

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velocitik

Four Vectors

Euclidean Rotation Vectors Euclidean Rotations: Co-Vectors Euclidean Rotations: Tensor Minkowski Space-Time

PHYSICS 453 Electromagnetism I Lecture 17

Physics Department Old Dominion University

April 3, 2025

Outline

Lecture 17

Kinematic Results of Special Relativity

- Light Cone
- Simultaneity
- Length Contraction
- Time Dilation
- Proper Time
- Addition of Velocities

Special Relativity and Four Vectors

- Euclidean Rotations
 - Vectors
 - Co-Vectors
 - Tensors
 - Metric Tensor
- Minkowski Space-Time

Light Cone

Lecture 17

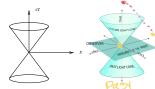
- Kinematic Results
- Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velociti
- Four Vectors
- Euclidean Rotat Vectors Euclidean Rotations:
- Euclidean Rotations: Tonsor
- Metric Tensor
- Minkowski Space-Time

 Given two events (ct₁, x₁) and (ct₂, x₂), Lorentz transformations leave the interval

$$\Delta s^2 = c^2 (t_2 - t_1)^2 - (\mathbf{x}_2 - \mathbf{x}_1)^2$$

invariant. Thus we can classify the interval by the ${\bf sign}$ of $\Delta s^2,$ as follows

- $\Delta s^2 > 0$. This is **timelike** separation. We have $c|t_2 t_1| > |\mathbf{x}_2 \mathbf{x}_1|$: the two points can communicate by a signal traveling at *less than* the speed of light, and indeed a frame can be chosen such that $|\mathbf{x}_2 \mathbf{x}_1| = 0$
- 2 $\Delta s^2 = 0$. This is **lightlike** separation. We have $c|t_2 t_1| = |\mathbf{x}_2 \mathbf{x}_1|$: the two points can only be connected by a signal traveling *at* the speed of light
 - $\Delta s^2 < 0$. This is **spacelike** separation, with $c|t_2 t_1| < |\mathbf{x}_1 \mathbf{x}_2|$. The two points cannot communicate, and indeed a frame exists in which $t_1 = t_2$



- Points that can be connected with the space-time origin by a light signal are said to lie on the **light cone**
- Points within the light cone can be causally connected with the origin, whilst those outside cannot
- The forward (ct > 0) and backward (t < 0) cones define absolute future and absolute past, and the ordering is preserved under Lorentz transformations

Simultaneity

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velociti

Four Vectors

Euclidean Rotation Vectors Euclidean Rotations: Co-Vectors Euclidean Rotations: Tensor Metric Tensor Mitrowski

- Consider a rocket moving with constant velocity *v* along the *x* direction relative to the lab frame *K*
- Let us denote the rest frame of the rocket by K'
- We assume that the axes of the frames are parallel, and the origins coincide at *t* = 0
- On the side of a rocket is a meter rule
- In the lab. frame, we have observers, each with a very accurate clock synchronized in the frame *K*
- Simultaneity. At time *t*, an observer in the lab frame, co-incident with one end of the meter rod, records his position (*ct*, **x**₁)
- An observer coincident with the other end does likewise (ct, x2)
- (ct, \mathbf{x}_1) and (ct, \mathbf{x}_2) are two events, *simultaneous* in the lab. frame
- In the rocket rest frame K' we have

$$ct'_1 = \gamma(ct - \beta x_1)$$
, $x'_1 = \gamma(x_1 - \beta ct)$

$$ct'_2 = \gamma(ct - \beta x_2)$$
, $x'_2 = \gamma(x_2 - \beta ct)$

- We immediately see that t'_1 = t'_2 only if x_1 = x_2
- In general the points are *not simultaneous* in the rocket rest frame

Length Contraction

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velocitie

Four Vectors

Euclidean Hotatic Vectors Euclidean Rotations: Co-Vectors Euclidean Rotations: Tenso

Metric Tensor

Minkowski Space-Time

- $ct'_{1} = \gamma(ct \beta x_{1}) \quad , \quad x'_{1} = \gamma(x_{1} \beta ct)$ $ct'_{2} = \gamma(ct \beta x_{2}) \quad , \quad x'_{2} = \gamma(x_{2} \beta ct)$
- In the rocket frame, our meter rule has length $x'_2 x'_1$
- However, in the laboratory frame the length is obtained from

$$x_2' - x_1' = \gamma(x_2 - x_1)$$
, i.e. $x_2 - x_1 = \frac{x_2' - x_1'}{\gamma}$

