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Random Processes 

Monte Carlo Simulation 
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Random or Stochastic processes 
You cannot predict from the observation of one event, 
how the next will come out 
 

Examples: 

Coin: the only prediction about outcome –  
50% the coin will land on its tail 

Dice: In large number of throws –  
probability 1/6 
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Question: What is the most probable number for 
the sum of two dice? 

36 possibilities 

6 times – for 7 

1211109876
111098765
10987654
9876543
8765432
7654321
654321
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Applications for MC simulation 

! Stochastic processes 

! Complex systems (science) 

! Numerical integration 

! Risk management 

! Financial planning 

! Cryptography 

! … 



5 

How do we do that? 

! You let the computer to throw “the coin” and 
record the outcome 

! You need a program that generates randomly a 
variable 
… with relevant probability distribution 



Part 1 

Random number generators 
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Sources of Random Numbers 

! Tables 

! Hardware (external sources of random numbers – 
generates random numbers from a physics process. 

! Software (source of pseudorandom numbers) 
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Tables 

Most significant 

A Million Random Digits with 100,000 Normal Deviates 
by RAND   

00000   10097 32533  76520 13586  34673 54876  80959 09117  39292 74945 
00001   37542 04805  64894 74296  24805 24037  20636 10402  00822 91665 
00002   08422 68953  19645 09303  23209 02560  15953 34764  35080 33606 
00003   99019 02529  09376 70715  38311 31165  88676 74397  04436 27659 
00004   12807 99970  80157 36147  64032 36653  98951 16877  12171 76833 
00005   66065 74717  34072 76850  36697 36170  65813 39885  11199 29170 
00006   31060 10805  45571 82406  35303 42614  86799 07439  23403 09732 
00007   85269 77602  02051 65692  68665 74818  73053 85247  18623 88579 
00008   63573 32135  05325 47048  90553 57548  28468 28709  83491 25624 
00009   73796 45753  03529 64778  35808 34282  60935 20344  35273 88435 
00010   98520 17767  14905 68607  22109 40558  60970 93433  50500 73998 
00011   11805 05431  39808 27732  50725 68248  29405 24201  52775 67851 
00012   83452 99634  06288 98083  13746 70078  18475 40610  68711 77817 
00013   88685 40200  86507 58401  36766 67951  90364 76493  29609 11062 
00014   99594 67348  87517 64969  91826 08928  93785 61368  23478 34113 
..... 
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Software - Random Number Generators 

! There are no true random number generators  but 
pseudo RNG! 

! Reason: computers have only a limited number of bits 
to represent a number 

! It means: the sequence of random numbers will repeat 
itself (period of the generator) 
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Good  Random Number Generators 

Other (still important) issues 
1.  independent of the previous number 
2.  long period 
3.  produce the same sequence if started with same initial 

conditions 
4.  fast 

Two important issues: 
1.  randomness 
2.  knowledge of the distribution. 
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Two basic techniques for RNG 

The standard methods of generating pseudorandom 
numbers use modular reduction in congruential 
relationships.  
Two basic techniques for generating uniform random 
numbers:  
1.    congruential methods 
2.    feedback shift register methods.  
For each basic technique there are many variations. 



12 

Linear Congruent Method for RNG 

Generates a random sequence of numbers  
{x1, x2, …xk} of length M over the interval [0,M-1] 
 
 

! starting value x0 is called “seed” 

! coefficients  a and c should be chosen very 
carefully 
 
note: 
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the method was suggested by D. H. Lehmer in 1948 

Mxi <≤ −10
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Example: 

a=4, c=1, M=9, x1=3  
x2 = 4 
x3 = 8 
x4 = 6 
x5-10 = 7, 2, 0, 1, 5, 3 

MMbbMb
Mcaxx ii

*)/int(),mod(
),mod( 1

−=

+= −

interval: 0-8,  i.e. [0,M-1] 
period:   9  i.e. M numbers  (then repeat) 
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Random Numbers on interval [A,B] 

! Scale results from xi on [0,M-1] to yi on [0,1] 
 
 

! Scale results from xi on [0,1] to yi on [A,B] 
 

ii xABAy )( −+=

)1/( −= Mxy ii
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Magic numbers for Linear Congruent Method 

! M (length of the sequence) is quite large 

! However there is no overflow 
(for 32 bit machines M=231 ≈ 2*109) 

