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@ Four Velocity

Lecture 19

Four Velocity

Define velocity in a usual way as v* = dx*/dt, and use that t = 29 /c
This v* = cdx?/dx® cannot transform as a vector under Lorentz
transformations
A formal reason is that such a derivative is a 0: component of a 4-tensor
Thus, it does not transform as an ith component of a 4-vector
Indeed, let us assume that the object dz* /dt transforms as a 4-vector,
dxH d d

VH = % = a{wo,x} = ﬁ{ct,x} ={c, v}
Consider frames K and K’, moving with velocity V with respect to K
Take V and v along =3 axis

dx'*
dt’
If V# is a 4-vector, then, according to the Lorentz transformation,

v
Ve =y (V3 - ;VO) =w (V' -Vv),

where vy = 1/4/1 — V2 /c2. This gives

V3= (V3 —V) /1 - Vv2/e?

Vi ={c,0,,V%} , V*= ={c,0,,V"°}




@ Four Velocity, cont.

Lecture 19

V3 =y <v3 - %VO) = (VP V) = (V- v) [\ vee,

@ The correct result is that the velocity in the K’ frame should be given by

Four Velocity

v—V
v=————
1—oV/c?

@ This is the relativistic velocity addition formula. ( Note that we should take
into account that K frame moves with respect to K’ frame with the
velocity —V)

@ So, the question is whether it is possible to find a definition of a velocity that
does indeed transform covariantly under Lorentz transformations, yet
reduces to a Galilean transformation for v < ¢?



@ Four Velocity, cont.

Lecture 19 @ To construct a four velocity, we need to take the derivative of the 4-vector
xH with respect to some time that, unlike dt or d¢’, is the same in all frames,
i.e. is a Lorentz Scalar

@ Such a scalar is provided by the Proper Time dr, or time measured in the
frame that moves together with the particle

@ This frame has velocity v in the K frame. Proper time is defined by

2dr? = —ds?,

Four Velocity

where ds is the Lorentz-invariant interval
@ The proper time is a scalar, and a natural definition of the four velocity is
dx®

dr
@ Recalling that the proper time is related to the K frame time by

dr =dt/1— 2(t) we have
«

1 d
n- = ﬁ&(cﬁ x) =7(¢,v), or n% = (ye,Yv)

a

@ The spatial components of v# clearly reduce to our familiar definition of
velocity in the non-relativistic (NR) limit
@ Note that n%n, = 2



@ Four Velocity, cont.

Lecture 19 @ Let us take now the component of v parallel to the relative velocity V and
check that applying the Lorentz transformation to n*, namely

3 |4 0 \4
n' =yv (n‘°’ - ;no) ;o0 =y (no - ;173)

Four Velocity leads to the correct relativistic velocity addition formula
@ Indeed, substituting

° =vye, 1 =v

(where v, = 1/4/1 — v2/c2) and

10

00 = e, 0 =0
(where v, = 1/4/1 — v'2/c2), we get

3 1%
VP =0y =y (v =V) , Yy = W (c— ;v)

@ Dividing the first of these equations by the second one gives

v’ v—V , v—V

c c— %o l—C%v




@ Four Momentum

Lecture 19 @ The definition of a Lorentz-covariant 4-momentum is now straightforward:
p* =mn* = (myc,myv),

where m is a Lorentz scalar that we will call the rest mass
@ Spatial components of p# reduce to our usual definition of momentum
@ To interpret the temporal component, we will look at its NR limit:

Four Momentum
— 1 1
p° = myc=me {1 —v?/c?} vz _ 2 {m 2 4 imv2 + O(v4/c2)}
C
@ The second term in braces is clearly the kinetic energy
@ The first term we identify as the rest energy, and write

P’ =E/c

where E is the energy
@ Thus the four momentum contains both the energy and the three momentum
@ The “length” of p# is a Lorentz scalar

—phpy = m2y2e? — m2y?u? = m242c2 [1- U2/C2]

= m2y2c2y "2 = m2c2
@ Thus we have —ptp,, = —p? = m?c? confirming that the rest mass is a
(frame-independent) scalar
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Finally, if we now go back and write p#p,, = m?c? in terms of our

old-fashioned three vectors we have

1
—2E2—p2 — m2e2
c

Four Momentum — E? = m3ct + c? p2.
@ For a particle at rest, we have perhaps the most famous equation in physics
E = mc?

