

Lecture 19

Four Velocirl and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2$ decay process Compton Scatterin

Addendum

Mandelstam invariants 2 → 2 scattering process Mandelstam invariants Laboratory and CMS frames

PHYSICS 453 Electromagnetism II Lecture 19

Physics Department Old Dominion University

April 10, 2025

Outline

Lecture 19

Four Velocirt and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2$ decay process Compton Scatterin

Addendum

Mandelstam invariants 2 → 2 scattering process Mandelstam invariants Laboratory and CM frames Identical particles

1 Fo

Four Velocirty and Four Momentum

- Four Velocity
- Four Momentum

2

Relativistic Kinematics

- Energy-momentum conservation in application to $1 \rightarrow 2$ decay process
- Compton Scattering

3

- Addendum Mandelstam in
- Mandelstam invariants
- Energy-momentum conservation in application to $2 \rightarrow 2$ scattering process
- Mandelstam invariants
- Laboratory and center-of-mass frames
- Scattering of identical particles

Four Velocity

Lecture 19

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2$ decay process Compton Scatterin

Addendum

Mandelstam invariants 2 → 2 scattering process Mandelstam invariants Laboratory and CMS frames Identical particles

- Define velocity in a usual way as $v^i = dx^i/dt$, and use that $t = x^0/c$
- This $v^i = c \, dx^i / dx^0$ cannot transform as a vector under Lorentz transformations
- A formal reason is that such a derivative is a 0*i* component of a 4-tensor
- Thus, it does not transform as an *i*th component of a 4-vector
- Indeed, let us assume that the object dx^{μ}/dt transforms as a 4-vector,

$$\mathcal{V}^{\mu} \equiv \frac{dx^{\mu}}{dt} = \frac{d}{dt} \{x_0, \mathbf{x}\} = \frac{d}{dt} \{ct, \mathbf{x}\} = \{c, \mathbf{v}\}$$

- Consider frames K and K', moving with velocity V with respect to K • Take V and $x \text{ along } x^3$ axis
- Take ${f V}$ and ${f v}$ along x^3 axis

$$\mathcal{V}^{\mu} = \{c, \mathbf{0}_{\perp}, \mathcal{V}^3\}$$
, $\mathcal{V}'^{\mu} \equiv \frac{dx'^{\mu}}{dt'} = \{c, \mathbf{0}_{\perp}, {\mathcal{V}'}^3\}$

• If \mathcal{V}^{μ} is a 4-vector, then, according to the Lorentz transformation,

$${\mathcal{V}'}^3 = \gamma_V \left({\mathcal{V}}^3 - \frac{V}{c} {\mathcal{V}}^0 \right) = \gamma_V \left({\mathcal{V}}^3 - V \right) \; ,$$

where $\gamma_V = 1/\sqrt{1-V^2/c^2}$. This gives

$${\mathcal{V}'}^3 = \left({\mathcal{V}}^3 - V\right) / \sqrt{1 - V^2/c^2}$$

Four Velocity, cont.

Lecture 19

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2$ decay process Compton Scattering

Addendum

Mandelstam invariants 2 → 2 scattering process Mandelstam invariants Laboratory and CM: frames

Identical particles

$$\mathcal{V}^{\prime 3} = \gamma_V \left(\mathcal{V}^3 - \frac{V}{c} \mathcal{V}^0 \right) = \gamma_V \left(\mathcal{V}^3 - V \right) = \left(\mathcal{V}^3 - V \right) / \sqrt{1 - V^2/c^2} ,$$

• The correct result is that the velocity in the K' frame should be given by

$$v = \frac{v - V}{1 - vV/c^2}$$

- This is the relativistic velocity addition formula. (Note that we should take into account that K frame moves with respect to K' frame with the velocity -V)
- So, the question is whether it is possible to find a definition of a velocity that does indeed transform covariantly under Lorentz transformations, yet reduces to a Galilean transformation for v <</p>

Four Velocity, cont.

