

Other Linear Congruential Generators

ü  Multiple Recursive Generators
many versions including “Lagged Fibonacci”

ü  Matrix Congruential Generators

ü  Add-with-Carry, Subtract-with-Borrow, and Multiply -
with-Carry Generators

17

Other Generators

ü  Nonlinear Congruential Generators
ü  Feedback Shift Register Generators

ü  Generators Based on Cellular Automata

ü  Generators Based on Chaotic Systems

ü  …

James E. Gentle – “Random Number Generation and
Monte Carlo Methods

Second edition - 2004

18

How can we check the RNG?

Plots:
§  2D figure, where xi and yi are from two random

sequences (parking lot test)

§  3D figure (xi, yi, zi)

§  2D figure for correlation (xi, xi+k)

19

How can we check the RNG?
 Example of other assessments

Uniformity. A random number sequence should contain
numbers distributed in the unit interval with equal
probability. Use bins.

k-th momentum

near-neighbor correlation

1
11

1 +
≈= ∑

= k
x

N
x

N

i

k
i

k

4
11

1

≈+
=
∑ ki

N

i
i xxN

20

Software for RNG

C/C++ and Fortran (90,95) provide built-in uniform random
number generators,
but … except for small studies, these built-in generators
should be avoided.
A number of Fortran and C/C++ programs are available in
StatLib: http://lib.stat.cmu.edu/
NetLib: http://www.netlib.org/liblist.html
GAMS: http://gams.nist.gov/
GNU Scientific Library (GSL) http://www.gnu.org/software/gsl/
IMSL (International Mathematics and Statistics Library)
libraries contain a large number of RNGs

21

“Industrial” methods in C/C++ and Fortran

! rand
! random

! drand48

! rn

! drand

! srand

! …

1.  call SEED
Changes the starting point of the
pseudorandom number generator.

2.  call RANDOM
Returns a pseudorandom number
greater than or equal to zero and
less than one from the uniform
distribution.

22

Standard RNG in C++
#include <cstdlib> library
srand(seed) is used to initialize the RNG
rand() returns a pseudo random integer in

 the range 0 to RAND_MAX.
 RAND_MAX = 32767

Generating integer random numbers in a range i1 – i2:
random_i = i1 + (rand()%(i2-i1+1));
a better method to do the same
random_i = i1 + int(1.0*(i2-i1+1)*rand()/(RAND_MAX+1.0));
Generating real random numbers between 0.0 and 1.0
drandom = 1.0*rand()/(RAND_MAX+1);

23

// generate integer random numbers between i1 and i2
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <ctime>
using namespace std;

int main ()
{
 int nmax=10; /* generate 10 random numbers*/
 int i1=1, i2=6, irandom;
 srand (123); /* initial seed */
//srand(time(NULL)); // better to "randomize" seed values

 for (int i=0; i < nmax; i=i+1)
 {
 irandom = i1+rand()%(i2-i1+1);/* number between i1 & i2*/
 cout << " " << irandom << endl;
 }
 system("pause");
 return 0;
}

Example: srand and rand in C++
 3
 4
 6
 1
 6
 2
 6
 3
 5
 3

24

/* generate random numbers between 0.0 and 1.0 */
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <cmath>
#include <ctime>
using namespace std;
int main ()
{
 int nmax = 10; /*generate 10 random number*/
 double drandom;
 cout.precision(4);
 cout.setf(ios::fixed | ios::showpoint);

 srand(4567); /* initial seed value */
 for (int i=0; i < nmax; i=i+1)
 {
 drandom = 1.0*rand()/(RAND_MAX+1);
 cout << "d = " << drandom << endl;
 }
 system("pause");
 return 0;
}

Example: cont. for float

 0.4563
 0.2816
 0.4452
 0.8693
 0.8514
 0.6432
 0.0493
 0.9999
 0.6017
 0.0548

25

Example

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

20

40

60

80

100

120

140
uniformity of random numbers from rand
 for 1000 random numbers

nu
m

be
r o

f r
an

do
m

 n
um

be
rs

 in
 a

 b
in

bins

26

Example

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

200

400

600

800

1000

1200

1400
uniformity of random numbers from rand
 for 10000 random numbers

nu
m

be
r o

f r
an

do
m

 n
um

be
rs

 in
 a

 b
in

bins

27

Example:
2D distribution for two
random sequences xi
and yi

k-th moment of the
random number
distribution

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

two random sequences (parking lot test)

5000 points,
k-th momentum <x4>=0.1991
near-neighbor correlation = 0.2507

y(
i)

x(i)

28

Example:
2D distribution for
correlation (xi, xi+5)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

5000 points,
k-th momentum <x4>=0.1991
near-neighbor correlation = 0.2507

correlation test

x(
i+

5)

x(i)

29

Comment to rand in C++
“The version of rand() that comes with your C++ compiler
will in all probability be a pretty simple generator and
wouldn't be appropriate for scientific use. … It may well
be random enough for use in simple programs and
games.”