@ The use of four-vectors is essential to solve problems in special
(and general.. .) relativity

@ Whilst simple kinematical problems can be solved using three vectors,
it is very clumsy indeed

@ NB: Experimental fact: the momentum and energy defined as above are
conserved (for closed systems)



@ Energy-momentum conservation in application
to 1 — 2 decay process 9/20

Lecture 19 @ Consider a particle of mass M that decays at rest into two particles of
masses m; and ma
@ Energy-momentum conservation requires that in any frame

P=p1+p2

@ P* is 4-momentum of the initial particle, —P? = M2c?

@ p1,» are 4-momenta of final particles, —p? , = m7 ,¢?

@ In the rest frame of the decaying particle we have

E
1 — 2decay P:(Mc70)7p1:( 1

E
—,P1), p2=(—,p2)
process c c
@ Hence,
Ey + By = Mc? ) pP1=—-pP2=p
@ Find first the energies of the final particles. Writing p> = P — p1, we have

ps = P? —2(Pp1) +p3 ,

m3c? = M2c2 —2(ME; — 0-p1) + m? = m3c? = M2 — 2ME1 + m?c?
which gives
M2+m%—m362:Mc2 m%—m%CQ

By =
2M 2 2M



@ 1 — 2 decay process, cont.

2

Lecture 19
B MPAmi—mi , M mi-mj,
1= ¢ = + co .
2M 2 2M
@ Interchanging 1 « 2, we get
By — M2+m§ —m%cz _ M2 _ m%—mgg
2M 2 2M

@ Here E; > are relativistic energies that include the rest mass term

@ The kinetic energy of the first final particle is given by
M? —2Mmi +m?2 —m2 ,
C

1 — 2decay
process
Ei‘m :M2 +mf — m% ¢ —mic® =
2M 2M
_ (M —mq)? 7m%c2 (M —my —m2)(M —m +m2)62
a oM n 2M
AM - AM
—- = 1_M 2 =AM 1_7_2 2
2 M 2M M
@ AM is the energy release. Similarly,
AM — AM
=" 1+w 2 =AM 1_7_@ 2
M 2M M

kin __
ES™ =



@ 1 — 2 decay process, cont.

Lecture 19 The magnitude of final particles’ 3-momentum |p1| = |p2| = |p| may be
calculated from

2
M? +m?2 —m2
p?? =E? —m2ct = [ ———2 2 4 —mis
2M

_ M4+m%+m§—2m%m§—2M2m%—2M2m§C4 _ A(M2,mi,m3) 4,

4M?2 4M?2
@ Important symmetric function of all its three arguments

o Ma, b, ¢) = a? + b2 + ¢? — 2ab — 2bc — 2ac

Som
/A(M2,m2 m2)
@ Thus, |p| = Y2 ¢

2M
@ |If the decay occurs in flight, then we can use

2
P? =pi+p)+2(pip2) = pi + 95 — S (E1F2) + 2(p1p2)
@ Using —P? = M?, —p? = m? and (p,p3) = |p1||p2|cosf we get
2
M2c? =m2c? + m3c2 + — E1E> — 2|p1]||p2]| cos 0
c

where 6 is the angle between p; and p2



@ Compton Scattering

Lecture 19 Example 12.9: A photon of energy Eqy bounces off the electron, initially at rest.
Find the energy E of the outgoing photon, as a function of the scattering angle 6.

Photon
E
E, 0
NNANNNNNN0
Photon 4 [
Electron Electron
Compton Scattering (before) (after)

@ Conservation of momentum in the “vertical” direction gives
Pesing = ppsinf = sing = % sin 6
e

@ Conservation of momentum in the “horisontal” direction gives

E E / Esin6
i:ppcose—s-pecosqbz—cosG—l—pe 1—( S )2
c c PeC

= p2c? = (Ey — Ecosf)? + E?sin20 = E2 — 2EFq cos  + E>




@ Compton Scattering
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@ Conservation of energy

Eo+mc®=E+ E. = E + \/m2?c* + p2c?

= E+ \/m204 + E2 — 2EFEj cosf + E?