! Good “magic” number for linear congruent method: 
 
 
a = 16,807, c = 0, M = 2,147,483,647 
for c = 0 “multiplicative congruential generator”: 

),mod( 1 Mcaxx ii += −
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Other Linear Congruential Generators 

ü  Multiple Recursive Generators 
many versions including “Lagged Fibonacci” 

ü  Matrix Congruential Generators 

ü  Add-with-Carry, Subtract-with-Borrow, and Multiply -
with-Carry Generators 
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Other Generators 

ü  Nonlinear Congruential Generators 
ü  Feedback Shift Register Generators 

ü  Generators Based on Cellular Automata 

ü  Generators Based on Chaotic Systems 

ü  … 

James E. Gentle – “Random Number Generation and 
Monte Carlo Methods 

Second edition - 2004 
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How can we check the RNG? 

Plots: 
§  2D figure, where xi and yi are from two random 

sequences (parking lot test) 

§  3D figure (xi, yi, zi) 

§  2D figure for correlation (xi, xi+k) 
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How can we check the RNG? 
           Example of other assessments 

Uniformity. A random number sequence should contain 
numbers distributed in the unit interval with equal 
probability. Use bins. 

k-th momentum 

 

near-neighbor correlation 
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Software for RNG 

C/C++ and Fortran (90,95) provide built-in uniform random 
number generators,  
but … except for small studies, these built-in generators 
should be avoided. 
A number of Fortran and C/C++ programs are available in 
StatLib: http://lib.stat.cmu.edu/ 
NetLib: http://www.netlib.org/liblist.html 
GAMS: http://gams.nist.gov/ 
GNU Scientific Library (GSL) http://www.gnu.org/software/gsl/ 
IMSL (International Mathematics and Statistics Library) 
libraries contain a large number of RNGs 
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“Industrial” methods in C/C++ and Fortran 

! rand 
! random 

! drand48 

! rn 

! drand 

! srand 

! … 

1.  call SEED 
Changes the starting point of the 
pseudorandom number generator.  

2.  call RANDOM 
Returns a pseudorandom number 
greater than or equal to zero and 
less than one from the uniform 
distribution.  
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Standard RNG in C++ 
#include <cstdlib>  library 
srand(seed)   is used to initialize the RNG 
rand()   returns a pseudo random integer in 

   the range 0 to RAND_MAX. 
   RAND_MAX = 32767 

Generating integer random numbers in a range i1 – i2: 
random_i = i1 + (rand()%(i2-i1+1)); 
a better method to do the same 
random_i = i1 + int(1.0*(i2-i1+1)*rand()/(RAND_MAX+1.0)); 
Generating real random numbers between 0.0 and 1.0 
drandom = 1.0*rand()/(RAND_MAX+1); 
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// generate integer random numbers between i1 and i2 
#include <iostream> 
#include <cstdlib> 
#include <cmath> 
#include <ctime> 
using namespace std; 
 
int main () 
{ 
  int nmax=10;          /* generate 10 random numbers*/ 
  int i1=1, i2=6, irandom; 
  srand (123);          /* initial seed */ 
//srand(time(NULL)); // better to "randomize" seed values  
 
  for (int i=0; i < nmax; i=i+1) 
  { 
   irandom = i1+rand()%(i2-i1+1);/* number between i1 & i2*/ 
   cout << " " << irandom << endl; 
  } 
  system("pause"); 
  return 0; 
} 

Example: srand and rand in C++ 
 3 
 4 
 6 
 1 
 6 
 2 
 6 
 3 
 5 
 3 
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/* generate random numbers between 0.0 and 1.0 */ 
#include <iostream> 
#include <iomanip> 
#include <cstdlib> 
#include <cmath> 
#include <ctime> 
using namespace std; 
int main () 
{ 
  int nmax = 10;    /*generate 10 random number*/ 
  double drandom; 
  cout.precision(4); 
  cout.setf(ios::fixed | ios::showpoint);  
 
  srand(4567); /* initial seed value */ 
  for (int i=0; i < nmax; i=i+1) 
  { 
      drandom = 1.0*rand()/(RAND_MAX+1);  
      cout << "d = " << drandom << endl; 
  } 
  system("pause"); 
  return 0; 
} 