Jacobs, B. C++ Random Numbers. A tutorial for
beginners, introducing the functions srand() and rand()

see also http://www.netlib.org/random/

Source codes for various random number generators in C
and Fortran, including the RANLIB library

30

Practice 1 (homework)
1.  Write a program to generate random numbers using

the linear congruent method

2.  Plot 2D distribution for two random sequences xi and yi

3.  Plot 2D distribution for correlation (xi, xi+4)

4.  Evaluate 5-th moment of the random number
distribution

5.  Use some built-in RNG for problems 2-4.

Part 2

Monte Carlo Integration

32

Monte Carlo Integration

! There are very many methods for numerical
integration

! Can MC approach compete with sophisticated
methods?

! Can we gain anything from integration by
“gambling”?

33

Problem: High-Dimensional Integration

Example: Integration for a system with 12 electrons.

! 3*12=36 dimensional integral

! If 64 points for each integration then =6436 points
to evaluate

! For 1 Tera Flop computer = 1053 seconds

! That is … 3 times more then the age of the
universe!

34

Integration by rejection
hit and miss method

Example: area of a circle
Radius: R
Area of the square: 4R2

1.  loop over N
2.  generate a pair of random numbers

x and y on [-1,1]

3.  if (x*x+y*y) < 1 then m=m+1
4.  since Acircle/Asquare = m/N
5.  Acircle = m/N*Asquare = (m/N)*4R2

R

35

One more
example

Compute N pairs of random numbers xi and yi with
0.0 ≤x ≤2.0 and -1.5 ≤ y ≤1.5.

⎟
⎠

⎞
⎜
⎝

⎛ −
= −+

N
nnAFn

36

Integration by mean value

∫ −==
b

a

fabdxxfI)()(

∑∑

∫ ∑

==

=

==

−
−=Δ

Δ±−≈=

N

i
i

N

i
i

b

a

N

i
i

xf
N

fxf
N

f

N
ff

abS

Sxf
N

abdxxfI

1

22

1

22

1

)(1)(1

)(

)(1)()(

Traditional methods (midpoint, Simpson, …) – N points are
chosen with equal spacing.
Monte Carlo method – random sampling

the error evaluation
is based on the
normal distribution

37

Midpoint vs Monte Carlo method error

38

Error in midpoint m-d for 2-dim integral

39

Error in midpoint m-d for 3-dim integral

40

Error in midpoint m-d for d-dim integral

41

Error in Monte Carlo method

42

43

44

Error in the MC method

45

Error in the MC method in d dimensions

46

Comparison of midpoint and MC methods

47

Example: volume of a d-dim sphere

48

49

50

Error in MC vs Simpson integration

n

N

N

N

N

/1

4

4

1

1

1

1

⎟
⎠

⎞
⎜
⎝

⎛ case nD Simson in Error

 case 1D Simson in Error

 case nD Carlo-Monte in Error

 case 1D Carlo-Monte in Error

at n 7 or 8 the error in Monte Carlo integration is
similar to that of conventional scheme

51

 double int_mc1d(double(*f)(double), double a, double b, int n)
/* 1D intergration using Monte-Carlo method for f(x) on [a,b]
input: f - Function to integrate (supplied by a user)
 a - Lower limit of integration
 b - Upper limit of integration
 n - number random points
output:r - Result of integration
Comments: be sure that following headers are included
 #include <cstdlib>
 #include <ctime>
*/
{
 double r, x, u;
 srand(time(NULL)); /* initial seed value (use system time) */

 r = 0.0;

 for (int i = 1; i <= n; i=i+1)
 {
 u = 1.0*rand()/(RAND_MAX+1); // random between 0.0 and 1.0
 x = a + (b-a)*u; // random x between a and b
 r = r + f(x);
 }
 r = r*(b-a)/n;
 return r;
}

Example: 1D integration (C++)