@ We get
Gompton Scattering 1 — cosf 17-1
po [l ]

mc? Ey

In terms of photon wavelength A = 2¢

h
A=Xo+ —(1—cosb)
me



@ Addendum: 2— 2 particle scattering

Lecture 19

Addendum

Py

Figure: 2— 2 particle scattering



@ Energy-momentum conservation in application
to 2 — 2 scattering process 15/20

Lecture 19 @ Two initial particles with 4-momenta p1, p2 and masses m1,ma convert into
two final particles with 4-momenta p3, p4 and masses ms,mq4

@ Using the momenta involved in this process, one can form several Lorentz
invariants

(] First we have four invariants involving one of the momenta:

—p1 = ml, p2 = m2, p3 = m%, p?l = mZ, (c = 1in this section)
@ Combining momenta in pairs (and using the conservation law

p1 + p2 = p3 + pa), we can form three Mandelstam invariants

—(p1+p2)® =s=(—p3 +pa)°

—(p1—p3)® =t =—(p2 — pa)?
2 _

2 — 2 scattering _(pl _p4) =Uu= _(p2 _p3)

process

@ These invariants are not independent
@ There exists a linear relation between them

4
s+t+u:2m?
i=1



@ Mandelstam invariants
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4
s—i—t—i—u:Zml2
i=1

@ Indeed,

s+t+u=—(p1+p2)%—(p1 —p3)? — (p1 — pa)?
=mi +m3 — 2(p1p2)
+m3 +m3 + 2(p1p3)
+m? +m3 + 2(p1pa)

2 2 2 2
=3m] +m5 +m3+my

Mandelstam

i +2p1 - (—p2 + p3 + pa)
~—_—

P1
:3m%+m%+m§+m272m%

2 2 2 2
=mj +m3 +m3+my




@ Laboratory and center-of-mass frames 17/20

Lecture 19 There are two natural frames to study 2 — 2 process

In the laboratory frame, the first particle is a projectile, p1 = (EL,pr)
The second one is a target p2 = (m2,0)

In the center of mass frame, the total 3-momentum of colliding particles is
zero, i.e., p1 = (E1,p), p2 = (E2, —p)

Since s = (p1 + p2)? is Lorentz invariant, we may write it in both systems
In particular, in laboratory frame we have

s=—(p1 +p2)2 =m? +m2 — 2(p1p2) = m? + m3 + 2m2Ey,
@ This formula can be also obtained from
s = (ma + Er)? - p%,

@ In the center of mass frame, we have

Laboratory and CMS

frames s = (El 4 E2)2 = W2

@ W = /s is the total c.m. energy. Thus,

w2 = m% + mg +2mo B,



@ Laboratory frame

Lecture 19 @ To get relation between the values of 3-momenta in these two frames,
consider the scalar product (p1p2). Then

—(p1p2) = moEyp, = p®> + E1Ez = p? + \/(m% +p?)(m3 + p?)

or
(m2Erp — p°)® = (m} + p*)(m3 + p°) ,
which gives
p’(mf +m3 +2m2Er) = mj(Ef —mi),
or
ey AT p°W? = mip]

frames

@ Thus, |p| = |pr|m2/W, and since p has the same direction as pr,

— m2
P—PLW



@ Laboratory and center-of-mass frames,
cont.

Lecture 19
@ Observation: the two initial particles with masses m1, ms combine into a
“particle” with mass W = /s, which is at rest in the c.m. frame

@ Hence, using |p| = y/A(M2,m2,m3)/2M we get

\//\(s,m%,mg) B \/(S —m? —m2)? — 4m?m3

Ip| = NG N

@ |In the final state, we have two particles with masses ms,m4 which
originated from a “particle” with mass /s

@ Hence, the final particles in c.m. frame have opposite 3-momenta p’, —p’
whose magnitude is given by

\/)\(s,m%,mi) \/(s—m§ —m2)2 — 4m2Zm?

Laboratory and CMS f
frames p’| = =
2v/s 2¢/s

@ In general, there is an angle 6 between the directions of p and p’
(scattering angle in c.m. frame)



@ Scattering of identical particles

Lecture 19 @ In particular case of elastic scattering of identical particles, when
m; = m, all c.m. energies E; in this case are given by W/2 = /s/2, and

ip| = | ,‘7\/(3—2m2)2—4m47\/s—4m2
pi=Ipi= 2/ B 2

@ In the laboratory frame, we have
s=2m(EL +m)
and [pz| = [ply/s/m or

s(s — 4m?)

lpr| = o

@ The invariants ¢t and w in c.m. variables in this case may be written as

t=—(p1 —p3)? = —(p1 — p3)? = —2p2(1 — cos §) = —4p?sin?(6/2)

Identical particles

and

u=—(p1 —p4)2 =—(p1+ p3)2 = —2p2(1 + cosf) = —4p? 0052(0/2)
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