Example: cont. for float 

 0.4563 
 0.2816 
 0.4452 
 0.8693 
 0.8514 
 0.6432 
 0.0493 
 0.9999 
 0.6017 
 0.0548 
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Example 
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Example 
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Example: 
2D distribution for two 
random sequences xi 
and yi  

k-th moment of the 
random number 
distribution 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

two random sequences (parking lot test)

5000 points, 
k-th momentum <x4>=0.1991
near-neighbor correlation = 0.2507 

y(
i)

x(i)
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Example: 
2D distribution for 
correlation (xi, xi+5) 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

5000 points, 
k-th momentum <x4>=0.1991
near-neighbor correlation = 0.2507 

correlation test

x(
i+

5)

x(i)
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Comment to rand in C++ 
“The version of rand() that comes with your C++ compiler 
will in all probability be a pretty simple generator and 
wouldn't be appropriate for scientific use. … It may well 
be random enough for use in simple programs and 
games.” 

Jacobs, B. C++ Random Numbers. A tutorial for 
beginners, introducing the functions srand() and rand() 

 

see also http://www.netlib.org/random/  

Source codes for various random number generators in C 
and Fortran, including the RANLIB library 
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Practice 1 (homework) 
1.  Write a program to generate random numbers using 

the linear congruent method 

2.  Plot 2D distribution for two random sequences xi and yi  

3.  Plot 2D distribution for correlation (xi, xi+4) 

4.  Evaluate 5-th moment of the random number 
distribution 

5.  Use some built-in RNG for problems 2-4. 



Part 2 

Monte Carlo Integration 
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Monte Carlo Integration 

! There are very many methods for numerical 
integration 

! Can MC approach compete with sophisticated 
methods?  

! Can we gain anything from integration by 
“gambling”? 
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Problem: High-Dimensional Integration 

Example: Integration for a system with 12 electrons. 

! 3*12=36 dimensional integral 

! If 64 points for each integration then =6436 points 
to evaluate 

! For 1 Tera Flop computer =  1053 seconds 

! That is … 3 times more then the age of the 
universe! 



34 

Integration by rejection 
hit and miss method 

Example: area of a circle 
Radius: R 
Area of the square: 4R2 

1.  loop over N 
2.  generate a pair of random numbers 

x and y on [-1,1] 

3.  if (x*x+y*y) < 1 then m=m+1 
4.  since Acircle/Asquare = m/N 
5.  Acircle = m/N*Asquare = (m/N)*4R2 

R
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One more 
example 

Compute N pairs of random numbers xi and yi with  
0.0 ≤x ≤2.0 and -1.5 ≤ y ≤1.5. 

⎟
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Integration by mean value 
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Traditional methods (midpoint, Simpson, …) – N points are 
chosen with equal spacing.  
Monte Carlo method – random sampling 

the error evaluation 
is based on the 
normal distribution 
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Midpoint vs Monte Carlo method error 
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Error in midpoint m-d for 2-dim integral 
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Error in midpoint m-d for 3-dim integral 



40 

Error in midpoint m-d for d-dim integral 
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Error in Monte Carlo method 
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Error in the MC method 
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Error in the MC method in d dimensions 
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Comparison of midpoint and MC methods 
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Example: volume of a d-dim sphere 
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Error in MC vs Simpson integration 

n

N

N

N

N

/1

4

4

1

1

1

1

⎟
⎠

⎞
⎜
⎝

⎛    case nD             Simson in Error

    case 1D             Simson in Error

    case nD    Carlo-Monte in Error

    case 1D    Carlo-Monte in Error

at n 7 or 8 the error in Monte Carlo integration is 
similar to that of conventional scheme 
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 double int_mc1d(double(*f)(double), double a, double b, int n) 
/* 1D intergration using Monte-Carlo method for f(x) on [a,b] 
input: f - Function to integrate (supplied by a user) 
       a - Lower limit of integration 
       b - Upper limit of integration 
       n - number random points 
output:r - Result of integration     
Comments: be sure that following headers are included 
    #include <cstdlib> 
    #include <ctime>     
*/ 
{ 
   double r, x, u; 
   srand(time(NULL)); /* initial seed value (use system time) */ 
 
   r = 0.0; 
 
   for (int i = 1; i <= n; i=i+1) 
   { 
     u = 1.0*rand()/(RAND_MAX+1); // random between 0.0 and 1.0 
        x = a + (b-a)*u;          // random x between a and b 
        r = r + f(x); 
    } 
    r = r*(b-a)/n; 
    return r; 
} 

