

Lecture 20

Relativistic Dynamics Newton's 2nd Law Work-Energy Theorem Lorentz transformation of a force Minkowski Force Total momentum an Center of Energy

PHYSICS 453 Electromagnetism II Lecture 20

Physics Department Old Dominion University

April 15, 2025

Outline

Lecture 20

Relativistic Dynamics Newton's 2nd Law Work-Energy Theorem Lorentz transformation of a force Minkowski Force Total momentum ar Center of Energy

Relativistic Dynamics

- Newton's 2nd Law
- Work-Energy Theorem
- Lorentz transformation of a force
- Minkowski Force
- Total momentum and Center of Energy

Newton's 2nd Law

Lecture 20

- Relativistic Dynamics Newton's 2nd Law
- Work-Energy Theorem Lorentz
- transformation o
- Iorce Minkowski Eorco
- Total momentum an

Newton's 2nd Law is correct provided we use relativistic momentum

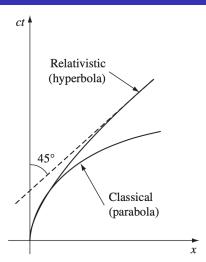
$$\mathbf{F} = \frac{d\mathbf{p}}{dt}, \quad \mathbf{p} \equiv relativistic \text{ momentum}$$

• Example 12.10: motion under constant force $\mathbf{F} = F\hat{e}_1$ starting from the origin

$$\frac{dp}{dt} = F \Rightarrow p = Ft + \text{const}$$

$$p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} = Ft \quad \Rightarrow \quad v = \frac{tF/m}{\sqrt{1 + \left(\frac{Ft}{mc}\right)^2}}$$
$$\Rightarrow \quad x(t) = \frac{F}{m} \int_0^t dt' \frac{t'}{\sqrt{1 + \left(\frac{Ft}{mc}\right)^2}} = \frac{mc^2}{F} \left[\sqrt{1 + \left(\frac{Ft}{mc}\right)^2} - 1\right]$$

Newton's 2nd Law, cont.



Work-Energy Theorem

Lecture 20

Relativistic Dynamics Newton's 2nd Law Work-Energy

Theorem Lorentz transformation of a force Minkowski Force Total momentum and Check of work-energy theorem

$$W = \int \mathbf{F} \cdot d\mathbf{l} = \int \frac{d\mathbf{p}}{dt} \cdot d\mathbf{l} = \int \frac{dp}{dt} \cdot \mathbf{v} dt$$

$$\frac{d\mathbf{p}}{dt} \cdot \mathbf{v} = \frac{d}{dt} \left(\frac{m\mathbf{v}}{\sqrt{1 - \frac{v^2}{c^2}}} \right) \cdot \mathbf{v} = \frac{m\mathbf{v}}{\left(1 - \frac{v^2}{c^2}\right)^{3/2}} \cdot \frac{d\mathbf{v}}{dt}$$
$$= \frac{d}{dt} \left(\frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}} \right) = \frac{dE}{dt}$$

$$\Rightarrow W = \int dt \frac{dE}{dt} = E_{\text{final}} - E_{\text{initial}}$$

 Newton's third law is correct only in contact interactions. In general, use momentum conservation (correct in any frame)

Lorentz transformation of a force

Lecture 20

transformation of a

$$F'_{y} = \frac{dp'_{y}}{dt} = \frac{dp_{y}}{\gamma dt - \frac{\gamma \beta}{c} dx} = \frac{\frac{dp_{y}}{dt}}{\gamma \left(1 - \frac{\beta}{c} \frac{dx}{dt}\right)} = \frac{F_{y}}{\gamma \left(1 - \frac{\beta v_{x}}{c}\right)}$$

Similarly

$$F'_z = \frac{dp'_y}{dt} = \frac{F_z}{\gamma \left(1 - \frac{\beta v_x}{c}\right)}$$

and

$$F'_x = \frac{dp_x}{dt} = \frac{\gamma dp_x - \gamma \beta dp_0}{\gamma dt - \frac{\gamma \beta}{c} dx} = \frac{\frac{dp_x}{dt} - \beta \frac{dp_0}{dt}}{1 - \frac{\beta}{c} \frac{dx}{dt}} = \frac{F_x - \frac{\beta}{c} \frac{dE}{dt}}{1 - \frac{\beta v_x}{c}}$$

Since
$$\frac{dE}{dt} = \mathbf{F} \cdot \mathbf{v}$$

$$F'_x = \frac{F_x - \frac{\beta}{c} \mathbf{F} \cdot \mathbf{v}}{1 - \frac{\beta v_x}{c}}$$

If the particle is instantaneously at rest

$$\mathbf{F}'_{\perp} = \frac{1}{\gamma} \mathbf{F}_{\perp}, \quad \mathbf{F}'_{\parallel} = \mathbf{F}_{\parallel}$$

Minkowski force

Lecture 20

Relativistic Dynamics Newton's 2nd Law Work-Energy Theorem Lorentz transformation of a force Minkowski Force

Total momentum and Center of Energy Minkowski force

$$K^{\mu} \equiv \frac{dp^{\mu}}{d\tau}$$

$$\mathbf{K} = \frac{d\mathbf{p}}{d\tau} = \frac{d\mathbf{p}}{dt}\frac{dt}{d\tau} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}\mathbf{F}, \quad K^0 = \frac{dp^0}{d\tau} = \frac{1}{c}\frac{dE}{d\tau}$$

Q: Lorentz force

$$\mathbf{F} = q(E + \mathbf{v} \times \mathbf{B})$$
 or $\mathbf{K} = q(E + \mathbf{v} \times \mathbf{B})$?

• A: $\mathbf{F} = q(E + \mathbf{v} \times \mathbf{B})$ (to be proved later)

Total momentum and Center of Energy

Lecture 20

Relativistic Dynamics Newton's 2nd Law Work-Energy Theorem Lorentz transformation of a force Minkowski Force Total momentum and

Total momentum ar Center of Energy For a set of particles

In non-relativistic classical mechanics

$$\mathbf{P} = M \frac{d\mathbf{R}_m}{dt}, \qquad M = \sum m_i, \quad R_m = \frac{\sum m_i \mathbf{r}_i}{M}$$

In relativistic mechanics

$$\mathbf{P} \; = \; \frac{E}{c^2} \frac{d\mathbf{R}_e}{dt}, \qquad E = \sum E_i, \quad \mathbf{R}_e = \frac{1}{E} \sum \mathbf{r}_i E_i$$

• Center of mass $\mathbf{R}_m = \frac{\sum m_i \mathbf{r}_i}{\sum m_i}$ is replaced by *center of energy* $\mathbf{R}_e = \frac{\sum \mathbf{r}_i E_i}{\sum E_i}$