- Since $\gamma \ge 1$, we have that length is **contracted**
- In a frame, in which the meter rule is moving (lab frame), its length is smaller than in the frame where the meter rule is at rest (rocket frame)

VI-V2/22

Time Dilation

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Veloci

Four Vectors

Euclidean Rotation Vectors Euclidean Rotations: Co-Vectors Euclidean Rotations: Tensor Metric Tensor Minkowski Seaso Timp

$$ct'_{1} = \gamma(ct_{1} - \beta x_{1}) , \quad x'_{1} = \gamma(x_{1} - \beta ct_{1})$$

 $ct'_{2} = \gamma(ct_{2} - \beta x_{2}) , \quad x'_{2} = \gamma(x_{2} - \beta ct_{2})$

- We now imagine that the clocks in K, K' are synchronized at $t_1 = t'_1 = 0$ as the rocket observer (located at $x'_2 = 0$) passes origin in frame K
- An observer at x_2 in K records the time t_2 at which rocket observer passes p_2
- An observer in K' records time t'_2 at which he passes the observer in K
- The rocket observer is always at $x'_2 = 0$, so we have

$$0 = \gamma(x_2 - \beta ct_2) \implies x_2 = \beta ct_2 = \sqrt{t_2}$$

• Since $ct'_2 = \gamma(ct_2 - \beta x_2)$, we have

$$ct'_{2} = \gamma(ct_{2} - \beta x_{2}) = \gamma(ct_{2} - \beta^{2}ct_{2}) = \gamma ct_{2} (1 - \beta^{2}) = ct_{2}/\gamma$$

 $t'_{2} = \frac{t_{2}}{-}$

or

 Time is dilated: a clock that is at rest (lab frame) shows a larger time between two events than a moving clock (rocket frame)

Y= 1 1-12/02

Proper Time

Lecture 17

Kinematic Results Light Cone

Length Contract

Proper Time

Addition of Velocities

Four Vectors

Euclidean Rotatic Vectors Euclidean Rotations: Co-Vectors

Euclidean Rotations: Tensors

Metric Tensor

Minkowski Space-Time

- We now generalize the discussion to the case where the rocket is moving with a velocity **v**(*t*) along some path relative to the lab frame *K*
- We will now introduce *K*' as the **instantaneous rest frame** of the rocket
- Consider two closely separated points on the trajectory, with coordinates in the two frames $\{(ct, \mathbf{x}), (c[t+dt], \mathbf{x}+d\mathbf{x})\}$ and $\{(ct', \mathbf{x}'), (c[t'+dt'], \mathbf{x}'+d\mathbf{x}')\}$ respectively
- The interval between the points is the invariant, and we have

$$ds^{2} = c^{2}dt'^{2} - \mathbf{dx}'^{2} = c^{2}dt^{2} - \mathbf{dx}^{2}$$

• But $d\mathbf{x}' = 0$ in K', and furthermore $d\mathbf{x}^2 = \mathbf{v}^2 dt^2$, and thus

$$cdt' = cdt\sqrt{1-\beta^2(t)}$$
 , where $\beta(t) = \frac{v(t)}{c}$

Then the elapsed time in the rocket between two events is

$$t_2' - t_1' = \int_{t_1}^{t_2} dt \sqrt{1 - \beta^2(t)} < t_2 - t_1$$

- Proper time τ is the *elapsed time* in the frame in which the object is at rest
 - Thus $\underline{cd\tau} = \underline{ds}$ where ds is the *interval* introduced earlier
- In this case we have

$$d\tau = dt \sqrt{1 - \beta^2(t)}$$

• Note that proper time can only be defined for *time-like* quantities

Addition of Velocities

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velocities

Four Vectors

Euclidean Rotation Vectors Euclidean Rotations: Co-Vectors Euclidean Rotations: Tens Metric Tensor