Example: 1D integration (C++) 
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Example 
         n  Trapez.   Simpson   Monte Carlo 
         2  1.570796  2.094395  2.483686 
         4  1.896119  2.004560  2.570860 
         8  1.974232  2.000269  2.140117 
        16  1.993570  2.000017  1.994455 
        32  1.998393  2.000001  2.005999 
        64  1.999598  2.000000  2.089970 
       128  1.999900  2.000000  2.000751 
       256  1.999975  2.000000  2.065036 
       512  1.999994  2.000000  2.037365 
      1024  1.999998  2.000000  1.988752 
      2048  2.000000  2.000000  1.989458 
      4096  2.000000  2.000000  1.991806 
      8192  2.000000  2.000000  2.000583 
     16384  2.000000  2.000000  1.987582 
     32768  2.000000  2.000000  1.991398 
     65536  2.000000  2.000000  1.997360 

0.2)sin(
0

=∫
π

dxx
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Example 
         n  Trapez.   Simpson   Monte Carlo 
        64  0.004360 -0.013151  0.081207 
       128  0.001183 -0.001110  0.155946 
       256  0.000526 -0.000311  0.071404 
       512  0.000368  0.000006  0.002110 
      1024  0.000329  0.000161 -0.004525 
      2048  0.000319  0.000238 -0.010671 
      4096  0.000316  0.000277  0.000671 
      8192  0.000316  0.000296 -0.009300 
     16384  0.000316  0.000306 -0.009500 
     32768  0.000316  0.000311 -0.005308 
     65536  0.000316  0.000313 -0.000414 
    131072  0.000316  0.000314  0.001100 
    262144  0.000316  0.000315  0.001933 
    524288  0.000316  0.000315  0.000606 
   1048576  0.000316  0.000315 -0.000369 
   2097152  0.000316  0.000316  0.000866 
   4194304  0.000316  0.000316  0.000330 

∫ =
+

π

0

2
2 0.0003156)10cos(
1

dxx
x
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many methods to increase accuracy 
Example: antithetic variates – using “mirror points” 
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Antithetic variates have negative covariances, thus 
reducing the variance of the sum 

 

more methods can be found in  
James E. Gentle – “Random Number Generation and 
Monte Carlo Methods 

Second edition - 2004 



55 

Multidimensional Monte Carlo 
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double int_mckd(double(*fn)(double[],int),double a[],  
       double b[], int n, int m) 
/* input is similar to 1D integration*/ 
{ 
   double r, x[n], p; 
   int i, j; 
   srand(time(NULL));/* initial seed value (use system time) */ 
   r = 0.0; 
   p = 1.0; 
 
// step 1: calculate the common factor p 
    for (j = 0; j < n; j = j+1) p = p*(b[j]-a[j]);  
 
// step 2: integration 
    for (i = 1; i <= m; i=i+1) 
    { 
//      calculate random x[] points 
        for (j = 0; j < n; j = j+1) 
        { 
            x[j] = a[j] + (b[j]-a[j])*rand()/(RAND_MAX+1); 
        }          
        r = r + fn(x,n); 
    } 
    r = r*p/m; 
    return r; 
} 

Example: nD integration (C++) 
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Example 

            7D Integral 
         8   11.478669 
        16   12.632578 
        32   13.520213 
        64   13.542921 
       128   13.263171 
       256   13.178140 
       512   12.850561 
      1024   12.747383 
      2048   12.745207 
      4096   12.836080 
      8192   12.819113 
     16384   12.790508 
     32768   12.765735 
     65536   12.812653 
    131072   12.809303 
    262144   12.831216 
    524288   12.832844 
total elapsed time = 1 seconds 

312.8333333)( 7
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Practice: Integration 

! Use Monte Carlo integration (both rejection and mean 
value methods) to evaluate 
 
                     and  
 

! Evaluate 7-D integral 
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Part 3 

Random Walk 
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Random Walk  

A simple random walk is a sequence of unit steps where each 
step is taken in the direction of one of the coordinate axis, and 
each possible direction has equal probability of being chosen.  

 
Random walk on a lattice: 
§  In two dimensions, a single step starting at the point with 

integer coordinates (x,y) would be equally likely to move to 
any of one of the four neighbors (x+1,y), (x-1,y), (x,y+1) and 
(x,y-1).  