52

Example
 n Trapez. Simpson Monte Carlo
 2 1.570796 2.094395 2.483686
 4 1.896119 2.004560 2.570860
 8 1.974232 2.000269 2.140117
 16 1.993570 2.000017 1.994455
 32 1.998393 2.000001 2.005999
 64 1.999598 2.000000 2.089970
 128 1.999900 2.000000 2.000751
 256 1.999975 2.000000 2.065036
 512 1.999994 2.000000 2.037365
 1024 1.999998 2.000000 1.988752
 2048 2.000000 2.000000 1.989458
 4096 2.000000 2.000000 1.991806
 8192 2.000000 2.000000 2.000583
 16384 2.000000 2.000000 1.987582
 32768 2.000000 2.000000 1.991398
 65536 2.000000 2.000000 1.997360

0.2)sin(
0

=∫
π

dxx

53

Example
 n Trapez. Simpson Monte Carlo
 64 0.004360 -0.013151 0.081207
 128 0.001183 -0.001110 0.155946
 256 0.000526 -0.000311 0.071404
 512 0.000368 0.000006 0.002110
 1024 0.000329 0.000161 -0.004525
 2048 0.000319 0.000238 -0.010671
 4096 0.000316 0.000277 0.000671
 8192 0.000316 0.000296 -0.009300
 16384 0.000316 0.000306 -0.009500
 32768 0.000316 0.000311 -0.005308
 65536 0.000316 0.000313 -0.000414
 131072 0.000316 0.000314 0.001100
 262144 0.000316 0.000315 0.001933
 524288 0.000316 0.000315 0.000606
 1048576 0.000316 0.000315 -0.000369
 2097152 0.000316 0.000316 0.000866
 4194304 0.000316 0.000316 0.000330

∫ =
+

π

0

2
2 0.0003156)10cos(
1

dxx
x
x

54

many methods to increase accuracy
Example: antithetic variates – using “mirror points”

()∫ ∑
=

−++−≈=
b

a

N

i
ii xbafxf

N
abdxxfI

2/

1

)(()(1)()(

Antithetic variates have negative covariances, thus
reducing the variance of the sum

more methods can be found in
James E. Gentle – “Random Number Generation and
Monte Carlo Methods

Second edition - 2004

55

Multidimensional Monte Carlo

∫ ∫ ∑
=

−−≅
b

a

d

c

N

i
ii yxfN

cdabyxdyfdx
1

),(1))((),(

56

double int_mckd(double(*fn)(double[],int),double a[],
 double b[], int n, int m)
/* input is similar to 1D integration*/
{
 double r, x[n], p;
 int i, j;
 srand(time(NULL));/* initial seed value (use system time) */
 r = 0.0;
 p = 1.0;

// step 1: calculate the common factor p
 for (j = 0; j < n; j = j+1) p = p*(b[j]-a[j]);

// step 2: integration
 for (i = 1; i <= m; i=i+1)
 {
// calculate random x[] points
 for (j = 0; j < n; j = j+1)
 {
 x[j] = a[j] + (b[j]-a[j])*rand()/(RAND_MAX+1);
 }
 r = r + fn(x,n);
 }
 r = r*p/m;
 return r;
}

Example: nD integration (C++)

57

Example

 7D Integral
 8 11.478669
 16 12.632578
 32 13.520213
 64 13.542921
 128 13.263171
 256 13.178140
 512 12.850561
 1024 12.747383
 2048 12.745207
 4096 12.836080
 8192 12.819113
 16384 12.790508
 32768 12.765735
 65536 12.812653
 131072 12.809303
 262144 12.831216
 524288 12.832844
total elapsed time = 1 seconds

312.8333333)(7
2

72

1

0

1

0

1

0
1

1

0
6

1

0
5

1

0
432

1

0
1 =+++∫ ∫ ∫∫∫∫∫ dxxxxdxdxdxdxdxdx …

58

Practice: Integration

! Use Monte Carlo integration (both rejection and mean
value methods) to evaluate

 and

! Evaluate 7-D integral

∫ −
3

0

)exp(dxx ∫
5

0

2)2sin(dxx

7
2

72

1

0

1

0

1

0
1

1

0
6

1

0
5

1

0
432

1

0
1)(dxxxxdxdxdxdxdxdx +++∫ ∫ ∫∫∫∫∫ …

Part 3

Random Walk

60

Random Walk

A simple random walk is a sequence of unit steps where each
step is taken in the direction of one of the coordinate axis, and
each possible direction has equal probability of being chosen.

