

Lecture 21

PHYSICS 704/804

Electromagnetism II Lecture 23

Physics Department Old Dominion University

April 24, 2025

Outline

Lecture 21

Covariant
Formulation
Maxwell's
Equations
Jacobi identity
Transformation
Properties of EM
Field
Fields of moving
charge

Covariant Formulation of Maxwell's Equations

- Jacobi identity
- Transformation Properties of EM Field
- Electric and magnetic fields of relativistically moving point charge

D - 0.8¢

Lecture 21

Covariant
Formulation of
Maxwell's
Equations
Jacobi identity
Transformation

Jacobi identity: $\partial_{\alpha}F_{\beta\gamma} + \partial_{\beta}F_{\gamma\alpha} + \partial_{\gamma}F_{\alpha\beta} = 0$

Proof:

Math formula

$$\epsilon^{\mu\nu\lambda\rho}\epsilon_{\alpha\beta\gamma\rho} = -\det \begin{vmatrix} \delta^{\mu}_{\alpha} & \delta^{\mu}_{\beta} & \delta^{\mu}_{\gamma} \\ \delta^{\nu}_{\alpha} & \delta^{\nu}_{\beta} & \delta^{\nu}_{\gamma} \\ \delta^{\lambda}_{\alpha} & \delta^{\lambda}_{\beta} & \delta^{\lambda}_{\gamma} \end{vmatrix}$$

• Start from $\partial_{\nu} \tilde{F}^{\rho\nu} = 0$

$$\partial_{\nu}\tilde{F}^{\rho\nu} = 0 \; \Leftrightarrow \; \epsilon^{\rho\nu\lambda\mu}\partial_{\nu}F_{\lambda\mu} = 0 \Leftrightarrow \; \epsilon^{\mu\nu\lambda\rho}\partial_{\nu}F_{\lambda\mu} = 0$$

• Multiply by $-\epsilon_{\alpha\beta\gamma\rho}$

$$\begin{split} 0 &= -\epsilon_{\alpha\beta\gamma\rho}\epsilon^{\mu\nu\lambda\rho}\partial_{\nu}F_{\lambda\mu} = \ \det \left| \begin{array}{ccc} \delta^{\mu}_{\alpha} & \delta^{\mu}_{\beta} & \delta^{\mu}_{\gamma} \\ \delta^{\nu}_{\alpha} & \delta^{\nu}_{\beta} & \delta^{\nu}_{\gamma} \\ \delta^{\lambda}_{\alpha} & \delta^{\lambda}_{\beta} & \delta^{\lambda}_{\gamma} \end{array} \right| \partial_{\nu}F_{\lambda\mu} \\ &= 2(\partial_{\beta}F_{\gamma\alpha} + \partial_{\alpha}F_{\beta\gamma} + \partial_{\gamma}F_{\alpha\beta}) \end{split}$$

Lorentz Invariants

Lecture 21

Formulation
Maxwell's
Equations
Jacobi identity
Transformation
Properties of EM
Field
Fields of moving

There are two invariants we can construct from the field-strength tensor

$$F_{\mu\nu}F^{\mu\nu} = F_{0i}F^{0i} + F_{i0}F^{i0} + F_{ij}F^{ij} = 2(\mathbf{B}^2 - \mathbf{E}^2)$$

• On the last step, we used explicit forms of $F^{\mu\nu}$ and $F_{\mu\nu}$:

$$F^{\mu\nu} = \begin{pmatrix} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & B_z & -B_y \\ -E_y/c & -B_z & 0 & B_x \\ -E_z/c & B_y & -B_x & 0 \end{pmatrix},$$

$$F_{\mu\nu} = \begin{pmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & B_z & -B_y \\ E_y/c & -B_z & 0 & B_x \\ E_z/c & B_y & -B_x & 0 \end{pmatrix}$$

Thus $B^2 - E^2$ is a Lorentz Scalar

$$\mathbf{B}^2 - \mathbf{E}^2 = \frac{1}{2} F_{\mu\nu} F^{\mu\nu}$$

Lorentz Invariants

Lecture 21

Formulation
Maxwell's
Equations
Jacobi identity
Transformation
Properties of EN
Field
Fields of moving

