Lecture 18

PHYSICS453

Electromagnetism |l
Lecture 18

Physics Department
Old Dominion University

April 8, 2025



Outline

Lecture 18

0 Special Relativity and Four Vectors
@ Euclidean Rotations
@ Vectors
@ Co-Vectors
@ Tensors
@ Metric Tensor
@ 4-vectors in Minkowski Space-Time
@ Lorentz Transformations and Four Vectors
@ Derivatives
@ Four Velocity
@ Four Momentum
@ Exercise



Euclidean Rotations: Vectors

Lecture 18 @ A much more convenient way is to use four vectors
@ To see how these work, let us consider rotations in Euclidean space

@ Consider two co-ordinate systems P, P’

@ Their origins coincide, but they are related by
rotation through an angle 6

@ The coordinates of a point in the two systems are
related through rotation matrix R

Vectors

't = R} z’

@ Note that we have put the indices upstairs on the vectors
@ For the specific case of a rotation through 6 about the z axis

cos 6 sinf 0
R = —sinf cosf O
0 0 1
@ Quantities that transform as
A" = REAT = BLHAj
J OxJ
are called vectors



Euclidean Rotations: Co-Vectors

Lecture 18 A simple example of a vector is dx, which transforms as
' = 9% . ——da) = Rida’
oxI J
@ A scalar is a quantity which transforms as f’ = f.
- @ Let us now consider how the gradient of a function transforms:

Rotations:
Co-Vectors

of _ﬁaxj_axjﬁ
8zt~ Oz Hz't  Ox't dxI
@ This is an example of the transformation property

Vif=

B{_ij ‘
z_ax/i 20

which is different from that for vectors

@ Quantities that transform in this way are known as covectors or forms
@ We put their indices downstairs
@ Summarizing, we have
Vector: A" = ‘?99” - A
X
Scalar:  f/ =f
Covector: B = 22.B;



Euclidean Rotations: Tensors

Lecture 18

Finally, we have that a tensor is an object that transforms as a vector on
each upstairs index, and a covector on each downstairs index

y y
oz'" oz’ dzk Ozl

Cli’j’... o ij...
k'L T oxt Oxi T 9xk opt T kl...
Metric Tensor @ The length of a vector is a bilinear, and independent of the choice of frame

@ Define the inner product of two vectors by
XY =g;; XY,

@ In Cartesian coordinates (z,y, z), we have g;; = d;;, since

(d)? = (de)? + (dy)® + (=)



Lecture 18

Metric Tensor

Metric Tensor

In spherical coordinates (r, 8, ¢), we have
(d)? = (dr)? + r%(d8)? + r?sin? 0(dp)? ,

hence
gi; = diag(1, 2, 7% sin? 9)

We can use the metric tensor to raise or lower indices:
X; = gi; X7
XY =X%Y; = X;Y?

We only have the luxury of indentifying vectors with covectors
in Cartesian coordinates in Euclidean space
In that case, the components of the two are numerically equal
For instance, in spherical coordinates, taking

da’ = {dr,df, dp}
as a vector, we have
dx; = {dr, r2df, r? sin® 0dy}

as the corresponding co-vector




4-vectors in Minkowski Space-Time

Lecture 18 @ Apply these ideas to Lorentz transformations of four-dimensional space-time
@ Denote “ct” as the coordinate z(, and write a four vector as

zh = (ct,x,y, 2) = (zo,zl,xz,xg)

@ lts “length” is the interval left invariant under Lorentz transformations
@ We define the inner product of two vectors by

oy = -0 + zlyl +22y? + 2393 = guaty”

4-vectors in
Minkowski

Space-Time Guv = diag(—l, 1,1, 1) (*)

It is conventional to use Greek Letters for the components of a four-vector
Four vectors are not underlined or printed in bold

In some areas of physics, time is introduced as the fourth component
Furthermore, the metric can be defined such that the temporal components
are positive, and the spatial component negative. Such convention

guv = diag(l, —1, -1, —1) is probably the most widely used. We will follow
Griffiths’ convention (x).