Lecture 19

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2$ decay process Compton Scatterin

Addendum

Mandelstam Invariants 2 → 2 scattering process Mandelstam invariants Laboratory and CMS frames

- To construct a **four velocity**, we need to take the derivative of the 4-vector x^μ with respect to some time that, unlike dt or dt', is the same in all frames, i.e. is a *Lorentz Scalar*
- Such a scalar is provided by the Proper Time dτ, or time measured in the frame that moves together with the particle
- This frame has velocity \mathbf{v} in the K frame. Proper time is defined by

$$c^2 d\tau^2 = -ds^2,$$

where ds is the Lorentz-invariant interval

• The proper time is a scalar, and a natural definition of the four velocity is

$$\eta^{\alpha} = \frac{dx^{\alpha}}{d\tau}$$

• Recalling that the proper time is related to the *K* frame time by

$$d\tau = dt \sqrt{1 - \beta^2(t)}$$
 we have

$$\eta^{\alpha} = \frac{1}{\sqrt{1-\beta^2}} \frac{d}{dt}(ct, \mathbf{x}) = \gamma(c, \mathbf{v}), \text{ or } \eta^{\alpha} = (\gamma c, \gamma \mathbf{v})$$

 The spatial components of v^μ clearly reduce to our familiar definition of velocity in the non-relativistic (NR) limit

• Note that
$$\eta^{\alpha}\eta_{\alpha} = c^{2}$$

Four Velocity, cont.

Lecture 19

Four Velocity and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2$ decay process Compton Scattering

Addendum

Mandelstam invariants 2 → 2 scattering process Mandelstam invariants Laboratory and CMS frames

Identical particle

• Let us take now the component of v parallel to the relative velocity V and check that applying the Lorentz transformation to η^{μ} , namely

$${\eta'}^3 = \gamma_V \left(\eta^3 - \frac{V}{c}\eta^0\right) \quad , \quad {\eta'}^0 = \gamma_V \left(\eta^0 - \frac{V}{c}\eta^3\right)$$

leads to the correct relativistic velocity addition formula Indeed, substituting

$$\eta^0 = \gamma_v c \ , \ \eta^3 = \gamma_v a$$

(where $\gamma_v = 1/\sqrt{1-v^2/c^2})$ and

$${\eta'}^0 = \gamma_{v'} c \ , \ {\eta'}^3 = \gamma_{v'} v'$$

(where $\gamma_{v'}=1/\sqrt{1-{v'}^2/c^2}$), we get

$${v'}^3 = v'\gamma_{v'} = \gamma_V\gamma_v \left(v - V\right) \quad , \quad c\gamma_{v'} = \gamma_V\gamma_v \left(c - \frac{V}{c}v\right)$$

Dividing the first of these equations by the second one gives

$$\frac{v'}{c} = \frac{v - V}{c - \frac{V}{c}v} \quad \text{or} \quad v' = \frac{v - V}{1 - \frac{V}{c^2}v}$$

Four Momentum

Lecture 19

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2$ decay process Compton Scatterin

Addendum

Identical particles

• The definition of a Lorentz-covariant 4-momentum is now straightforward:

$$p^{\mu} = m\eta^{\mu} = (m\gamma c, m\gamma \mathbf{v}),$$

where m is a Lorentz scalar that we will call the rest mass

- Spatial components of p^µ reduce to our usual definition of momentum
- To interpret the temporal component, we will look at its NR limit:

$$p^{0} = m\gamma c = mc \left\{ 1 - v^{2}/c^{2} \right\}^{-1/2} = \frac{1}{c} \left\{ mc^{2} + \frac{1}{2}mv^{2} + \mathcal{O}(v^{4}/c^{2}) \right\}$$

- The second term in braces is clearly the kinetic energy
- The first term we identify as the rest energy, and write

$$p^0 = E/c$$

where E is the **energy**

- Thus the four momentum contains both the energy and the three momentum
- The "length" of p^{μ} is a Lorentz scalar

$$\begin{split} -p^{\mu}p_{\mu} &= m^{2}\gamma^{2}c^{2} - m^{2}\gamma^{2}v^{2} = m^{2}\gamma^{2}c^{2}\left[1 - v^{2}/c^{2}\right] \\ &= m^{2}\gamma^{2}c^{2}\gamma^{-2} = m^{2}c^{2} \end{split}$$

• Thus we have $-p^{\mu}p_{\mu} = -p^2 = m^2c^2$ confirming that the rest mass is a (frame-independent) scalar

$$E = mc^2$$

Lecture 19

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2$ decay process Compton Scatterin