• The result $F_{\mu\nu}\tilde{F}^{\mu\nu}=-4{f E}\cdot{f B}$ can be checked by using explicit form of $\tilde{F}^{\mu\nu}$:

$$\begin{split} F_{\mu\nu} = \begin{pmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & B_z & -B_y \\ E_y/c & -B_z & 0 & B_x \\ E_z/c & B_y & -B_x & 0 \end{pmatrix} \;, \\ \tilde{F}^{\mu\nu} = \begin{pmatrix} 0 & B_x & B_y & B_z \\ -B_x & 0 & -E_z/c & E_y/c \\ -B_y & E_z/c & 0 & -E_x/c \\ -B_z & -E_y/c & E_x/c & 0 \end{pmatrix} \end{split}$$

• Thus $\mathbf{E} \cdot \mathbf{B}$ is also a **Lorentz Scalar** (more precisely, a *pseudoscalar*)

$$\mathbf{E} \cdot \mathbf{B} = -\frac{1}{4} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

These are the only Lorentz invariants built from electromagnetic fields

Transformation Properties of EM Field

Lecture 21

Covariant
Formulation of
Maxwell's
Equations
Jacobi identity
Transformation
Properties of EM
Field

lacktriangle Since $F^{\mu\nu}$ is a second-rank tensor, it transforms according to

$$F'^{\mu\nu} = \frac{\partial x'^{\mu}}{\partial x^{\alpha}} F^{\alpha\beta} \frac{\partial x'^{\nu}}{\partial x^{\beta}},$$

This we can write as

$$F' = \Lambda F \Lambda^T$$
, where $\Lambda^{\mu}_{\ \nu} = \frac{\partial x'^{\mu}}{\partial x^{\nu}}$

• Specifically, let us consider a boost from K to K' where K' has velocity v in x-direction w.r.t. K, and origins coincide at t=t'=0. Then

$$\Lambda = \left(\begin{array}{cccc} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right),$$

where
$$\beta = v/c$$
 and $\gamma = (1 - \beta^2)^{-1/2}$

Transformation Properties of EM Field, cont. 7/13

Lecture 21

Covariant
Formulation of
Maxwell's
Equations
Jacobi identity
Transformation
Properties of EM

$$\Lambda = \left(\begin{array}{cccc} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

• Using this expression in $F' = \Lambda F \Lambda^T$, we find

$$F' = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\times \begin{pmatrix} 0 & E_1/c & E_2/c & E_3/c \\ -E_1/c & 0 & B_3 & -B_2 \\ -E_2/c & -B_3 & 0 & B_1 \\ -E_3/c & B_2 & -B_1 & 0 \end{pmatrix} \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Multiplying last two factors

$$F' = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\gamma\beta E_1/c & \gamma E_1/c & E_2/c & E_3/c \\ -\gamma E_1/c & \gamma\beta E_1/c & B_3 & -B_2 \\ -\gamma \left(\frac{E_2}{c} - \beta B_3\right) & \gamma \left(\beta \frac{E_2}{c} - B_3\right) & 0 & B_1 \\ -\gamma \left(\frac{E_3}{c} + \beta B_2\right) & \gamma \left(B_2 + \beta \frac{E_3}{c}\right) & -B_1 & 0 \end{pmatrix}$$

Transformation Properties of EM Field, cont. 8/13

Lecture 21

Formulation of Maxwell's Equations
Jacobi identity
Transformation
Properties of EM
Field

$$F' = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\gamma\beta E_1/c & \gamma E_1/c & E_2/c & E_3/c \\ -\gamma E_1/c & \gamma\beta E_1/c & B_3 & -B_2 \\ -\gamma \left(\frac{E_2}{c} - \beta B_3\right) & \gamma \left(\beta \frac{E_2}{c} - B_3\right) & 0 & B_1 \\ -\gamma \left(\frac{E_3}{c} + \beta B_2\right) & \gamma \left(B_2 + \beta \frac{E_3}{c}\right) & -B_1 & 0 \end{pmatrix}$$