Minkowski Space-Time

- Suppose now that a projectile is fired with velocity u' from the rocket, relative to the rocket
- Then the coordinates of the projectile in *K*' satisfy

$$\mathbf{u}' = \frac{d\mathbf{x}'}{dt'}$$

while in K we have

 $\mathbf{u} = \frac{\mathbf{d}\mathbf{x}}{dt}$

• Using the Lorentz transformation with $v \rightarrow -v$, we have

$$\begin{aligned} x_{\parallel} &= \gamma_{v} [x'_{\parallel} + \beta ct'] \implies u_{\parallel} \equiv \frac{dx_{\parallel}}{dt} = \gamma_{v} \left[\frac{dx'_{\parallel}}{dt'} \frac{dt'}{dt} + \beta c \frac{dt'}{dt} \right] \\ \implies u_{\parallel} &= \gamma_{v} \left[\frac{dx'_{\parallel}}{dt'} + \beta c \right] \frac{dt'}{dt} = \gamma_{v} [u'_{\parallel} + v] \frac{dt'}{dt} \end{aligned}$$

 ${\ensuremath{\bullet}}$ We use $\|$ to denote the component along ${\ensuremath{\mathbf{v}}}.$ We also have

$$\bigvee ct = \gamma_v [ct' + \beta x'_{\parallel}] \implies c = \gamma_v \left[c \frac{dt'}{dt} + \beta u'_{\parallel} \frac{dt'}{dt} \right] = \gamma_v [c + \beta u'_{\parallel}] \frac{dt'}{dt}$$
$$\implies \frac{dt'}{dt} = \frac{1}{\gamma_v [1 + \beta u'_{\parallel}/c]}$$

Addition of Velocities, cont.

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velocities

Four Vectors

Euclidean Hotatio Vectors Euclidean Rotations: Co-Vectors Euclidean Rotations: Tenso Metric Tensor

Minkowski Space-Time

$$u_{\parallel} = \gamma_v [u'_{\parallel} + v] \frac{dt'}{dt} \quad , \quad \frac{dt'}{dt} = \frac{1}{\gamma_v [1 + \beta u'_{\parallel}/c]}$$

Combining these two results, we find

$$u_{\parallel} = \frac{u_{\parallel}' + v}{1 + \beta u_{\parallel}'/c} = \frac{u_{\parallel}' + v}{1 + v u_{\parallel}'/c^2}$$

• Velocity of light is the same in both systems. Indeed, take $u'_{\parallel}=c,$ then

$$u_{\parallel} = \frac{c+v}{1+v/c} = c$$

$$u_{\perp} = \frac{dx_{\perp}}{dt} = \frac{dx'_{\perp}}{dt'} \frac{dt'}{dt}$$
 yielding $u_{\perp} = \frac{u'_{\perp}}{\gamma(1 + \beta u'_{\parallel}/c)}$

In vector notation, this becomes

$$\mathbf{u}_{\parallel} = \frac{u_{\parallel}' + v}{1 + \mathbf{v} \cdot \mathbf{u}'/c^2}, \quad \mathbf{u}_{\perp} = \frac{\mathbf{u}_{\perp}'}{\gamma(1 + \mathbf{v} \cdot \mathbf{u}'/c^2)}$$

• This reduces to the Galilean result $\mathbf{u} = \mathbf{u}' + \mathbf{v}$ for the case $u', v \ll c$

Euclidean Rotations: Vectors

A much more convenient way is to use four vectors

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velocitie

Four Vectors

Vectors

Rotations: Co-Vectors

Euclidean Rotations: Tenson

Metric Tenso

Minkowski Space-Time y' y θ

• Consider two co-ordinate systems *P*, *P'*

To see how these work, let us consider rotations in Euclidean space

- Their origins coincide, but they are related by rotation through an angle θ
- The coordinates of a point in the two systems are related through rotation matrix *R*

$$x^{\prime i} = R^i_j x^j$$

• Note that we have put the indices **upstairs** on the vectors

• For the specific case of a rotation through θ about the z axis

$$R = \begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Quantities that transform as

$$A'^{i} = R^{i}_{j}A^{j} = \frac{\partial x'^{i}}{\partial x^{j}}A^{j}$$

are called vectors

Euclidean Rotations: Co-Vectors

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contractio Time Dilation Proper Time

