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Given two events (ct1,x1) and (ct2,x2), Lorentz transformations leave the
interval

∆s2 = −c2(t2 − t1)
2 + (x2 − x1)

2

invariant. Thus we can classify the interval by the sign of ∆s2, as follows

1 ∆s2 < 0. This is timelike separation. We have c|t2 − t1| > |x2 − x1|: the
two points can communicate by a signal traveling at less than the speed of
light, and indeed a frame can be chosen such that |x2 − x1| = 0

2 ∆s2 = 0. This is lightlike separation. We have c|t2 − t1| = |x2 − x1|: the
two points can only be connected by a signal traveling at the speed of light

3 ∆s20. This is spacelike separation, with c|t2 − t1| < |x1 − x2|. The two
points cannot communicate, and indeed a frame exists in which t1 = t2

ct

x

Points that can be connected with the
space-time origin by a light signal are
said to lie on the light cone
Points within the light cone can be
causally connected with the origin,
whilst those outside cannot

The forward (ct > 0) and backward (t < 0) cones define absolute future and
absolute past, and the ordering is preserved under Lorentz transformations
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Consider a rocket moving with constant velocity v
along the x direction relative to the lab frame K

Let us denote the rest frame of the rocket by K′

We assume that the axes of the frames are
parallel, and the origins coincide at t = 0

On the side of a rocket is a meter rule
In the lab. frame, we have observers, each with a very accurate clock
synchronized in the frame K

Simultaneity. At time t, an observer in the lab frame, co-incident with one
end of the meter rod, records his position (ct,x1)

An observer coincident with the other end does likewise (ct,x2)

(ct,x1) and (ct,x2) are two events, simultaneous in the lab. frame
In the rocket rest frame K′ we have

ct′1 = γ(ct− βx1) , x′
1 = γ(x1 − βct)

ct′2 = γ(ct− βx2) , x′
2 = γ(x2 − βct)

We immediately see that t′1 = t′2 only if x1 = x2

In general the points are not simultaneous in the rocket rest frame



Lecture 17

Kinematic
Results
Light Cone

Simultaneity

Length Contraction

Time Dilation

Proper Time

Addition of Velocities

Length Contraction 5/9

��������
��������
��������

��������
��������
��������

������������������

z’

x’

y’y

z

x

v

ct′1 = γ(ct− βx1) , x′
1 = γ(x1 − βct)

ct′2 = γ(ct− βx2) , x′
2 = γ(x2 − βct)

In the rocket frame, our meter rule has length x′
2 − x′

1

However, in the laboratory frame the length is obtained from

x′
2 − x′

1 = γ(x2 − x1) , i.e. x2 − x1 =
x′
2 − x′

1

γ

Since γ ≥ 1, we have that length is contracted
In a frame, in which the meter rule is moving (lab frame), its length is smaller
than in the frame where the meter rule is at rest (rocket frame)
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ct′1 = γ(ct1 − βx1) , x′
1 = γ(x1 − βct1)

ct′2 = γ(ct2 − βx2) , x′
2 = γ(x2 − βct2)

We now imagine that the clocks in K,K′ are synchronized at t1 = t′1 = 0
as the rocket observer (located at x′

2 = 0) passes origin in frame K

An observer at x2 in K records the time t2 at which rocket observer passes
x2

An observer in K′ records time t′2 at which he passes the observer in K

The rocket observer is always at x′
2 = 0, so we have

0 = γ(x2 − βct2) =⇒ x2 = βct2

Since ct′2 = γ(ct2 − βx2), we have

ct′2 = γ(ct2 − βx2) = γ(ct2 − β2ct2) = γ ct2 (1− β2) = ct2/γ ,

or
t′2 =

t2

γ

Time is dilated: a clock that is at rest (lab frame) shows a larger time
between two events than a moving clock (rocket frame)
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We now generalize the discussion to the case where the rocket is moving
with a velocity v(t) along some path relative to the lab frame K
We will now introduce K′ as the instantaneous rest frame of the rocket
Consider two closely separated points on the trajectory,
with coordinates in the two frames {(ct,x), (c[t+ dt],x+ dx)}
and {(ct′,x′), (c[t′ + dt′],x′ + dx′)} respectively
The interval between the points is the invariant, and we have

−ds2 = c2dt′2 − dx′2 = c2dt2 − dx2

But dx′ = 0 in K′, and furthermore dx2 = v2dt2, and thus

cdt′ = cdt
√

1− β2(t) ,where β(t) =
v(t)

c

Then the elapsed time in the rocket between two events is

t′2 − t′1 =

∫ t2

t1

dt
√

1− β2(t) < t2 − t1

Proper time τ is the elapsed time in the frame in which the object is at rest
Thus cdτ = ds where ds is the interval introduced earlier
In this case we have

dτ = dt
√

1− β2(t)

Note that proper time can only be defined for time-like quantities
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Suppose now that a projectile is fired with velocity u′ from the rocket,
relative to the rocket
Then the coordinates of the projectile in K′ satisfy

u′ =
dx′

dt′

while in K we have
u =

dx

dt

Using the Lorentz transformation with v → −v, we have

x∥ = γv [x
′
∥ + βct′] =⇒ u∥ ≡

dx∥

dt
= γv

[
dx′

∥

dt′
dt′

dt
+ βc

dt′

dt

]

=⇒ u∥ = γv

[
dx′

∥

dt′
+ βc

]
dt′

dt
= γv [u

′
∥ + v]

dt′

dt

We use ∥ to denote the component along v. We also have

ct = γv [ct
′ + βx′

∥] =⇒ c = γv

[
c
dt′

dt
+ βu′

∥
dt′

dt

]
= γv [c+ βu′

∥]
dt′

dt

=⇒
dt′

dt
=

1

γv [1 + βu′
∥/c]
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u∥ = γv [u
′
∥ + v]

dt′

dt
,

dt′

dt
=

1

γv [1 + βu′
∥/c]

Combining these two results, we find

u∥ =
u′
∥ + v

1 + βu′
∥/c

=
u′
∥ + v

1 + vu′
∥/c

2

Velocity of light is the same in both systems. Indeed, take u′
∥ = c, then

u∥ =
c+ v

1 + v/c
= c

Similarly

u⊥ =
dx⊥
dt

=
dx′

⊥
dt′

dt′

dt
yielding u⊥ =

u′
⊥

γ(1 + βu′
∥/c)

In vector notation, this becomes

u∥ =
u′
∥ + v

1 + v · u′/c2
, u⊥ =

u′
⊥

γ(1 + v · u′/c2)

This reduces to the Galilean result u = u′ + v for the case u′, v ≪ c
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