@ The summation convention is as follows:

An index can appear no more than twice. Any index appearing twice must
have one upper index and one lower index, and that index is summed over

We immediately see that the metric tensor is



Lorentz Transformations and Four Vectors  sn19

@ The | covariant four vector | or form can be obtained as before by using

Lecture 18 — . . .
the raising and Towering properties of the metric tensor

xll« = gIAVxV = (7w0,zl,x2,x3) = (7Ct,$, Y, Z)

@ = For 4-vectors in Minkowski space the components of a co-vector are
numerically different to those of the vector

@ The relation between vectors (in 4-dimensional case of special relativity,
they are called contravariant vectors) in the two frames is given by

Ox'H
't = ¥ = LH x¥
ox?
Lorentz @ Let us assume a similar transformation law for the 4-dimensional analogs of

Transformations

covectors (called covariant vectors)
o v
T, = Lu Ty
@ We require that z*z,, is invariant under the Lorentz transformation
— !’ o,V
e, = “:L"M = L‘LLH ¥ Ty

and since this is true for all vectors, we have

v v

LK L7 =46, where 51/0:{1 i v=c



Lorentz Transformations and Four Vectors,

cont.

@ Tofind L,7, we note that, according to z}, = L,/ x,, we have

Lecture 18

LH = o't
oxVv
@ Now, use the identity
oz%
ozv Y

@ Write it through the chain rule as
o 0z 0z ox'* _ dz'* Ox°
YT 9zv  Qx't fzv | Oz Ozt
~——

Lorentz
Transformations L¥,

@ Comparing with L*‘VL; = 4,7, we conclude that

ox?
o
LM - Oz
@ This corresponds to the characteristic transformation property of a co-vector

0/0xH:
of _ of oxv  0z¥ of

O/t~ Bzv Ozt Oz’ dxV
~——

Ly




Lorentz Transformations and Four Vectors,
cont.

Lecture 18

@ The various quantities we will encounter in the remainder of this course are
@ Contravariant Vectors:

Al = LH AV
@ Covariant Vectors:
! v
B, =LYB,
Tonetormatons
@ Tensors:
C/[_L/V’... _ L;L/Lu, L pL o Cp.u“
plot... — HuHvr s Hpr el po
@ Scalars:

A-B=A,B* =g, A*B¥



Derivatives

Lecture 18

@ As we have noted earlier, the derivatives transform as covectors

9] 7]
605 = a3 -~ =\ 3
Ox™ (81}0 V)
7] 0
*— ——,V
9 Oz ( 020 )
@ Suppose now that we have a four vector A*. Then

A0
80‘Aa:8aAa:Z?+V-A

Derivatives

@ The Laplacian is defined by

02 2
5207 +Vv

O0=0,0% = —



Lecture 18

Four Velocity

Four Velocity

Define velocity in a usual way as v* = dx?/dt, and use that t = z°/c
This v* = cdx?/dxz° cannot transform as a vector under Lorentz
transformations
A formal reason is that such a derivative is a 0: component of a 4-tensor
Thus, it does not transform as an ith component of a 4-vector
Indeed, let us assume that the object dz* /dt transforms as a 4-vector,
dxH d d

V= % = a{wo,x} = a{ct,x} ={e, v}
Consider frames K and K’, moving with velocity V with respect to K
Take V along 23 axis and split components parallel and transverse to V

!
\4s :{C, OJJVS} ) V”L = at’ = {C, OL,V/:S}

If V¥ is a 4-vector, then, according to the Lorentz transformation,

|4
V/3 =y (VS _ ?vo) =y (VS _ V) ,
where vy = 1/4/1 — V2/c2. This gives

V= (V3 -V) /1 -V2/e?




Four Velocity, cont.

Lecture 18

VP =y <v3 - %v‘)) =y (V2 =V)= (V3 -V) /{1 -V2/e2,

@ The correct result is that the velocity in the K’ frame should be given by

ol — w3V
3T 1wV
Four Velocily @ This is the relativistic velocity addition formula

@ Note that we should take into account that K frame moves with respect to
K’ frame with the velocity —V

@ So, the question is whether it is possible to find a definition of a velocity that
does indeed transform covariantly under Lorentz transformations, yet
reduces to a Galilean transformation for v < ¢?



Four Velocity, cont.

