

Lecture 16

Special Theory of Relativity Galilean Transformations Galilean Covarianci Wave Equation Einstein's postulate Kinematic Results Lorentz transformations Problem 12.19

PHYSICS 453 Electromagnetism II Lecture 16

Physics Department Old Dominion University

March 27, 2025

Outline

Lecture 16

Special Theory of Relativity Galilean Transformations Galilean Covariance Wave Equation Einstein's postulates Kinematic Results Lorentz transformations Problem 12.19

1

Special Theory of Relativity and Covariant Electrodynamics

- Galilean Transformations
- Maxwellian Mechanics under Galilean Transformations
- Wave Equation
- Einstein's postulates
- Kinematic Results of Special Relativity
- Lorentz transformations
- Problem 12.19

Galilean Transformations

Lecture 16

Special Theory of Relativity Galilean Transformations Galilean Covariance Wave Equation Einstein's postulate: Kinematic Results Lorentz

- In Newtonian Mechanics: inertial frame; in which a body, acted on by no external forces, moves with a constant velocity
- A transformation between two inertial frames is a Galilean Transformation
- Practical definition of an inertial frame is one moving with constant velocity relative to the distant stars (Mach's principle)
- Consider two inertial frames K, K', moving with a relative velocity v
- The coordinates in the two frames are related by

$$t' = t$$
 , $\mathbf{x}' = \mathbf{x} - \mathbf{v}t$

- Consider the interactions of N particles at positions x_i; i = 1, ..., N, acting solely under the influence of a central potential V_{ij}(|x_i x_j|)
- Then the equation of motion of particle i in K is

$$m_i \frac{d\mathbf{v}_i}{dt} = -\sum_j \nabla_{x_i} V_{ij}(|\mathbf{x}_i - \mathbf{x}_j|)$$

- Suppose that we look at the equation of motion in K'
- Then we should have

$$n_i \frac{d\mathbf{v'}_i}{dt} = -\sum_j \nabla_{x'_i} V_{ij}(|\mathbf{x}'_i - \mathbf{x}'_j|)$$

Wave equation

Lecture 16

Special Theory of Relativity Galilean Transformations Galilean Vave Equation Einstein's postulates Kinematic Results Lorentz transformations Problem 12.19

$$m_i \frac{d\mathbf{v'}_i}{dt} = -\sum_j \nabla_{x'_i} V_{ij}(|\mathbf{x}'_i - \mathbf{x}'_j|)$$

- It is evident that $\mathbf{v}'_i = \mathbf{v}_i \mathbf{v}$, and under the transformation, $\partial/\partial x'_i = \partial/\partial x_i$
- We also have $d\mathbf{v}'_i/dt = d\mathbf{v}_i/dt$ and $|\mathbf{x}'_i \mathbf{x}'_j| = |\mathbf{x}_i \mathbf{x}_j|$
- Thus, we see that the equation of motion in K' is of exactly the same form as that in K
- Classical Newtonian mechanics transforms covariantly under Galilean Transformations
- Electric and magnetic propagation in a vacuum satisfies the wave equation

$$\left[\nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right]\psi(x,y,z;t) = 0$$

• Consider its transformation under t' = t, $\mathbf{x}' = \mathbf{x} - \mathbf{v}t$. We have

$$\frac{\partial}{\partial x_i} = \frac{\partial x'_j}{\partial x_i} \frac{\partial}{\partial x'_j} + \frac{\partial t'}{\partial x_i} \frac{\partial}{\partial t'} = \delta_{ij} \frac{\partial}{\partial x'_j} + 0 = \frac{\partial}{\partial x'_i}$$
$$\frac{\partial}{\partial t} = \frac{\partial x'_j}{\partial t} \frac{\partial}{\partial x'_j} + \frac{\partial t'}{\partial t} \frac{\partial}{\partial t'} = -v_j \frac{\partial}{\partial x'_j} + \frac{\partial}{\partial t'} = \frac{\partial}{\partial t'} - \mathbf{v} \cdot \nabla'$$