§  In one dimension walk there are two possible neighbors 
§  In three dimensions there are six possible neighbors. 
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Random Walk simulates: 
!   Brownian motion 

(answer the question - how many collisions, on 
average, a particle must take to travel a distance R). 

!   Electron transport in metals, … 
!   … 
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Practice 2 (random walk) 
1.  Write a program that simulate a random 2D walk with the 

same step size . Four directions are possible (N, E, S, W). 
Your program will involve two large integers, M = the number of 
random walks to be taken and N = the maximum number of steps in a 
single walk. 

2.  Find the average distance to be from the origin point after 
N steps 

3.  Is there any finite bound on the expected number of steps 
before the first return to the origin?  
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Various models of random walk 
Persistent random walk 

Restricted random walk 

Self-avoiding random walk 

…  

Examples of applications: 

§  Spread of inflectional diseases and effects of 
immunization 

§  Spreading of fire 
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A persistent random walk 
A persistent random walk in 2 dimensions in a city 
with n*n blocks 

Condition: the walker can not step back 

Goal: find average number of steps to get out the city 



68 pe
rs

is
te

nt
 r

an
do

m
 w

al
k 

in
 a

 c
it
y 

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

10

12

14

16

18

20

22

24
persistent 2D random walk
        from the center 
         of 24*24 city

 

 

y

x



69 pe
rs

is
te

nt
 r

an
do

m
 w

al
k 

in
 a

 c
it
y 

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

10

12

14

16

18

20

22

24
persistent 2D random walk
        from the center 
         of 24*24 city

 

 

y

x



70 pe
rs

is
te

nt
 r

an
do

m
 w

al
k 

in
 a

 c
it
y 

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

10

12

14

16

18

20

22

24
persistent 2D random walk
        from the center 
         of 24*24 city

 

 

y

x

Average number of blocks to go to 
leave the city with 24*24 blocks 
from the center:         92 blocks 
from a random point: 47 blocks 



71 

The Metropolis algorithm (cont.) 
The metropolis sampling is most efficient for multidirectional  
problems.  

In a traditional random walk all visiting points are equal. 
What is we want the random walker to spend more time in a 
specific region, e.g. where for a 2D walk g(x,y) is larger.   
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Example 
a group of atoms interact by Lennard-Jones 
potential 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛=
612

4)(
rr

rV σσ
ε

Find positions of n atoms that gives the min value of the total  potential. 
Method: Monte-Carlo variations 
examples:      n=19                                         n=7 
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Example 
The French naturalist and mathematician Comte de Buffon showed that 
the probability that a needle of length L thrown randomly onto a grid of 
parallel lines with distance D≥L apart intersects a line is 2L/(D*π).  

c*** loop over trials 
      hit = 0 
      do it=1,itests 
        x0 = float(N)*D*rand()    
        k = int(x0/D) 

   x1 = x0 - D*float(k) 
   x2 = D - x1  
   x = min(x1,x2)  
   dx = 0.5*abs(L*cos(1.0*pi*rand())) 
   if(dx.ge.x) hit = hit + 1 
 end do 

c*** average number of hits 
      ahit = float(hit)/float(itests) 
      buffon = (2*L)/(pi*D) 
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 Buffon problem for D=1 
 enter numbers of tests 
 10000 
 enter numbers of intervals in the grid 
 10 
 enter the needle size L<1 
 0.5 
 hit    =   3.157E-01 
 buffon =   3.183E-01 

 Buffon problem for D=1 
 enter numbers of tests 
 100000 
 enter numbers of intervals in the grid 
 50 
 enter the needle size L<1 
 0.9 
 hit    =   5.717E-01 
 buffon =   5.730E-01  
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Example 
investigate a simple problem that generated much attention several years 
ago and for which many mathematicians obtained an incorrect solution. The 
problem was the analysis of the optimal strategy in a television game show 
popular at the time. The show was Let’s Make a Deal with host Monty Hall. 
At some point in the show, a contestant was given a choice of selecting one 
of three possible items, each concealed behind one of three closed doors. 
The items varied considerably in value. After the contestant made a choice 
but before the chosen door was opened, the host, who knew where the 
most valuable item was, would open one of the doors not selected and 
reveal a worthless item. The host would then offer to let the contestant 
select a different door from what was originally selected. The question, of 
course, is should the contestant switch? A popular magazine writer Marilyn 
vos Savant concluded that the optimal strategy is to switch. This strategy is 
counterintuitive to many mathematicians, who would say that there is 
nothing to be gained by switching; that is, that the probability of improving 
the selection is 0.5. Study this problem by Monte Carlo methods. What is 
the probability of improving the selection by switching? Be careful to 
understand all of the assumptions, and then work the problem analytically 
also. (A Monte Carlo study is no substitute for analytic study.)  
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c*** loop over trials 
      win1 = 0 