Addendum

Mandelstam invariants 2 → 2 scattering process Mandelstam invariants Laboratory and CMS frames Identical particles • Finally, if we now go back and write $p^{\mu}p_{\mu} = m^2c^2$ in terms of our old-fashioned three vectors we have

$$\frac{1}{c^2}E^2 - \mathbf{p}^2 = m^2c^2$$
$$\implies E^2 = m^2c^4 + c^2\mathbf{p}^2.$$

• For a particle at rest, we have perhaps the most famous equation in physics

$$E = mc^2$$

- The use of four-vectors is **essential** to solve problems in special (and general...) relativity
- Whilst simple kinematical problems can be solved using three vectors, it is very clumsy indeed
- NB: Experimental fact: the momentum and energy defined as above are conserved (for closed systems)

Energy-momentum conservation in application to $1 \rightarrow 2$ decay process $$_{9/20}$$

Lecture 19

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2 \, {\rm decay}$ process

Compton Scattering

Addendum

Mandelstam invariants 2 → 2 scattering process Mandelstam invariants Laboratory and CMS frames Identical particles

- $\bullet~$ Consider a particle of mass M that decays at rest into two particles of masses m_1 and m_2
- Energy-momentum conservation requires that in any frame

$$P = p_1 + p_2$$

- P^{μ} is 4-momentum of the initial particle, $-P^2 = M^2 c^2$
- $p_{1,2}$ are 4-momenta of final particles, $-p_{1,2}^2 = m_{1,2}^2 c^2$
- In the rest frame of the decaying particle we have

$$P = (Mc, \mathbf{0}), \ p_1 = (\frac{E_1}{c}, \mathbf{p}_1), \ p_2 = (\frac{E_2}{c}, \mathbf{p}_2)$$

Hence,

$$E_1 + E_2 = Mc^2 \qquad , \qquad \mathbf{p}_1 = -\mathbf{p}_2 \equiv \mathbf{p}$$

• Find first the energies of the final particles. Writing $p_2=P-p_1,$ we have $p_2^2=P^2-2(Pp_1)+p_1^2\ ,$

 $m_2^2c^2 = M^2c^2 - 2(ME_1 - \mathbf{0} \cdot \mathbf{p_1}) + m_1^2 \Rightarrow m_2^2c^2 = M^2c^2 - 2ME_1 + m_1^2c^2$ which gives

$$E_1 = \frac{M^2 + m_1^2 - m_2^2}{2M}c^2 = \frac{Mc^2}{2} + \frac{m_1^2 - m_2^2}{2M}c^2$$

$1 \rightarrow 2$ decay process, cont.

Lecture 19

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2 \text{ decay}$ process

Compton Scattering

Addendum

Mandelstam invariants 2 → 2 scattering process Mandelstam invariants Laboratory and CM frames

Identical particles

 $E_1 = \frac{M^2 + m_1^2 - m_2^2}{2M}c^2 = \frac{Mc^2}{2} + \frac{m_1^2 - m_2^2}{2M}c^2 \; .$

• Interchanging $1 \leftrightarrow 2$, we get

$$E_2 = \frac{M^2 + m_2^2 - m_1^2}{2M}c^2 = \frac{Mc^2}{2} - \frac{m_1^2 - m_2^2}{2M}c^2$$

- Here E_{1,2} are relativistic energies that include the rest mass term
- The kinetic energy of the first final particle is given by

$$E_1^{\rm kin} = \frac{M^2 + m_1^2 - m_2^2}{2M} c^2 - m_1 c^2 = \frac{M^2 - 2Mm_1 + m_1^2 - m_2^2}{2M} c^2$$
$$= \frac{(M - m_1)^2 - m_2^2}{2M} c^2 = \frac{(M - m_1 - m_2)(M - m_1 + m_2)}{2M} c^2$$
$$= \frac{\Delta M}{2} \left[1 - \frac{m_1 - m_2}{M} \right] c^2 = \Delta M \left[1 - \frac{\Delta M}{2M} - \frac{m_1}{M} \right] c^2$$

• ΔM is the energy release. Similarly,

$$E_2^{\rm kin} = \frac{\Delta M}{2} \left[1 + \frac{m_1 - m_2}{M} \right] c^2 = \Delta M \left[1 - \frac{\Delta M}{2M} - \frac{m_2}{M} \right] c^2$$

$1 \rightarrow 2$ decay process, cont.

