

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velocitie

PHYSICS 453 Electromagnetism I Lecture 17

Physics Department Old Dominion University

April 3, 2025

Outline

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velociti

Kinematic Results of Special Relativity

- Light Cone
- Simultaneity
- Length Contraction
- Time Dilation
- Proper Time
- Addition of Velocities

Light Cone

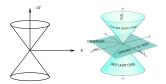
Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velocitie Given two events (ct₁, x₁) and (ct₂, x₂), Lorentz transformations leave the interval

$$\Delta s^2 = -c^2 (t_2 - t_1)^2 + (\mathbf{x}_2 - \mathbf{x}_1)^2$$

invariant. Thus we can classify the interval by the sign of Δs^2 , as follows

- $\Delta s^2 < 0$. This is **timelike** separation. We have $c|t_2 t_1| > |\mathbf{x}_2 \mathbf{x}_1|$: the two points can communicate by a signal traveling at *less than* the speed of light, and indeed a frame can be chosen such that $|\mathbf{x}_2 \mathbf{x}_1| = 0$
- 2 $\Delta s^2 = 0$. This is **lightlike** separation. We have $c|t_2 t_1| = |\mathbf{x}_2 \mathbf{x}_1|$: the two points can only be connected by a signal traveling *at* the speed of light
 - $\Delta s^2 0$. This is **spacelike** separation, with $c|t_2 t_1| < |\mathbf{x}_1 \mathbf{x}_2|$. The two points cannot communicate, and indeed a frame exists in which $t_1 = t_2$

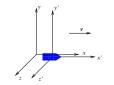


- Points that can be connected with the space-time origin by a light signal are said to lie on the light cone
- Points within the light cone can be causally connected with the origin, whilst those outside cannot
- The forward (ct > 0) and backward (t < 0) cones define absolute future and absolute past, and the ordering is preserved under Lorentz transformations

Simultaneity

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velocitie



- Consider a rocket moving with constant velocity *v* along the *x* direction relative to the lab frame *K*
- Let us denote the rest frame of the rocket by K'
- We assume that the axes of the frames are parallel, and the origins coincide at *t* = 0
- On the side of a rocket is a meter rule
- In the lab. frame, we have observers, each with a very accurate clock synchronized in the frame *K*
- Simultaneity. At time *t*, an observer in the lab frame, co-incident with one end of the meter rod, records his position (*ct*, **x**₁)
- An observer coincident with the other end does likewise (ct, x₂)
- (ct, \mathbf{x}_1) and (ct, \mathbf{x}_2) are two events, *simultaneous* in the lab. frame
- In the rocket rest frame K' we have

$$ct'_1 = \gamma(ct - \beta x_1)$$
, $x'_1 = \gamma(x_1 - \beta ct)$

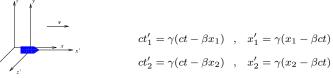
$$ct'_2 = \gamma(ct - \beta x_2)$$
, $x'_2 = \gamma(x_2 - \beta ct)$

- We immediately see that t'_1 = t'_2 only if x_1 = x_2
- In general the points are *not simultaneous* in the rocket rest frame

Length Contraction

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velocities



• In the rocket frame, our meter rule has length $x'_2 - x'_1$

However, in the laboratory frame the length is obtained from

$$x_2' - x_1' = \gamma (x_2 - x_1)$$
 , i.e. $x_2 - x_1 = \frac{x_2' - x_1'}{\gamma}$

- Since $\gamma \ge 1$, we have that length is **contracted**
- In a frame, in which the meter rule is moving (lab frame), its length is smaller than in the frame where the meter rule is at rest (rocket frame)

Time Dilation

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velociti

$$ct'_{1} = \gamma(ct_{1} - \beta x_{1}) , \quad x'_{1} = \gamma(x_{1} - \beta ct_{1})$$

 $ct'_{2} = \gamma(ct_{2} - \beta x_{2}) , \quad x'_{2} = \gamma(x_{2} - \beta ct_{2})$

- We now imagine that the clocks in K, K' are synchronized at $t_1 = t'_1 = 0$ as the rocket observer (located at $x'_2 = 0$) passes origin in frame K
- An observer at x_2 in K records the time t_2 at which rocket observer passes x_2
- An observer in K' records time t'_2 at which he passes the observer in K
- The rocket observer is always at $\tilde{x}'_2 = 0$, so we have

$$0 = \gamma(x_2 - \beta ct_2) \implies x_2 = \beta ct_2$$

• Since $ct'_2 = \gamma(ct_2 - \beta x_2)$, we have

$$ct'_{2} = \gamma(ct_{2} - \beta x_{2}) = \gamma(ct_{2} - \beta^{2}ct_{2}) = \gamma ct_{2} (1 - \beta^{2}) = ct_{2}/\gamma$$

or

$$t_2' = \frac{t_2}{\gamma}$$

 Time is dilated: a clock that is at rest (lab frame) shows a larger time between two events than a moving clock (rocket frame)