Random walk on a lattice:
§  In two dimensions, a single step starting at the point with

integer coordinates (x,y) would be equally likely to move to
any of one of the four neighbors (x+1,y), (x-1,y), (x,y+1) and
(x,y-1).

§  In one dimension walk there are two possible neighbors
§  In three dimensions there are six possible neighbors.

61

Random Walk simulates:
!   Brownian motion

(answer the question - how many collisions, on
average, a particle must take to travel a distance R).

!   Electron transport in metals, …
!   …

62

63

Practice 2 (random walk)
1.  Write a program that simulate a random 2D walk with the

same step size . Four directions are possible (N, E, S, W).
Your program will involve two large integers, M = the number of
random walks to be taken and N = the maximum number of steps in a
single walk.

2.  Find the average distance to be from the origin point after
N steps

3.  Is there any finite bound on the expected number of steps
before the first return to the origin?

64

ex
am

pl
e

-5 0 5 10 15 20
-5

0

5

10

15

20

2D random walk

y

x

65

ex
am

pl
e

-5 0 5 10 15 20
-5

0

5

10

15

20

2D random walk

y

x

66

Various models of random walk
Persistent random walk

Restricted random walk

Self-avoiding random walk

…

Examples of applications:

§  Spread of inflectional diseases and effects of
immunization

§  Spreading of fire

67

A persistent random walk
A persistent random walk in 2 dimensions in a city
with n*n blocks

Condition: the walker can not step back

Goal: find average number of steps to get out the city

68 pe
rs

is
te

nt
 r

an
do

m
 w

al
k

in
 a

 c
it
y

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

10

12

14

16

18

20

22

24
persistent 2D random walk
 from the center
 of 24*24 city

y

x

69 pe
rs

is
te

nt
 r

an
do

m
 w

al
k

in
 a

 c
it
y

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

10

12

14

16

18

20

22

24
persistent 2D random walk
 from the center
 of 24*24 city

y

x

70 pe
rs

is
te

nt
 r

an
do

m
 w

al
k

in
 a

 c
it
y

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

10

12

14

16

18

20

22

24
persistent 2D random walk
 from the center
 of 24*24 city

y

x

Average number of blocks to go to
leave the city with 24*24 blocks
from the center: 92 blocks
from a random point: 47 blocks

71

The Metropolis algorithm (cont.)
The metropolis sampling is most efficient for multidirectional
problems.

In a traditional random walk all visiting points are equal.
What is we want the random walker to spend more time in a
specific region, e.g. where for a 2D walk g(x,y) is larger.

)12('
)12('

1 −+=

−+=

+i

i

uhyy
uhxx

rejected is step the if
accepted is step the if

 number random some

generate and

consider then

α

α

α

<

≥

=

q
q

yxg
yxgq
),(
)','(

72

Example
a group of atoms interact by Lennard-Jones
potential

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛=
612

4)(
rr

rV σσ
ε

Find positions of n atoms that gives the min value of the total potential.
Method: Monte-Carlo variations
examples: n=19 n=7

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

y

x

-1 0 1 2
-1

0

1

2

y

x

73

Example
The French naturalist and mathematician Comte de Buffon showed that
the probability that a needle of length L thrown randomly onto a grid of
parallel lines with distance D≥L apart intersects a line is 2L/(D*π).

c*** loop over trials
 hit = 0
 do it=1,itests
 x0 = float(N)*D*rand()
 k = int(x0/D)

 x1 = x0 - D*float(k)
 x2 = D - x1
 x = min(x1,x2)
 dx = 0.5*abs(L*cos(1.0*pi*rand()))
 if(dx.ge.x) hit = hit + 1
 end do

c*** average number of hits
 ahit = float(hit)/float(itests)
 buffon = (2*L)/(pi*D)

74

 Buffon problem for D=1
 enter numbers of tests
 10000
 enter numbers of intervals in the grid
 10
 enter the needle size L<1
 0.5
 hit = 3.157E-01
 buffon = 3.183E-01

 Buffon problem for D=1
 enter numbers of tests
 100000
 enter numbers of intervals in the grid
 50
 enter the needle size L<1
 0.9
 hit = 5.717E-01
 buffon = 5.730E-01