Lecture 19

Four Velocity and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2 \, \text{decay}$ process

Compton Scattering

Addendum

Mandelstam invariants 2 → 2 scattering process Mandelstam invariants Laboratory and CMS frames Identical particles $\bullet~$ The magnitude of final particles' 3-momentum $|{\bf p}_1|=|{\bf p}_2|\equiv |{\bf p}|$ may be calculated from

$$\begin{aligned} \mathbf{p}|^2 c^2 &= E_1^2 - m_1^2 c^4 = \left(\frac{M^2 + m_1^2 - m_2^2}{2M}\right)^2 c^4 - m_1^2 c^4 \\ &= \frac{M^4 + m_1^4 + m_2^4 - 2m_1^2 m_2^2 - 2M^2 m_1^2 - 2M^2 m_2^2}{4M^2} c^4 = \frac{\lambda(M^2, m_1^2, m_2^2)}{4M^2} c^4 \end{aligned}$$

Important symmetric function of all its three arguments

$$\lambda(a, b, c) \equiv a^2 + b^2 + c^2 - 2ab - 2bc - 2ac$$

• Thus, $|\mathbf{p}| = \frac{\sqrt{\lambda(M^2, m_1^2, m_2^2)}}{2M}c$

If the decay occurs in flight, then we can use

$$P^{2} = p_{1}^{2} + p_{2}^{2} + 2(p_{1}p_{2}) = p_{1}^{2} + p_{2}^{2} - \frac{2}{c^{2}}(E_{1}E_{2}) + 2(\mathbf{p}_{1}\mathbf{p}_{2})$$

• Using $-P^2 = M^2$, $-p_i^2 = m_i^2$ and $(\mathbf{p}_1 \mathbf{p}_2) = |\mathbf{p}_1| |\mathbf{p}_2| \cos \theta$ we get $M^2 c^2 = m_1^2 c^2 + m_2^2 c^2 + \frac{2}{c^2} E_1 E_2 - 2|\mathbf{p}_1| |\mathbf{p}_2| \cos \theta$

where θ is the angle between \mathbf{p}_1 and \mathbf{p}_2

Compton Scattering

Lecture 19

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2 \, {\rm decay}$ process

Compton Scattering

Addendum

Mandelstam Invariants 2 → 2 scattering process Mandelstam invariants Laboratory and CMS frames Example 12.9: A photon of energy E_0 bounces off the electron, initially at rest. Find the energy E of the outgoing photon, as a function of the scattering angle θ .

- Conservation of momentum in the "vertical" direction gives $p_e \sin \phi = p_p \sin \theta \implies \sin \phi = \frac{E}{p_c c} \sin \theta$
- Conservation of momentum in the "horisontal" direction gives

$$\frac{E_0}{c} = p_p \cos \theta + p_e \cos \phi = \frac{E}{c} \cos \theta + p_e \sqrt{1 - \left(\frac{E \sin \theta}{p_e c}\right)^2}$$

$$\Rightarrow p_e^2 c^2 = (E_0 - E \cos \theta)^2 + E^2 \sin^2 \theta = E_0^2 - 2EE_0 \cos \theta + E^2$$

Compton Scattering

Lecture 19

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2 \, \text{decay}$ process

Compton Scattering

Addendum

Mandelstam invariants 2 → 2 scattering process Mandelstam invariants Laboratory and CMS frames

Conservation of energy

$$E_{\cdot 0} + mc^{2} = E + E_{e} = E + \sqrt{m^{2}c^{4} + p_{e}^{2}c^{2}}$$
$$= E + \sqrt{m^{2}c^{4} + E_{0}^{2} - 2EE_{0}\cos\theta + E^{2}}$$

We get

$$E = \left[\frac{1 - \cos\theta}{mc^2} + \frac{1}{E_0}\right]^{-1}$$

In terms of photon wavelength $\lambda = \frac{hc}{E}$

$$\lambda = \lambda_0 + \frac{h}{mc}(1 - \cos\theta)$$

Addendum: $2 \rightarrow 2$ particle scattering

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2$ decay process Compton Scatterin