Wave Equation

Lecture 16

Special Theory of Relativity Galilean Transformations Galilean Covariance Wave Equation Einstein's postulate Kinematic Results Lorentz

$$\left[\nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right]\psi(x, y, z; t) = 0$$

• Thus, under $\frac{\partial}{\partial x_i} = \frac{\partial}{\partial x'_i}$, $\frac{\partial}{\partial t} = \frac{\partial}{\partial t'} - \mathbf{v} \cdot \nabla'$, the wave equation becomes

$$\begin{bmatrix} \nabla'^2 - \frac{1}{c^2} \left(\frac{\partial}{\partial t'} - \mathbf{v} \cdot \nabla' \right) \left(\frac{\partial}{\partial t'} - \mathbf{v} \cdot \nabla' \right) \end{bmatrix} \psi = 0$$
$$\begin{bmatrix} \nabla'^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t'^2} + \frac{2}{c^2} \mathbf{v} \cdot \nabla' \frac{\partial}{\partial t'} - \frac{1}{c^2} (\mathbf{v} \cdot \nabla') (\mathbf{v} \cdot \nabla') \end{bmatrix} \psi = 0$$

- This equation is clearly different from the wave equation
- It does not transform covariantly under Galilean Transformations
- For sound waves there is no problem; they propagate in a medium
- It is then natural to write wave equation in medium's rest frame
- The natural question: Is there a frame in which the "ether" is at rest"?
- We all know the answer (Michelson-Morley): there is no ether
- The velocity of light is the same in all frames
- The resolution of this nasty transformation property is the Special Theory of Relativity

Einstein's postulates

Lecture 16

Special Theory of Relativity Galilean Transformations Galilean Covariance Wave Equation Einstein's postulates Kinematic Results Lorentz transformations

- Postulate 1: Same laws of nature hold in all inertial systems \Rightarrow
- Postulate 2: Velocity of light is the same in all systems moving uniformly with respect to each other.
- Derive the relationship between coordinates in two frames K, K' moving with constant relative velocity v
- Choose that the origins of the coordinates coincide at t = t' = 0
- Take a flashlight rapidly switched on and off at the origin at t = t' = 0
- By postulate 2, observers in both *K* and *K'* see a spherical shell of radiation expanding with the velocity of light *c*. The wavefront satisfies

$$\ln K: \quad c^2 t^2 - (x^2 + y^2 + z^2) = 0$$

$$\ln K': \quad c^2 t'^2 - (x'^2 + y'^2 + z'^2) = 0$$

- Thus we need a transformation, under which the quantity $c^2t^2 (x^2 + y^2 + z^2) = 0$ remains invariant
- The emission of the light, and its subsequent absorption at some later times, are each events
- These events are separated by something traveling at the speed of light

Kinematic Results of Special Relativity

7/12

Lecture 16

Kinematic Results

• Consider the case where the axes in K, K' are parallel and the frames are moving with a relative velocity $\mathbf{v} = v \mathbf{e}_{\mathbf{3}}$

- The transformation must reduce to the Galilean transformation for small relative velocities.
- First guess: the linear relations

near relations

$$t' = a_1 t + b_1 z$$

 $z' = a_2 t + b_2 z$, $x' = x$, $y' = y$

- The transverse dimensions do not change

 the gedanken experiment of Taylor and Wheeler discussed in *Griffiths*' textbook) B=+V1-32
- The event z' = 0 corresponds to z = vt, yielding

$$a_2 = -vb_2$$

We now impose invariance of Δs^2 :

$$c^{2}t^{2} - (x^{2} + y^{2} + z^{2}) = c^{2}(a_{1}t + b_{1}z)^{2} - x^{2} - y^{2} - (a_{2}t + b_{2}z)^{2}$$

Expand it as

+'=+

 $c^{2}t^{2}[1-a_{1}^{2}+a_{2}^{2}/c^{2}]-z^{2}[1+b_{1}^{2}c^{2}-b_{2}^{2}]+2zt[a_{2}b_{2}-c^{2}a_{1}b_{1}]=0$