Finally

$$F' = \begin{pmatrix} 0 & E_1 & \gamma(\frac{E_2}{c} - \beta B_3) & \gamma(\frac{E_3}{c} + \beta B_2) \\ -E_1 & 0 & \gamma(B_3 - \beta \frac{E_2}{c}) & -\gamma(B_2 + \beta \frac{E_3}{c}) \\ -\gamma(\frac{E_2}{c} - \beta B_3) & \gamma(B_3 - \beta \frac{E_2}{c}) & 0 & B_1 \\ -\gamma(\frac{E_3}{c} + \beta B_2) & \gamma(B_2 + \beta \frac{E_3}{c}) & -B_1 & 0 \end{pmatrix}$$

Writing out the individual vector components, we find

$$E'_1 = E_1; B'_1 = B_1 E'_2 = \gamma(E_2 - \beta c B_3); B'_2 = \gamma(B_2 + \frac{\beta}{c} E_3) E'_3 = \gamma(E_3 + \beta c B_2); bB'_3 = \gamma(B_3 - \frac{\beta}{c} E_2)$$

Thus the E and B fields mix under a Lorentz transformation

Lecture 21

Covariant
Formulation of
Maxwell's
Equations
Jacobi identity
Transformation
Properties of EM
Field

$$E'_1 = E_1; B'_1 = B_1 E'_2 = \gamma(E_2 - \beta c B_3); B'_2 = \gamma(B_2 + \frac{\beta}{c} E_3) E'_3 = \gamma(E_3 + \beta c B_2); bB'_3 = \gamma(B_3 - \frac{\beta}{c} E_2)$$

We can express this in (three) vector form as

$$\mathbf{E}' = \gamma [\mathbf{E} + c\boldsymbol{\beta} \times \mathbf{B}] - \frac{\gamma^2}{\gamma + 1} \boldsymbol{\beta} (\boldsymbol{\beta} \cdot \mathbf{E})$$
$$\mathbf{B}' = \gamma \left(\mathbf{B} - \frac{1}{c} \boldsymbol{\beta} \times \mathbf{E} \right) - \frac{\gamma^2}{\gamma + 1} \boldsymbol{\beta} (\boldsymbol{\beta} \cdot \mathbf{B})$$

- $\mathbf{9} \boldsymbol{\beta} = \mathbf{v}/c$
- lacksquare Check: take the component of \mathbf{E}' parallel to \mathbf{v} . This gives

$$\mathbf{E}' \cdot \mathbf{v} \equiv E_v' = \gamma E_v - \frac{\gamma^2 \beta^2}{\gamma + 1} E_v = \frac{\gamma^2 + \gamma - \gamma^2 \beta^2}{\gamma + 1} E_v = \frac{1 + \gamma}{\gamma + 1} E_v = E_v$$
 since $\gamma^2 - \gamma^2 \beta^2 = 1$

Electric and magnetic fields of relativistically moving point charge

Lecture 21

Covariant
Formulation of
Maxwell's
Equations
Jacobi identity
Transformation
Properties of EM
Field
Fields of moving

charge

- $\bullet \ \ \text{Charge q moves along a line at velocity } \mathbf{v} = v\mathbf{e_1} \ \text{in } K$
- The charge is at rest in the frame K'
- At $t=t^\prime=0$, the origins of the two frames coincide
- We have an observer P at impact parameter b (i.e. distance of closest approach) as shown
- Write electric and magnetic fields at point P in frame K' at time t'. P has coordinates

$$x' = -vt'$$
 , $y' = b$, $z' = 0$

Thus, from Coulomb's law

- To express this in terms of coordinates in K, we note that $r'^2 = b^2 + v^2t'^2$
- But we also have $ct' = \gamma(ct \beta x) = \gamma ct$
- Thus $r'^2 = b^2 + v^2 \gamma^2 t^2$ and we have

$$4\pi\epsilon_0 E_1' = -\frac{q\gamma vt}{(b^2 + v^2\gamma^2 t^2)^{3/2}} , 4\pi\epsilon_0 E_2' = \frac{qb}{(b^2 + v^2\gamma^2 t^2)^{3/2}} , E_3' = 0$$

Electric and magnetic fields of relativistically moving point charge, cont. 11/13

Lecture 21

charge

$$E_1' = -\frac{q\gamma vt}{(b^2 + v^2\gamma^2t^2)^{3/2}}$$
, $E_2' = \frac{qb}{(b^2 + v^2\gamma^2t^2)^{3/2}}$, $E_3' = 0$

