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Four Velocity 3/20

Define velocity in a usual way as vi = dxi/dt, and use that t = x0/c
This vi = c dxi/dx0 cannot transform as a vector under Lorentz
transformations
A formal reason is that such a derivative is a 0i component of a 4-tensor
Thus, it does not transform as an ith component of a 4-vector
Indeed, let us assume that the object dxµ/dt transforms as a 4-vector,

Vµ ≡
dxµ

dt
=

d

dt
{x0,x} =

d

dt
{ct,x} = {c,v}

Consider frames K and K′, moving with velocity V with respect to K
Take V and v along x3 axis

Vµ ={c,0⊥,V3} , V ′µ ≡
dx′µ

dt′
= {c,0⊥,V ′

3}

If Vµ is a 4-vector, then, according to the Lorentz transformation,

V ′3 =γV

(
V3 −

V

c
V0

)
= γV

(
V3 − V

)
,

where γV = 1/
√

1− V 2/c2. This gives

V ′3 =
(
V3 − V

)
/
√

1− V 2/c2
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Four Velocity, cont. 4/20

V ′3 =γV

(
V3 −

V

c
V0

)
= γV

(
V3 − V

)
=
(
V3 − V

)
/
√

1− V 2/c2 ,

The correct result is that the velocity in the K′ frame should be given by

v =
v − V

1− vV/c2

This is the relativistic velocity addition formula. ( Note that we should take
into account that K frame moves with respect to K′ frame with the
velocity −V)

So, the question is whether it is possible to find a definition of a velocity that
does indeed transform covariantly under Lorentz transformations, yet
reduces to a Galilean transformation for v � c?



Lecture 19

Four Velocirty
and Four
Momentum
Four Velocity

Four Momentum

Relativistic
Kinematics
1 → 2 decay
process

Compton Scattering

Addendum
Mandelstam
invariants

2 → 2 scattering
process

Mandelstam
invariants

Laboratory and CMS
frames

Identical particles

Four Velocity, cont. 5/20

To construct a four velocity, we need to take the derivative of the 4-vector
xµ with respect to some time that, unlike dt or dt′, is the same in all frames,
i.e. is a Lorentz Scalar
Such a scalar is provided by the Proper Time dτ , or time measured in the
frame that moves together with the particle
This frame has velocity v in the K frame. Proper time is defined by

c2dτ2 = −ds2,

where ds is the Lorentz-invariant interval
The proper time is a scalar, and a natural definition of the four velocity is

ηα =
dxα

dτ

Recalling that the proper time is related to the K frame time by

dτ = dt
√

1− β2(t) we have

ηα =
1√

1− β2

d

dt
(ct,x) = γ(c,v), or ηα = (γc, γv)

The spatial components of vµ clearly reduce to our familiar definition of
velocity in the non-relativistic (NR) limit
Note that ηαηα = c2
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Four Velocity, cont. 6/20

Let us take now the component of v parallel to the relative velocity V and
check that applying the Lorentz transformation to ηµ, namely

η′
3

=γV

(
η3 −

V

c
η0
)

, η′
0

= γV

(
η0 −

V

c
η3
)

leads to the correct relativistic velocity addition formula
Indeed, substituting

η0 = γvc , η
3 = γvv

(where γv = 1/
√

1− v2/c2) and

η′
0

= γv′c , η
′3 = γv′v

′

(where γv′ = 1/
√

1− v′2/c2), we get

v′
3

= v′γv′ = γV γv (v − V ) , cγv′ = γV γv

(
c−

V

c
v

)
Dividing the first of these equations by the second one gives

v′

c
=

v − V
c− V

c
v

or v′ =
v − V

1− V
c2
v
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Four Momentum 7/20

The definition of a Lorentz-covariant 4-momentum is now straightforward:

pµ = mηµ = (mγc,mγv),

where m is a Lorentz scalar that we will call the rest mass
Spatial components of pµ reduce to our usual definition of momentum
To interpret the temporal component, we will look at its NR limit:

p0 = mγc = mc
{

1− v2/c2
}−1/2

=
1

c

{
mc2 +

1

2
mv2 +O(v4/c2)

}
The second term in braces is clearly the kinetic energy
The first term we identify as the rest energy, and write

p0 = E/c

where E is the energy
Thus the four momentum contains both the energy and the three momentum
The “length” of pµ is a Lorentz scalar

−pµpµ = m2γ2c2 −m2γ2v2 = m2γ2c2
[
1− v2/c2

]
= m2γ2c2γ−2 = m2c2

Thus we have −pµpµ = −p2 = m2c2 confirming that the rest mass is a
(frame-independent) scalar



Lecture 19

Four Velocirty
and Four
Momentum
Four Velocity

Four Momentum

Relativistic
Kinematics
1 → 2 decay
process

Compton Scattering

Addendum
Mandelstam
invariants

2 → 2 scattering
process

Mandelstam
invariants

Laboratory and CMS
frames

Identical particles

E = mc2 8/20

Finally, if we now go back and write pµpµ = m2c2 in terms of our
old-fashioned three vectors we have

1

c2
E2 − p2 = m2c2

=⇒ E2 = m2c4 + c2p2.