• This is true $\forall x, t$, so equating the coefficients to zero yields

$$a_1^2 - a_2^2/c^2 = 1$$
, $b_2^2 - c^2 b_1^2 = 1$, $a_2 b_2 = c^2 a_1 b_1$

Finding coefficients

Lecture 16

Special Theory of Relativity Galilean Transformations Galilean Covariance Wave Equation Einstein's postulates Kinematic Results Lorentz transformations Problem 12.19

- $a_2 = -vb_2$, $a_1^2 a_2^2/c^2 = 1$, $b_2^2 c^2b_1^2 = 1$, $a_2b_2 = c^2a_1b_1$
- Using $a_2 = -vb_2$ converts the system into

$$a_1^2 - b_2^2 v^2 / c^2 = 1$$
, $b_2^2 - c^2 b_1^2 = 1$, $b_2^2 = -c^2 a_1 b_1 / v_2$

Excluding b²₂ through last equation, we have

$$a_1^2 + a_1b_1v = 1$$
, $-c^2a_1b_1/v - c^2b_1^2 = 1$

• Substituting $b_1 = (1 - a_1^2)/a_1 v$ into the second equation produces

$$-\frac{c^2}{v^2}(1-a_1^2) - \frac{c^2}{v^2a_1^2}(1-a_1^2)^2 = 1 \text{ or } (1-a_1^2) + \frac{1}{a_1^2}(1-a_1^2)^2 = -\frac{v^2}{c^2}$$

which simplifies into $1/a_1^2-1=-v^2/c^2$. Thus,

• The gamma-factor

$$\gamma \equiv \frac{1}{\sqrt{1-v^2/c^2}}$$

plays important role in the coordinate transformations of special relativity

Lorentz transformations

Lecture 16

Special Theory of Relativity Galilean Transformations Galilean Covariance Wave Equation Einstein's postulates Kinematic Results Lorentz transformations

- For zero velocity v we have $\gamma^2 = 1$ and hence $a_1^2 = 1$
- Since a_1 relates t' at the origin z = 0 to t, choose positive

 $a_1 = +\gamma$

- Then t' runs in the same direction as t, i.e. there is no *time inversion*
- For the $b_1 = (1/a_1^2 1)a_1/v$ coefficient this gives $b_1 = -\gamma v/c^2$ and hence

$$ct' = \gamma \left[ct - \frac{v}{c} z \right]$$

• Also,
$$b_2^2 = -c^2 a_1 b_1 / v = \gamma^2$$

- The coefficient b_2 relates z' to z at the initial moment of time t = 0
- Choosing $b_2 = +\gamma$ means that there is no *z*-axis inversion
- Finally, we have $a_2 = -vb_2$, or $a_2 = -v\gamma$, which gives

$$z' = \gamma \left[z - \frac{v}{c} ct \right] \quad \swarrow \qquad \checkmark$$

- Recall also the relations x' = x, y' = y
- We can write these transformations in an axis-independent form as

$$ct' = \gamma(ct - \beta x_{\parallel})$$
, $x'_{\parallel} = \gamma(x_{\parallel} - \beta ct)$, $\mathbf{x'}_{\perp} = \mathbf{x}_{\perp}$

where

$$\beta = v/c$$
, $\gamma = (1 - \beta^2)^{-1/2}$, $x_{\parallel} = \frac{\mathbf{x} \cdot \mathbf{v}}{|\mathbf{v}|} = \frac{\boldsymbol{\beta} \cdot \mathbf{x}}{\beta}$

Lecture 16

transformations

Lorentz transformation, cont.