Addendum

Mandelstam invariants 2 → 2 scattering process Mandelstam invariants Laboratory and CM! frames Identical particles

Figure: $2 \rightarrow 2$ particle scattering

Energy-momentum conservation in application to $2 \rightarrow 2$ scattering process 15/20

Lecture 19

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2$ decay process Compton Scatterin

Addendum

Mandelstam invariants 2 → 2 scattering process Mandelstam

Laboratory and CMS frames

- Two initial particles with 4-momenta p₁, p₂ and masses m₁,m₂ convert into two final particles with 4-momenta p₃, p₄ and masses m₃,m₄
- Using the momenta involved in this process, one can form several Lorentz invariants
- First, we have four invariants involving one of the momenta: $-p_1^2 = m_1^2, -p_2^2 = m_2^2, -p_3^2 = m_3^2, -p_4^2 = m_4^2,$ (*c* = 1 in this section)
- Combining momenta in pairs (and using the conservation law $p_1 + p_2 = p_3 + p_4$), we can form three *Mandelstam* invariants

$$\begin{split} -(p_1+p_2)^2 &\equiv s \equiv (-p_3+p_4)^2 \\ -(p_1-p_3)^2 &\equiv t \equiv -(p_2-p_4)^2 \\ -(p_1-p_4)^2 &\equiv u \equiv -(p_2-p_3)^2 \end{split}$$

- These invariants are not independent
- There exists a linear relation between them

$$s + t + u = \sum_{i=1}^{4} m_i^2$$

Mandelstam invariants

s

Lecture 19

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2$ decay process Compton Scattering

Addendum

Mandelstam invariants $2 \rightarrow 2$ scatterin process

Mandelstam invariants

Laboratory and CM frames

$$s + t + u = \sum_{i=1}^{4} m_i^2$$

Indeed,

$$\begin{aligned} + t + u &= -(p_1 + p_2)^2 - (p_1 - p_3)^2 - (p_1 - p_4)^2 \\ &= m_1^2 + m_2^2 - 2(p_1 p_2) \\ &+ m_1^2 + m_3^2 + 2(p_1 p_3) \\ &+ m_1^2 + m_4^2 + 2(p_1 p_4) \\ &= 3m_1^2 + m_2^2 + m_3^2 + m_4^2 \\ &+ 2p_1 \cdot \underbrace{(-p_2 + p_3 + p_4)}_{p_1} \\ &= 3m_1^2 + m_2^2 + m_3^2 + m_4^2 - 2m_1^2 \\ &= m_1^2 + m_2^2 + m_3^2 + m_4^2 \end{aligned}$$

Laboratory and center-of-mass frames

17/20

Lecture 19

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2$ decay process Compton Scatterin

Addendum

Mandelstam invariants 2 → 2 scattering process Mandelstam invariants

Laboratory and CMS frames

Identical particles

- There are two natural frames to study $2 \rightarrow 2$ process
- In the *laboratory* frame, the first particle is a projectile, $p_1 = (E_L, \mathbf{p}_L)$
- The second one is a target $p_2 = (m_2, \mathbf{0})$
- In the *center of mass* frame, the total 3-momentum of colliding particles is zero, i.e., $p_1 = (E_1, \mathbf{p}), p_2 = (E_2, -\mathbf{p})$
- Since $s = (p_1 + p_2)^2$ is Lorentz invariant, we may write it in both systems
- In particular, in laboratory frame we have

$$s = -(p_1 + p_2)^2 = m_1^2 + m_2^2 - 2(p_1 p_2) = m_1^2 + m_2^2 + 2m_2 E_L$$

This formula can be also obtained from

$$s = (m_2 + E_L)^2 - \mathbf{p}_L^2$$

In the center of mass frame, we have

$$s = (E_1 + E_2)^2 \equiv W^2$$

• $W \equiv \sqrt{s}$ is the total c.m. energy. Thus,

$$W^2 = m_1^2 + m_2^2 + 2m_2 E_L$$

Laboratory frame

Lecture 19

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2$ decay process Compton Scattering