For a particle at rest, we have perhaps the most famous equation in physics

E = mc2

The use of four-vectors is essential to solve problems in special
(and general. . . ) relativity

Whilst simple kinematical problems can be solved using three vectors,
it is very clumsy indeed

NB: Experimental fact: the momentum and energy defined as above are
conserved (for closed systems)
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Energy-momentum conservation in application
to 1 → 2 decay process 9/20

Consider a particle of mass M that decays at rest into two particles of
masses m1 and m2

Energy-momentum conservation requires that in any frame

P = p1 + p2

Pµ is 4-momentum of the initial particle, −P 2 = M2c2

p1,2 are 4-momenta of final particles, −p21,2 = m2
1,2c

2

In the rest frame of the decaying particle we have

P = (Mc,0) , p1 = (
E1

c
,p1) , p2 = (

E2

c
,p2)

Hence,

E1 + E2 = Mc2 , p1 = −p2 ≡ p

Find first the energies of the final particles. Writing p2 = P − p1, we have

p22 = P 2 − 2(Pp1) + p21 ,

m2
2c

2 = M2c2 − 2(ME1 − 0 · p1) +m2
1 ⇒ m2

2c
2 = M2c2 − 2ME1 +m2

1c
2

which gives

E1 =
M2 +m2

1 −m2
2

2M
c2 =

Mc2

2
+
m2

1 −m2
2

2M
c2
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1 → 2 decay process, cont. 10/20

E1 =
M2 +m2

1 −m2
2

2M
c2 =

Mc2

2
+
m2

1 −m2
2

2M
c2 .

Interchanging 1↔ 2, we get

E2 =
M2 +m2

2 −m2
1

2M
c2 =

Mc2

2
−
m2

1 −m2
2

2M
c2

Here E1,2 are relativistic energies that include the rest mass term
The kinetic energy of the first final particle is given by

Ekin
1 =

M2 +m2
1 −m2

2

2M
c2 −m1c

2 =
M2 − 2Mm1 +m2

1 −m2
2

2M
c2

=
(M −m1)2 −m2

2

2M
c2 =

(M −m1 −m2)(M −m1 +m2)

2M
c2

=
∆M

2

[
1−

m1 −m2

M

]
c2 = ∆M

[
1−

∆M

2M
−
m1

M

]
c2

∆M is the energy release. Similarly,

Ekin
2 =

∆M

2

[
1 +

m1 −m2

M

]
c2 = ∆M

[
1−

∆M

2M
−
m2

M

]
c2
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1 → 2 decay process, cont. 11/20

The magnitude of final particles’ 3-momentum |p1| = |p2| ≡ |p| may be
calculated from

|p|2c2 = E2
1 −m2

1c
4 =

(
M2 +m2

1 −m2
2

2M

)2

c4 −m2
1c

4

=
M4 +m4

1 +m4
2 − 2m2

1m
2
2 − 2M2m2

1 − 2M2m2
2

4M2
c4 =

λ(M2,m2
1,m

2
2)

4M2
c4

Important symmetric function of all its three arguments

λ(a, b, c) ≡ a2 + b2 + c2 − 2ab− 2bc− 2ac

Thus, |p| =
√
λ(M2,m2

1,m
2
2)

2M
c

If the decay occurs in flight, then we can use

P 2 = p21 + p22 + 2(p1p2) = p21 + p22 −
2

c2
(E1E2) + 2(p1p2)

Using −P 2 = M2, −p2i = m2
i and (p1p2) = |p1||p2| cos θ we get

M2c2 = m2
1c

2 +m2
2c

2 +
2

c2
E1E2 − 2|p1||p2| cos θ

where θ is the angle between p1 and p2
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Compton Scattering 12/20

Example 12.9: A photon of energy E0 bounces off the electron, initially at rest.
Find the energy E of the outgoing photon, as a function of the scattering angle θ.

Conservation of momentum in the “vertical” direction gives
pe sinφ = pp sin θ ⇒ sinφ = E

pec
sin θ

Conservation of momentum in the “horisontal” direction gives

E0

c
= pp cos θ + pe cosφ =

E

c
cos θ + pe

√
1−

(E sin θ

pec

)2
⇒ p2ec

2 = (E0 − E cos θ)2 + E2 sin2 θ = E2
0 − 2EE0 cos θ + E2
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Compton Scattering 13/20

Conservation of energy

E.0 +mc2 = E + Ee = E +
√
m2c4 + p2ec

2

= E +
√
m2c4 + E2

0 − 2EE0 cos θ + E2

We get

E =
[1− cos θ

mc2
+

1

E0

]−1

In terms of photon wavelength λ = hc
E

λ = λ0 +
h

mc
(1− cos θ)
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Addendum: 2→ 2 particle scattering

p1

p2 p4

p3

Figure: 2→ 2 particle scattering
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Energy-momentum conservation in application
to 2 → 2 scattering process 15/20