It is easy to derive the inverse transformation

$$\left. \begin{array}{ll} ct &= \gamma(ct'+\beta x_{\parallel}') \\ x_{\parallel} &= \gamma(x_{\parallel}'+\beta ct) \end{array} \right\}$$

 It involves -β, in accordance with the fact that *K* moves with respect to *K'* with the opposite velocity -v

For any two events, the combination

$$\Delta s^2 = c^2 \Delta t^2 - (\Delta x^2 + \Delta y^2 + \Delta z^2) ,$$

where $\Delta t = t_2 - t_1$, $\Delta x = x_2 - x_1$, etc. is called the **interval** between two events (t_1, x_1, y_1, z_1) and (t_2, x_2, y_2, z_2)

- Lorentz transformations \Rightarrow for any two events, the interval Δs^2 is invariant under transformations between inertial frames
- Check: $c \Delta t^{\dagger} = \mathcal{B}(c \Delta t \beta \Delta x_{ll}) \qquad \Delta x_{ll}^{\dagger} = \mathcal{B}(\Delta x_{ll} \beta c \Delta t)$

$$\begin{aligned} c^{2}(\Delta t')^{2} - (\Delta x'_{\parallel})^{2} &= \gamma^{2}[c^{2}(\Delta t)^{2} - (\Delta x_{\parallel})^{2})] = \gamma^{2}\beta^{2}[(\Delta x_{\parallel})^{2} - c^{2}(\Delta t)^{2}] \\ &= \gamma^{2}(1 - \beta^{2})(c^{2}(\Delta t)^{2} - (\Delta x_{\parallel})^{2}) = c^{2}(\Delta t)^{2} - (\Delta x_{\parallel})^{2} \end{aligned}$$

10/12

 $\delta x^2 \neq \chi_2^2 - \chi_1^2$

17 (Az XA)2

 $Ax^2 = (Ax)^2$

Problem 12.19: rapidity

Lecture 16

Special Theory of Relativity Galilean Transformations Galilean Covariance Wave Equation Einstein's postulates Kinematic Results Lorentz transformations Problem 12 19 • Let us introduce a parameter ζ , called *rapidity*, defined by

$$\beta \equiv \tanh \zeta = \frac{\sinh \zeta}{\cosh \zeta}$$

- When ζ changes from 0 to ∞ , β changes from 0 to 1
- An inverse transformation may be found from

$$\beta = \frac{e^{\zeta} - e^{-\zeta}}{e^{\zeta} + e^{-\zeta}} \quad \Rightarrow \quad e^{2\zeta} = \frac{1+\beta}{1-\beta} \quad \text{or} \quad \zeta = \frac{1}{2} \ln\left(\frac{1+\beta}{1-\beta}\right)$$

We also have

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}} = \frac{\cosh \zeta}{\sqrt{\cosh^2 \zeta - \sinh^2 \zeta}} = \cosh \zeta$$

and

$$\beta \gamma = \tanh \zeta \cosh \zeta = \sinh \zeta$$

Then, for frames moving parallel to the z axis, we have

$$ct' = ct \cosh \zeta - z \sinh \zeta$$

 $z' = z \cosh \zeta - ct \sinh \zeta$

Rapidity, cont.

Lecture 16

Special Theory of Relativity Galilean Transformations Galilean Covariance Wave Equation Einstein's postulated Kinematic Results Lorentz transformations Problem 12 19

- $ct' = ct \cosh \zeta z \sinh \zeta$ $z' = z \cosh \zeta - ct \sinh \zeta$
- Transformation has the form of a "rotation" by a complex angle $\phi = i\zeta$

$$(ict') = (ict) \cos \phi - z \sin \phi$$
$$z' = z \cos \phi + (ict) \sin \phi,$$

or

$$x'_4 = x_4 \cos \phi - z \sin \phi$$
$$z' = x_4 \sin \phi + z \cos \phi ,$$

- $x_4 \equiv ict$ is the imaginary "fourth" coordinate
- The "Euclidean" rotation in the (x_4, z) plane does not change the value of $x_4^2 + z^2 = -(c^2t^2 z^2)$, i.e. the interval between the event (x_4, t) and the t = 0 event at the origin z = 0

Moreover, such a rotation does not change the interval

$$\Delta s^2 = -(x_4^{(2)} - x_4^{(1)})^2 - (z^{(2)} - z^{(1)})^2 = c^2 \Delta t^2 - \Delta z^2$$

between any two events $(x_4^{(1)},z^{(1)})$ and $(x_4^{(2)},z^{(2)})$ on the (x_4,z) plane