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Newton’s 2nd Law 3/8

Newton’s 2nd Law is correct provided we use relativistic momentum

F =
dp

dt
, p ≡ relativistic momentum

Example 12.10: motion under constant force F = F ê1 starting from the
origin

dp

dt
= F ⇒ p = Ft+ const

p =
mv√
1− v2

c2

= Ft ⇒ v =
tF/m√

1 +
(
Ft
mc

)2
⇒ x(t) =

F

m

∫ t

0
dt′

t′√
1 +

(
Ft
mc

)2 =
mc2

F

[√
1 +

( Ft

mc

)2 − 1
]
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Work-Energy Theorem 5/8

Check of work-energy theorem

W =

∫
F · dl =

∫
dp

dt
· dl =

∫
dp

dt
· vdt

dp

dt
· v =

d

dt

( mv√
1− v2

c2

)
· v =

mv(
1− v2

c2

)3/2 ·
dv

dt

=
d

dt

( mc2√
1− v2

c2

)
=

dE

dt

⇒ W =

∫
dt

dE

dt
= Efinal − Einitial

Newton’s third law is correct only in contact interactions. In general, use
momentum conservation (correct in any frame)
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Lorentz transformation of a force 6/8

F ′
y =

dp′y

dt
=

dpy

γdt− γβ
c
dx

=

dpy
dt

γ
(
1− β

c
dx
dt

) =
Fy

γ
(
1− βvx

c

)
Similarly

F ′
z =

dp′y

dt
=

Fz

γ
(
1− βvx

c

)
and

F ′
x =

dpx

dt
=

γdpx − γβdp0

γdt− γβ
c
dx

=

dpx
dt

− β dp0
dt

1− β
c

dx
dt

=
Fx − β

c
dE
dt

1− βvx
c

Since dE
dt

= F · v

F ′
x =

Fx − β
c
F · v

1− βvx
c

If the particle is instantaneously at rest

F′
⊥ =

1

γ
F⊥, F′

∥ = F∥
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Minkowski force 7/8

Minkowski force
Kµ ≡

dpµ

dτ

K =
dp

dτ
=

dp

dt

dt

dτ
=

1√
1− v2

c2

F, K0 =
dp0

dτ
=

1

c

dE

dτ

Q: Lorentz force

F = q(E + v ×B) or K = q(E + v ×B) ?

A: F = q(E + v ×B) (to be proved later)
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Total momentum and Center of Energy 8/8

For a set of particles

In non-relativistic classical mechanics

P = M
dRm

dt
, M =

∑
mi, Rm =

∑
miri

M

In relativistic mechanics

P =
E

c2
dRe

dt
, E =

∑
Ei, Re =

1

E

∑
riEi

Center of mass Rm =
∑

miri∑
mi

is replaced by center of energy

Re =
∑

riEi∑
Ei
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