Addendum

Mandelstam invariants 2 → 2 scattering process Mandelstam invariants

Laboratory and CMS frames • To get relation between the values of 3-momenta in these two frames, consider the scalar product (*p*₁*p*₂). Then

$$-(p_1p_2) = m_2 E_L = \mathbf{p}^2 + E_1 E_2 = \mathbf{p}^2 + \sqrt{(m_1^2 + \mathbf{p}^2)(m_2^2 + \mathbf{p}^2)}$$

 $(m_2 E_L - \mathbf{p}^2)^2 = (m_1^2 + \mathbf{p}^2)(m_2^2 + \mathbf{p}^2),$

which gives

$$\mathbf{p}^2(m_1^2 + m_2^2 + 2m_2E_L) = m_2^2(E_L^2 - m_1^2) ,$$

or

or

 $\mathbf{p}^2 W^2 = m_2^2 \mathbf{p}_L^2$

• Thus, $|\mathbf{p}| = |\mathbf{p}_L|m_2/W$, and since \mathbf{p} has the same direction as \mathbf{p}_L

$$\mathbf{p} = \mathbf{p}_L \frac{m_2}{W}$$

Laboratory and center-of-mass frames, cont.

19/20

Lecture 19

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2$ decay process Compton Scatterin

Addendum

Mandelstam Invariants 2 → 2 scattering process Mandelstam invariants

Laboratory and CMS frames

Identical particles

- Observation: the two initial particles with masses m_1, m_2 combine into a "particle" with mass $W = \sqrt{s}$, which is at rest in the c.m. frame
- ${\ensuremath{\bullet}}$ Hence, using $|{\ensuremath{\mathbf{p}}}| = \sqrt{\lambda(M^2,m_1^2,m_2^2)}/2M$ we get

$$|\mathbf{p}| = \frac{\sqrt{\lambda(s, m_1^2, m_2^2)}}{2\sqrt{s}} = \frac{\sqrt{(s - m_1^2 - m_2^2)^2 - 4m_1^2m_2^2}}{2\sqrt{s}}$$

- In the final state, we have two particles with masses m_3, m_4 which originated from a "particle" with mass \sqrt{s}
- Hence, the final particles in c.m. frame have opposite 3-momenta p', -p' whose magnitude is given by

$$|\mathbf{p}'| = \frac{\sqrt{\lambda(s, m_3^2, m_4^2)}}{2\sqrt{s}} = \frac{\sqrt{(s - m_3^2 - m_4^2)^2 - 4m_3^2m_4^2}}{2\sqrt{s}}$$

 In general, there is an angle θ between the directions of p and p' (scattering angle in c.m. frame)

Scattering of identical particles

Lecture 19

Four Velocirty and Four Momentum Four Velocity Four Momentum

Relativistic Kinematics

 $1 \rightarrow 2$ decay process Compton Scattering

Addendum

Mandelstam invariants 2 → 2 scattering process Mandelstam invariants Laboratory and CMS frames

Identical particles

• In particular case of elastic scattering of identical particles, when $m_i = m$, all c.m. energies E_i in this case are given by $W/2 = \sqrt{s}/2$, and

$$|\mathbf{p}| = |\mathbf{p}'| = \frac{\sqrt{(s - 2m^2)^2 - 4m^4}}{2\sqrt{s}} = \frac{\sqrt{s - 4m^2}}{2}$$

In the laboratory frame, we have

$$s = 2m(E_L + m)$$

and $|\mathbf{p}_L| = |\mathbf{p}|\sqrt{s}/m$ or

$$|\mathbf{p}_L| = \frac{\sqrt{s(s-4m^2)}}{2m}$$

• The invariants t and u in c.m. variables in this case may be written as $t = -(p_1 - p_3)^2 = -(\mathbf{p}_1 - \mathbf{p}_3)^2 = -2\mathbf{p}^2(1 - \cos\theta) = -4\mathbf{p}^2\sin^2(\theta/2)$ and

$$u = -(p_1 - p_4)^2 = -(\mathbf{p}_1 + \mathbf{p}_3)^2 = -2\mathbf{p}^2(1 + \cos\theta) = -4\mathbf{p}^2\cos^2(\theta/2)$$