75

Example
investigate a simple problem that generated much attention several years
ago and for which many mathematicians obtained an incorrect solution. The
problem was the analysis of the optimal strategy in a television game show
popular at the time. The show was Let’s Make a Deal with host Monty Hall.
At some point in the show, a contestant was given a choice of selecting one
of three possible items, each concealed behind one of three closed doors.
The items varied considerably in value. After the contestant made a choice
but before the chosen door was opened, the host, who knew where the
most valuable item was, would open one of the doors not selected and
reveal a worthless item. The host would then offer to let the contestant
select a different door from what was originally selected. The question, of
course, is should the contestant switch? A popular magazine writer Marilyn
vos Savant concluded that the optimal strategy is to switch. This strategy is
counterintuitive to many mathematicians, who would say that there is
nothing to be gained by switching; that is, that the probability of improving
the selection is 0.5. Study this problem by Monte Carlo methods. What is
the probability of improving the selection by switching? Be careful to
understand all of the assumptions, and then work the problem analytically
also. (A Monte Carlo study is no substitute for analytic study.)

76

c*** loop over trials
 win1 = 0

 win2 = 0
 do it=1,itests
 a(1) = rand()

 a(2) = rand()
 a(3) = rand()
 choice = 1 + int(3.0*rand())

 b(1) = a(choice)
 if(choice.eq.1) b(2) = max(a(2),a(3))
 if(choice.eq.2) b(2) = max(a(1),a(3))
 if(choice.eq.3) b(2) = max(a(1),a(2))

 if(b(1).ge.b(2)) then
 win1 = win1 + 1
 else
 win2 = win2 + 1
 end if

 end do
c*** average number of games and wins
 awin1 = float(win1)/float(itests)
 awin2 = float(win2)/float(itests)
 write (*,101) awin1, awin2

 Lets make a deal
 enter numbers of tests
10000
 win1 = 3.359E-01
 win2 = 6.641E-01

77

Example
The gambler's ruin problem. Suppose that a person decides to try to
increase the amount of money in his/her pocket by participating in some
gambling. Initially, the gambler begin with $m in capital. The gambler
decides that he/she will gamble until a certain goal, $n (n>m), is achieved
or there is no money left (credit is not allowed). On each throw of a coin
(roll of the dice, etc.) the gambler either win $1 or lose $1. If the gambler
achieves the goal he/she will stop playing. If the gambler ends up with no
money he/she is ruined.

What are chances for the gambler to achieve the goal as a function of k,
where k=n/m?

How long on average will it take to play to achieve the goal or to be
ruined?

78

 write (*,*)'enter numbers of tests, money and
goal'
 read (*,*) itests, money1, money2

c*** loop over trials
 total = 0
 wins = 0
 do it=1,itests
 x=money1
 games=0
 do while(x.gt.0.and.x.lt.money2)
 games = games + 1
 luck = 1
 if(rand().le.0.5) luck=-1
 x = x+luck
 end do
 total = total+games
 if(x.gt.0) wins = wins+1
 end do
c*** average number of games and wins
 agames = float(total)/float(itests)
 awins = float(wins)/float(itests)

 aloose = 1.0-awins
 write (*,100) itests, money1, money2
 write (*,101) awins, aloose, agames

79

 The gambler`s ruin problem.
 Chances to reach certain goal
 enter numbers of tests, money and goal
10000
10
100

 tests: 10000
 initial: 10
 goal: 100
 win = 1.026E-01
 loose = 8.974E-01
 games = 9.019E+02

chance to win in each bet 50/50

80

 The gambler`s ruin problem.
 Chances to reach certain goal
 enter numbers of tests, money and goal
100000
10
100

 tests: 100000
 initial: 10
 goal: 100
 win = 9.44000E-03
 loose = 9.90560E-01
 games = 4.51806E+02

chance to win in each bet 49/51

81

Applications of Monte-Carlo simulations
ü  integration
ü  statistical physics
ü  aerodynamic
ü  quantum chromodynamics
ü  molecular dynamic simulation
ü  experimental particle physics
ü  cellular automata
ü  percolation
ü  radiation field and energy transport
ü  …
ü  Finance and business
ü  …

82

Good reference place for Quantum Monte Carlo
http://www.qmcwiki.org/index.php/Research_resources

83

Cellular automation
Cellular automata – dynamic computational models that are discrete
in space, state and time.

Applications – physics, biology, economics, …

Random walk is an example of cellular automata.

see also “The Game of Life” is a cellular automaton devised by
John Horton Conway in 1970. Life is an example of emergence and
self-organization - complex patterns can emerge from the
implementation of very simple rules.