Four Vectors

Vectors

Euclidean Rotations: Co-Vectors

Euclidean Rotations: Tensors

Metric Tenso

Minkowski Space-Time A simple example of a vector is dx, which transforms as

$$dx'^{i} = \frac{\partial x'^{i}}{\partial x^{j}} dx^{j} = R^{i}_{j} dx^{j}$$

- A scalar is a quantity which transforms as f' = f.
- Let us now consider how the gradient of a function transforms:

$$\nabla'_i f = \frac{\partial f}{\partial x'^i} = \frac{\partial f}{\partial x^j} \frac{\partial x^j}{\partial x'^i} = \frac{\partial x^j}{\partial x'^i} \frac{\partial f}{\partial x'^j}$$

This is an example of the transformation property

C

$$B_i' = \frac{\partial x^j}{\partial x'^i} B_j,$$

which is different from that for vectors

- Quantities that transform in this way are known as covectors or forms
- We put their indices downstairs
- Summarizing, we have

Euclidean Rotations: Tensors

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velocitie:

Four Vectors

Euclidean Rotati Vectors Euclidean Rotations: Co-Vectors

Euclidean Rotations: Tensors

Metric Tensor

Minkowski Space-Time • Finally, we have that a **tensor** is an object that transforms as a *vector* on each *upstairs* index, and a *covector* on each *downstairs* index

$$C_{k'l'\ldots}^{\prime i'j'\ldots} = \frac{\partial x^{\prime i'}}{\partial x^i} \frac{\partial x^{\prime j'}}{\partial x^j} \ldots \frac{\partial x^k}{\partial x^{\prime k'}} \frac{\partial x^l}{\partial x^{\prime l'}} \ldots C_{kl\ldots}^{ij\ldots}$$

- The length of a vector is a bilinear, and independent of the choice of frame
- Define the inner product of two vectors by

$$X \cdot Y = g_{ij} X^i Y^j.$$

- We call g_{ij} the metric tensor
- In Cartesian coordinates (x, y, z), we have $g_{ij} = \delta_{ij}$, since

$$(dl)^2 = (dx)^2 + (dy)^2 + (dz)^2$$

Lecture 17

Metric Tensor

• In spherical coordinates (r, θ, φ) , we have

$$(dl)^2 = (dr)^2 + r^2 (d\theta)^2 + r^2 \sin^2 \theta (d\varphi)^2$$
,

hence

$$g_{ij} = \operatorname{diag}(1, r^2, r^2 \sin^2 \theta)$$

We can use the metric tensor to raise or lower indices:

$$X_i = g_{ij} X^j$$
$$X \cdot Y = X^i Y_i = X_i Y^i$$

- We only have the luxury of indentifying *vectors* with *covectors* in Cartesian coordinates in Euclidean space
- In that case, the components of the two are numerically equal
- For instance, in spherical coordinates, taking

$$dx^i = \{dr, d\theta, d\varphi\}$$

as a vector, we have

$$dx_i = \{dr, r^2 d\theta, r^2 \sin^2 \theta d\varphi\}$$

as the corresponding co-vector

13/14

Light Cone Simultaneity Length Contrac Time Dilation Proper Time Addition of Velo

Four Vectors

Euclidean Rotation Vectors Euclidean Rotations: Co-Vectors Euclidean

Rotations: Tenso Metric Tensor

Minkowski Space-Time

Minkowski Space-Time

14/14

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Arktition of Velociti

Four Vectors

Euclidean Rotation Vectors Euclidean Rotations: Co-Vectors Euclidean

Rotations: Tensors

Minkowski Space-Time Apply these ideas to Lorentz transformations of four-dimensional space-time
Denote "*ct*" as the coordinate x₀, and write a contravariant four vector as

$$x^{\mu} \equiv (ct, x, y, z) = (x^0, x^1, x^2, x^3)$$

- Its "length" is the interval left invariant under Lorentz transformations
- More generally, we define the inner product of two vectors by

$$x \cdot y = g_{\mu\nu} x^{\mu} y^{\nu}$$

We immediately see that the metric tensor is

$$g_{\mu\nu} = \text{diag}(1, -1, -1, -1)$$

- It is conventional to use *Greek Letters* for the components of a four-vector
- Four vectors are not underlined or printed in bold
- In some areas of physics, time is introduced as the fourth component
- Furthermore, the metric can be defined such that the spatial components are positive, and the temporal component negative
- The convention we will be using is probably the most widely used, and essentially universal amongst particle physicists
- The summation convention is as follows: An index can appear no more than twice. Any index appearing twice must have one upper index and one lower index, and that index is summed over