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Light Cone

Lecture 17 @ Given two events (ct1,x1) and (ct2, x2), Lorentz transformations leave the
interval
As? = —c2(ta —t1)? + (x2 — x1)?

invariant. Thus we can classify the interval by the sign of As?, as follows
Light Cone

@ 252 < 0. This is timelike separation. We have c|tz — t1| > |x2 — x1]: the
two points can communicate by a signal traveling at /less than the speed of
light, and indeed a frame can be chosen such that |x2 — x1| =0

e As? = 0. This is lightlike separation. We have c|ta — t1| = |x2 — x1|: the
two points can only be connected by a signal traveling at the speed of light

© As20. This is spacelike separation, with c|ta — ¢1| < [x1 — x2|. The two
points cannot communicate, and indeed a frame exists in which ¢; = ¢

ct

< > @ Points that can be connected with the
N4 space-time origin by a light signal are
omaman N said to lie on the light cone
tr @ Points within the light cone can be

causally connected with the origin,

whilst those outside cannot

@ The forward (ct > 0) and backward (¢ < 0) cones define absolute future and
absolute past, and the ordering is preserved under Lorentz transformations



Simultaneity

Legine i Consider a rocket moving with constant velocity v
along the z direction relative to the lab frame K
@ Let us denote the rest frame of the rocket by K’

@ We assume that the axes of the frames are
parallel, and the origins coincide at t = 0

@ On the side of a rocket is a meter rule
@ In the lab. frame, we have observers, each with a very accurate clock
synchronized in the frame K

@ Simultaneity. Attime ¢, an observer in the lab frame, co-incident with one
end of the meter rod, records his position (ct, x1)

@ An observer coincident with the other end does likewise (ct, x2)
@ (ct,x1) and (ct,x2) are two events, simultaneous in the lab. frame
@ In the rocket rest frame K’ we have

Simultaneity

ct) = ~(ct — pr1) , x| =~y(x1 — Pet)
cth = v(ct — Bwa) , xh=y(x2 — Bet)

@ We immediately see that t] =t} only if z1 = x2
@ In general the points are not simultaneous in the rocket rest frame



Length Contraction
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cth = ~(ct — Bzr1) , x| =y(z1 — Bet)

Length Contraction

cty =y(ct — Brz) , @y = y(w2 — Bet)

@ In the rocket frame, our meter rule has length =}, — 2
@ However, in the laboratory frame the length is obtained from

! !
Tog — Ty

/ ! .
oy —x] =vy(r2 —x1) , le xa—x1 =

@ Since v > 1, we have that length is contracted

@ In a frame, in which the meter rule is moving (lab frame), its length is smaller
than in the frame where the meter rule is at rest (rocket frame)



Time Dilation

Lecture 17

ety =~(cty — Bz1) , xy =y(z1 — Betr)

g cty = y(ctz — Bra) , =z = (w2 — Peta)

We now imagine that the clocks in K, K’ are synchronized att; =t} =0
as the rocket observer (located at =, = 0) passes origin in frame K

An observer at 22 in K records the time t2 at which rocket observer passes
x2

An observer in K’ records time ¢}, at which he passes the observer in K
The rocket observer is always at }, = 0, so we have

Time Dilation

0 =~(z2 — Bect2) = z2 = Bcta

Since ct, = v(ctz — Bx2), we have

cth = y(cta — Bxa) = y(cta — B2cta) = yeta (1 — B2) = cta /v,
or ‘

2
th=—

Y

@ Time is dilated: a clock that is at rest (lab frame) shows a larger time
between two events than a moving clock (rocket frame)
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Proper Time

Proper Time

We now generalize the discussion to the case where the rocket is moving
with a velocity v(t) along some path relative to the lab frame K

We will now introduce K’ as the instantaneous rest frame of the rocket
Consider two closely separated points on the trajectory,

with coordinates in the two frames {(ct, x), (c[t + dt],x + dx)}

and {(ct’,x"), (c[t’ + dt'], x’ + dx’)} respectively

The interval between the points is the invariant, and we have

—ds? = 2dt’? — dx'? = A2dt? — dx?

But dx’ = 0 in K, and furthermore dx? = v2d¢2, and thus

cdt’ = Cdtm ,where fB(t) = @

Then the elapsed time in the rocket between two events is

ta
th —t) =/ dt\/1— B2(t) < ta —t1
t1

Proper time 7 is the elapsed time in the frame in which the object is at rest
Thus cdr = ds where ds is the interval introduced earlier
In this case we have

dr = dty/1 — B2(t)

Note that proper time can only be defined for time-like quantities




Addition of Velocities

Suppose now that a projectile is fired with velocity u’ from the rocket,
Lo 7 relative to the rocket

@ Then the coordinates of the projectile in K’ satisfy

o
Tod
while in K we have
_dx
Todt
S @ Using the Lorentz transformation with v — —v, we have
dx dz| gt/ dt’
_ / / Sl I at” at”
T = ’Yv[a:H +Bet’] = pm { e e
dac dt/
= U =" dt’ +/B 7—’71)[ H+U] dt

@ We use || to denote the component along v. We also have

a o a '
ct =ylet’ + Byl = c= [C + By dt} = wle+ Buyl o

'’ 1
dt Yol + ﬁui‘/d



Addition of Velocities, cont.
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dt’ dt’ 1

_ / at’ at _
up =wlyy +ol 50 7oL+ Buf /d

@ Combining these two results, we find
uil +v ui‘ +v

= 1+,8u’H/c N 1—&—vu1‘/c2

Addition of Velocities @ Velocity of light is the same in both systems. Indeed, take u’“ = ¢, then
c+v
’LL” = =cC
1+v/c
@ Similarly
de,  da'| dt’ u'|
== = —  vyieldi =+
L dt PP TR A ~y(1+ Buil /c)

@ In vector notation, this becomes
ui‘ + v /

u
i
u = e
I 1+v-u'/c?

)

uy=—
T kv u/e)
@ This reduces to the Galilean result u = u’ 4 v for the case v/, v < ¢
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