We now use transformation laws

changing there $\beta \rightarrow -\beta$:

$$E_{1} = E'_{1}; B_{1} = B'_{1} E_{2} = \gamma(E'_{2} + \beta c B'_{3}); B_{2} = \gamma(B'_{2} - \frac{\beta}{c} E'_{3}) E_{3} = \gamma(E'_{3} - \beta c B'_{2}); B_{3} = \gamma(B'_{3} + \frac{\beta}{c} E'_{2})$$

to write

$$E_1 = E_1' = -\frac{q\gamma vt}{(b^2 + v^2 \gamma^2 t^2)^{3/2}}$$

$$E_2 = \gamma E_2' = \frac{\gamma qb}{(b^2 + v^2 \gamma^2 t^2)^{3/2}}$$

$$E_3 = \gamma E_3' = 0$$
, $B_1 = 0$, $B_2 = \gamma B_2' = 0$, $B_3 = \gamma \frac{\beta}{c} E_2' = \frac{\beta}{c} E_2$

Thus in the laboratory frame we see a magnetic induction

Electric and magnetic fields of relativistically moving point charge, cont. 12/13

Lecture 21

Covariant
Formulation of
Maxwell's
Equations
Jacobi identity
Transformation
Properties of EM
Field
Fields of moving
charge

$$E_1 = E_1' = -\frac{q\gamma vt}{(b^2 + v^2 \gamma^2 t^2)^{3/2}} , E_2 = \gamma E_2' = \frac{\gamma qb}{(b^2 + v^2 \gamma^2 t^2)^{3/2}}$$

$$E_3 = \gamma E_3' = 0 , B_1 = 0 , B_2 = \gamma B_2' = 0 , B_3 = \gamma \frac{\beta}{2} E_2' = \frac{\beta}{2} E_2$$

- Note that in the limit $v \to c$, we have $\beta \to 1$ and the magnetic induction equals the transverse electric field
- In the nonrelativistic limit $v \to 0$,

$$B_3 = \frac{v}{c} \frac{\gamma qb}{(b^2 + v^2 \gamma^2 t^2)^{3/2}} \longrightarrow \frac{vqb}{c(b^2 + v^2 t^2)^{3/2}} \implies \mathbf{B} \sim \frac{q}{c} \frac{\mathbf{v} \times \mathbf{r}}{r^3}$$

- We have used $vb = vr \sin \theta$.
- The result is just the Biot-Savart Law
- Finally, let us look at the field lines. We have

$$\frac{E_2}{E_1} = -\frac{b}{vt}$$

The electric field is still a central field in the frame K

Electric and magnetic fields of relativistically moving point charge, cont. 13/13

Lecture 21

Covariant
Formulation of
Maxwell's
Equations
Jacobi identity
Transformation
Properties of EM
Field
Fields of moving
charge

$$E_{1} = E'_{1} = -\frac{q\gamma vt}{(b^{2} + v^{2}\gamma^{2}t^{2})^{3/2}} , \quad E_{2} = \gamma E'_{2} = \frac{\gamma qb}{(b^{2} + v^{2}\gamma^{2}t^{2})^{3/2}}$$

$$E_{3} = \gamma E'_{3} = 0 , \quad B_{1} = 0 , \quad B_{2} = \gamma B'_{2} = 0 , \quad B_{3} = \gamma \frac{\beta}{c} E'_{2} = \frac{\beta}{c} E_{2}$$

• If we now look at the *magnitude* of the field, however, we find

$$|\mathbf{E}| = \frac{\gamma q}{(b^2 + v^2 \gamma^2 t^2)^{3/2}} (b^2 + v^2 t^2)^{1/2}$$

• Setting $b = r \sin \theta$, $vt = r \cos \theta$, we have

$$|\mathbf{E}| = \frac{\gamma q r}{r^3 (\sin^2 \theta + \gamma^2 \cos^2 \theta)^{3/2}} = \frac{q}{r^2 \gamma^2 (\sin^2 \theta / \gamma^2 + \cos^2 \theta)^{3/2}}$$

This gives

$$|\mathbf{E}| = \frac{q}{2^{2}r^{2}}(1 - \beta^{2}\sin^{2}\theta)^{-3/2}$$

• The lines of force, whilst central, are no longer isotropic