Lecture 18 To construct a four velocity, we need to take the derivative of the 4-vector
xH with respect to some time that, unlike dt or d¢’, is the same in all frames,
i.e. is a Lorentz Scalar
@ Such a scalar is provided by the Proper Time dr, or time measured in the
frame that moves together with the particle
@ This frame has velocity v in the K frame. Proper time is defined by
Adr? = ds?,
where ds is the Lorentz-invariant interval
@ The proper time is a scalar, and a natural definition of the four velocity is
dx®

dr
Four Velocily @ Recalling that the proper time is related to the K frame time by

(a3

dr =dt/1— B2(t) we have

1 d
@

= —— —(ct, = ,
! V1-p2dt (et x) = (e, v
@ The spatial components of n# clearly reduce to our familiar definition of

velocity in the non-relativistic (NR) limit
@ Note that n%n, = 2

), or %= (yc,yv)



Four Velocity, cont.

Lecture 18 @ Let us take now the component of v parallel to the relative velocity V and
check that applying the Lorentz transformation to n*, namely

3 14 1%
" =y <n3 - *no) c = <n° - *n3)
(& (&
leads to the correct relativistic velocity addition formula
@ Indeed, substituting

n° =ve , n* =3

(where v, = 1/4/1 — v2/c?) and

/0 _ _ o V.3 — _
n =Y e=vin *;7] » T =Y 3 =v N — 1

Four Velocity

(where v, = 1/4/1 — v'2/c2), we get

v
= v =W (s =V) , v = W (C* ;W\)

@ Dividing the first of these equations by the second one gives



Four Momentum

Lecture 18 The definition of a Lorentz-covariant 4-momentum is now straightforward:
p* =mot = (myc,myv),

where m is a Lorentz scalar that we will call the rest mass
Spatial components of p* reduce to our usual definition of momentum
To interpret the temporal component, we will look at its NR limit:

— 1 1

p® = myc=me {1 —v?/c?} V2 _ 2 {mc2 + 5mv2 + O('v4/c2)}
C

@ The second term in braces is clearly the kinetic energy

@ The first term we identify as the rest energy, and write
P’ =E/c

Four Momentum where FE is the energy
@ Thus the four momentum contains both the energy and the three momentum
@ The “length” of p# is a Lorentz scalar

Py = m2y2e? — m2y?? = m2a2c? [1- v2/62]

— m27202'y_2 — m202
@ Thus we have ptp, = p?> = —m?2c? confirming that the rest mass is a
(frame-independent) scalar



Lecture 18

Finally, if we now go back and write —p*p,, = m?c? in terms of our

old-fashioned three vectors we have

1 2 2 _ 2.2
0—2E —p° =m-c
= E?2 =m2 + czp2,
@ For a particle at rest, we have perhaps the most famous equation in physics

E =mc

Four Momentum

@ The use of four-vectors is essential to solve problems in special
(and general.. .) relativity

@ Whilst simple kinematical problems can be solved using three vectors,
it is very clumsy indeed



Exercise

Lecture 18 o .
ectire Let us demonstrate that g,,» A? is indeed a covector, i.e. transforms

according to By, = L,/ By,
@ We need to show that

(9uaA?)" = L (924%)
@ Thelhs. is gus(A%) = gusL% A and therefore we must prove that
uo L% = L gux
@ Multiplying this relation by L and using L% L* = 3 converts it into

Gup = Gux L:Lp/\

Exercise

@ The last equation follows from the definition L,V = dz'"/dz# and

82 A 82 VoA
v ’
——gax’r = ———gax’
OxHOxP oA OxHOzP A

@ Indeed, we have, first, g, z"z> = 22, g,a2' 2’ = 2'2, and 22 = 22



Exercise, cont.

Lecture 18 gy/\xuxx — 22 , gl,,\xwz‘/A _ x/2 . and :c'z — 22
@ Then )
0 A A A
B 9T = 9uA0L0y + 050u] = 29up
02 oA oz'" 8z’
_— T xr = + >
Ozt OzP gu v Szl OzP {M P}
N~ ——~
LMV Lp)\
= Ggvx [LMVLpA + LpVLHA] = 2gu)\L;Lp>\
@ On the last step we used the fact that g, is a symmetric tensor
o

The metric tensor with upper indices g#* defines the inner product
Exercise z: y = g‘uuxp,yll

in terms of covariant vectors. This product is invariant under Lorentz
transformations if g#¥y, transforms as a contravariant vector y*
@ Using y» = guoy?, we conclude that

9" guo = ot

i.e., the matrices g#*¥ and g,,,, are inverse to each other
@ Inourcase g"” = g, =diag(—1,1,1,1)
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