 win2 = 0 
      do it=1,itests 
        a(1) = rand() 

   a(2) = rand() 
        a(3) = rand() 
        choice = 1 + int(3.0*rand()) 

   b(1) = a(choice) 
   if(choice.eq.1) b(2) = max(a(2),a(3)) 
   if(choice.eq.2) b(2) = max(a(1),a(3)) 
   if(choice.eq.3) b(2) = max(a(1),a(2)) 

        if(b(1).ge.b(2)) then 
      win1 = win1 + 1 
      else 
      win2 = win2 + 1 
   end if 

      end do 
c*** average number of games and wins 
      awin1 = float(win1)/float(itests) 
      awin2 = float(win2)/float(itests) 
      write (*,101) awin1, awin2 

 Lets make a deal 
 enter numbers of tests 
10000 
 win1 =   3.359E-01 
 win2 =   6.641E-01 
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Example 
The gambler's ruin problem. Suppose that a person decides to try to 
increase the amount of money in his/her pocket by participating in some 
gambling. Initially, the gambler begin with $m in capital. The gambler 
decides that he/she will gamble until a certain goal, $n (n>m), is achieved 
or there is no money left (credit is not allowed). On each throw of a coin 
(roll of the dice, etc.) the gambler either win $1 or lose $1. If the gambler 
achieves the goal he/she will stop playing. If the gambler ends up with no 
money he/she is ruined.  

What are chances for the gambler to achieve the goal as a function of k, 
where k=n/m?  

How long on average will it take to play to achieve the goal or to be 
ruined?  
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 write (*,*)'enter numbers of tests, money and 
goal' 
      read  (*,*) itests, money1, money2 
 
c*** loop over trials 
      total = 0 
      wins = 0 
      do it=1,itests 
        x=money1 
        games=0 
        do while(x.gt.0.and.x.lt.money2) 
           games = games + 1 
           luck = 1 
           if(rand().le.0.5) luck=-1 
           x = x+luck 
        end do 
        total = total+games 
        if(x.gt.0) wins = wins+1 
      end do 
c*** average number of games and wins 
      agames = float(total)/float(itests) 
      awins = float(wins)/float(itests) 

 aloose = 1.0-awins 
      write (*,100) itests, money1, money2 
      write (*,101) awins, aloose, agames 
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 The gambler`s ruin problem. 
 Chances to reach certain goal 
 enter numbers of tests, money and goal 
10000 
10 
100 
 
 tests:     10000 
 initial:      10 
 goal:        100 
 win   =   1.026E-01 
 loose =   8.974E-01 
 games =   9.019E+02 

chance to win in each bet 50/50 



80 

 The gambler`s ruin problem. 
 Chances to reach certain goal 
 enter numbers of tests, money and goal 
100000 
10 
100 
 
 tests:    100000 
 initial:      10 
 goal:        100 
 win   = 9.44000E-03 
 loose = 9.90560E-01 
 games = 4.51806E+02 

chance to win in each bet 49/51 
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Applications of Monte-Carlo simulations 
ü  integration 
ü  statistical physics 
ü  aerodynamic  
ü  quantum chromodynamics 
ü  molecular dynamic simulation 
ü  experimental particle physics 
ü  cellular automata 
ü  percolation 
ü  radiation field and energy transport 
ü  … 
ü  Finance and business 
ü  … 
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Good reference place for Quantum Monte Carlo 
http://www.qmcwiki.org/index.php/Research_resources 
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Cellular automation 
Cellular automata – dynamic computational models that are discrete 
in space, state and time.  

 

Applications – physics, biology, economics, … 

 

Random walk is an example of cellular automata. 

 

see also “The Game of Life” is a cellular automaton devised by 
John Horton Conway in 1970. Life is an example of emergence and 
self-organization - complex patterns can emerge from the 
implementation of very simple rules. 