Proper Time

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contractio Time Dilation Proper Time

Addition of Velocities

- We now generalize the discussion to the case where the rocket is moving with a velocity v(t) along some path relative to the lab frame K
- We will now introduce K' as the **instantaneous rest frame** of the rocket
- Consider two closely separated points on the trajectory, with coordinates in the two frames {(ct, x), (c[t + dt], x + dx)} and {(ct', x'), (c[t' + dt'], x' + dx')} respectively
- The interval between the points is the invariant, and we have

$$-ds^2 = c^2 dt'^2 - \mathbf{dx}'^2 = c^2 dt^2 - \mathbf{dx}^2$$

• But dx' = 0 in K', and furthermore $dx^2 = v^2 dt^2$, and thus

$$cdt' = cdt\sqrt{1-eta^2(t)}$$
 , where $eta(t) = rac{v(t)}{c}$

Then the elapsed time in the rocket between two events is

$$t'_2 - t'_1 = \int_{t_1}^{t_2} dt \sqrt{1 - \beta^2(t)} < t_2 - t_1$$

- Proper time τ is the *elapsed time* in the frame in which the object is at rest
- Thus $cd\tau = ds$ where ds is the *interval* introduced earlier
- In this case we have

$$d\tau = dt \sqrt{1 - \beta^2(t)}$$

Note that proper time can only be defined for time-like quantities

Addition of Velocities

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velocities Suppose now that a projectile is fired with velocity u' from the rocket, relative to the rocket

1

• Then the coordinates of the projectile in K' satisfy

$$\mathbf{u}' = \frac{d\mathbf{x}'}{dt'}$$

while in K we have

$$\mathbf{u} = \frac{\mathbf{d}\mathbf{x}}{dt}$$

• Using the Lorentz transformation with $v \rightarrow -v$, we have

$$\begin{aligned} x_{\parallel} &= \gamma_v [x'_{\parallel} + \beta ct'] \implies u_{\parallel} \equiv \frac{dx_{\parallel}}{dt} = \gamma_v \left[\frac{dx'_{\parallel}}{dt'} \frac{dt'}{dt} + \beta c \frac{dt'}{dt} \right] \\ \implies u_{\parallel} &= \gamma_v \left[\frac{dx'_{\parallel}}{dt'} + \beta c \right] \frac{dt'}{dt} = \gamma_v [u'_{\parallel} + v] \frac{dt'}{dt} \end{aligned}$$

 ${\ensuremath{\bullet}}$ We use ${\ensuremath{\parallel}}$ to denote the component along ${\ensuremath{\mathbf v}}.$ We also have

$$ct = \gamma_v [ct' + \beta x'_{\parallel}] \implies c = \gamma_v \left[c \frac{dt'}{dt} + \beta u'_{\parallel} \frac{dt'}{dt} \right] = \gamma_v [c + \beta u'_{\parallel}] \frac{dt'}{dt}$$
$$\implies \frac{dt'}{dt} = \frac{1}{\gamma_v [1 + \beta u'_{\parallel}/c]}$$

Addition of Velocities, cont.

Lecture 17

Kinematic Results Light Cone Simultaneity Length Contraction Time Dilation Proper Time Addition of Velocities

- $u_{\parallel} = \gamma_v [u_{\parallel}' + v] \, \frac{dt'}{dt} \quad , \quad \frac{dt'}{dt} = \frac{1}{\gamma_v [1 + \beta u_{\parallel}'/c]}$
- Combining these two results, we find

$$u_{\parallel} = \frac{u_{\parallel}' + v}{1 + \beta u_{\parallel}'/c} = \frac{u_{\parallel}' + v}{1 + v u_{\parallel}'/c^2}$$

• Velocity of light is the same in both systems. Indeed, take $u'_{\parallel}=c,$ then

$$u_{\parallel} = \frac{c+v}{1+v/c} = c$$

$$u_{\perp} = \frac{dx_{\perp}}{dt} = \frac{dx'_{\perp}}{dt'} \frac{dt'}{dt} \text{ yielding } u_{\perp} = \frac{u'_{\perp}}{\gamma(1 + \beta u'_{\parallel}/c)}$$

In vector notation, this becomes

$$u_{\parallel} = \frac{u'_{\parallel} + v}{1 + \mathbf{v} \cdot \mathbf{u}'/c^2} \quad , \quad \mathbf{u}_{\perp} = \frac{\mathbf{u}'_{\perp}}{\gamma(1 + \mathbf{v} \cdot \mathbf{u}'/c^2)}$$

• This reduces to the Galilean result $\mathbf{u} = \mathbf{u}' + \mathbf{v}$ for the case $u', v \ll c$