Two initial particles with 4-momenta p1, p2 and masses m1,m2 convert into
two final particles with 4-momenta p3, p4 and masses m3,m4

Using the momenta involved in this process, one can form several Lorentz
invariants

First, we have four invariants involving one of the momenta:
−p21 = m2

1, −p22 = m2
2, −p23 = m2

3, −p24 = m2
4, (c = 1 in this section)

Combining momenta in pairs (and using the conservation law
p1 + p2 = p3 + p4), we can form three Mandelstam invariants

−(p1 + p2)2 ≡ s ≡ (−p3 + p4)2

−(p1 − p3)2 ≡ t ≡ −(p2 − p4)2

−(p1 − p4)2 ≡ u ≡ −(p2 − p3)2

These invariants are not independent

There exists a linear relation between them

s+ t+ u =
4∑
i=1

m2
i
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Mandelstam invariants 16/20

s+ t+ u =
4∑
i=1

m2
i

Indeed,

s+ t+ u = −(p1 + p2)2 − (p1 − p3)2 − (p1 − p4)2

= m2
1 +m2

2 − 2(p1p2)

+m2
1 +m2

3 + 2(p1p3)

+m2
1 +m2

4 + 2(p1p4)

= 3m2
1 +m2

2 +m2
3 +m2

4

+ 2p1 · (−p2 + p3 + p4)︸ ︷︷ ︸
p1

= 3m2
1 +m2

2 +m2
3 +m2

4 − 2m2
1

= m2
1 +m2

2 +m2
3 +m2

4
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Laboratory and center-of-mass frames 17/20

There are two natural frames to study 2→ 2 process
In the laboratory frame, the first particle is a projectile, p1 = (EL,pL)

The second one is a target p2 = (m2,0)

In the center of mass frame, the total 3-momentum of colliding particles is
zero, i.e., p1 = (E1,p), p2 = (E2,−p)

Since s = (p1 + p2)2 is Lorentz invariant, we may write it in both systems
In particular, in laboratory frame we have

s = −(p1 + p2)2 = m2
1 +m2

2 − 2(p1p2) = m2
1 +m2

2 + 2m2EL

This formula can be also obtained from

s = (m2 + EL)2 − p2
L

In the center of mass frame, we have

s = (E1 + E2)2 ≡W 2

W ≡
√
s is the total c.m. energy. Thus,

W 2 = m2
1 +m2

2 + 2m2EL
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Laboratory frame 18/20

To get relation between the values of 3-momenta in these two frames,
consider the scalar product (p1p2). Then

−(p1p2) = m2EL = p2 + E1E2 = p2 +
√

(m2
1 + p2)(m2

2 + p2)

or

(m2EL − p2)2 = (m2
1 + p2)(m2

2 + p2) ,

which gives

p2(m2
1 +m2

2 + 2m2EL) = m2
2(E2

L −m
2
1) ,

or

p2W 2 = m2
2p

2
L

Thus, |p| = |pL|m2/W , and since p has the same direction as pL

p = pL
m2

W
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Laboratory and center-of-mass frames,
cont. 19/20

Observation: the two initial particles with masses m1, m2 combine into a
“particle” with mass W =

√
s, which is at rest in the c.m. frame

Hence, using |p| =
√
λ(M2,m2

1,m
2
2)/2M we get

|p| =

√
λ(s,m2

1,m
2
2)

2
√
s

=

√
(s−m2

1 −m2
2)2 − 4m2

1m
2
2

2
√
s

In the final state, we have two particles with masses m3,m4 which
originated from a “particle” with mass

√
s

Hence, the final particles in c.m. frame have opposite 3-momenta p′, −p′
whose magnitude is given by

|p′| =

√
λ(s,m2

3,m
2
4)

2
√
s

=

√
(s−m2

3 −m2
4)2 − 4m2

3m
2
4

2
√
s

In general, there is an angle θ between the directions of p and p′

(scattering angle in c.m. frame)
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Scattering of identical particles 20/20

In particular case of elastic scattering of identical particles, when
mi = m, all c.m. energies Ei in this case are given by W/2 =

√
s/2, and

|p| = |p′| =
√

(s− 2m2)2 − 4m4

2
√
s

=

√
s− 4m2

2

In the laboratory frame, we have

s = 2m(EL +m)

and |pL| = |p|
√
s/m or

|pL| =
√
s(s− 4m2)

2m
.

The invariants t and u in c.m. variables in this case may be written as

t = −(p1 − p3)2 = −(p1 − p3)2 = −2p2(1− cos θ) = −4p2 sin2(θ/2)

and

u = −(p1 − p4)2 = −(p1 + p3)2 = −2p2(1 + cos θ) = −4p2 cos2(θ/2)
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