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Jacobi identity

Lecture 21 Jacobi identity: 0 Fig, + 9 Fya + OyFopg =0
Proof:

@ Math formula

5o o
A _ v

Jacobi identity et peaﬂ’YP = —det 6§ é 5’;\
8 6

@ Start from 9, Fr¥ =0

P =0 & PO, Fy, =0 NO,Fy, =0

@ Multiply by —eng+,

oo o
0= —€apype"’ O Fy, = det| 0 85 &5 |O,Fx,
sx 63 8

= 2(86F'ya + 8QFBA, + &YFaﬁ)



Lorentz Invariants
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@ There are two invariants we can construct from the field-strength tensor

Fu F* = Fo O + Fyo F'° + Fy; FY = 2(B® — E?
o J

@ On the last step, we used explicit forms of F#¥ and F,,:
Jacobi identity

0 Ez/c Ey/c E:/c

o _ | —Ba/e 0 B. -By
—Ey/c —B. 0 B, |

—E./c By —B: 0

0 —E;/c —Ey/c —E./c

o | Ex/c 0 B. —B,
nv E,Jc  —B. 0 B.
E./c By —Bax 0

Thus B2 — E? is a Lorentz Scalar

1
B2 -EZ= S P F™



Lorentz Invariants
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@ Theresult F,, F*¥ = —4E - B can be checked by using explicit form of
Frv;

0 —E;/c —Ey/c —E./c
0

o E./c B. —By
Jacobi identity Y Ey/c *Bz 0 Bg; ’
E./c B, —B. 0
0 B By B.
v _ —B, 0 —E./c Ey/c
—By E./c 0 —FEi/c
—-B. —Eyjc Eujc 0

@ Thus E - B is also a Lorentz Scalar (more precisely, a pseudoscalar)

1 ~
BB = Fu "

@ These are the only Lorentz invariants built from electromagnetic fields
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@ Since F*¥ is a second-rank tensor, it transforms according to

oy _ ox'H B oz'v
Oz dxB’

@ This we can write as
Transformation
Properties of EM

Field 8 yn
F' = AFAT, where A*, = x
oxv

@ Specifically, let us consider a boost from K to K’ where K’ has velocity v in
z-direction w.r.t. K, and origins coincide at ¢t = ¢/ = 0. Then

¥y =8 0 0

_| —B vy 0 0
A= 0 0o 1 0 |

0 0 0 1

where 8 = v/candy = (1 — /32)71/2



= Transformation Properties of EM Field, cont. 713
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vy =8 0 0

_| P vy 0 0
A= 0 01 0
0 0 0 1

@ Using this expression in F/ = AFAT we find

Transformation

Ezzemes of EM ,y 7,},/8 0 0
| —B v 0 0
= 0 1 0
0 0 0 1
0 Ei/c Ez/c Es/c vy =B 0 0
o | —Ei/e 0 B3 —Bs -8 v 0 0
—FE2/c —Bs 0 By 0 0 1 0
—E3/c By —Bi 0 0 0 0 1
@ Multiplying last two factors
vy =B 0 0 —vBE1/c vYE1/c E2/c E3/c
|8 vy 0 0 —vE1/c ’YBEl/C Bz —Bs
- 0 0 1 0 _7(§ —BB3) (B2 - Bs) 0 B
0 001 V(s 1 8B) (B2 +BE) By 0



= Transformation Properties of EM Field, cont. s1s
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Transformation .
Properties of EM @ Fi naIIy

Field

0 Br y(%2 = BBs) (52 +BB)
I —E 0 ~(Bs—pE2) —y(B:+B%)
—(£2 - B8B3) ’Y(BS*ﬁ? 0 By

(2 1 By) (B> + ) B

@ Writing out the individual vector components, we find

El = (B2 — BcBs); By =~(Ba + £ Es)

Ei = E1; Bi =B }
EY = ~(Es + BcBa);  bBjy =~(Bs — 2E»)

@ Thus the E and B fields mix under a Lorentz transformation



Transformation Properties of EM Field, cont.
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By =+(Bs — BcB3); B =~(Ba + £ B3)

E| = Ey; B, =B }
Bl = y(Bs + BcBa);  bBY =(Bs — £ By)

@ We can express this in (three) vector form as

Transformation
Properties of EM
Field

2
E’ZW[E+CﬁxB]—#B(ﬁ~E)

2
B/:w(B—éﬁxE)—#ﬁ(ﬁB)

@ B=v/c
@ Check: take the component of E’ parallel to v. This gives

232 2 232
- 1
VB Ty 1ty

E -v=E =~E, — =
v YL ’7+1U vt 1 v o

E, = E,

since v2 — 4282 =1



Electric and magnetic fields of relativistically

moving point charge 10/13

lesue 2 Charge ¢ moves along a line at velocity v = ve; in K

The charge is at rest in the frame K’

Att = t' = 0, the origins of the two frames coincide

We have an observer P at impact parameter b (i.e.
distance of closest approach) as shown

@ Write electric and magnetic fields at point P in frame
K’ attime t’. P has coordinates

Fields of moving

/ /
charge r=—vt , y=b, z2=0

@ Thus, from Coulomb’s law

dreoE; = —qut’'/r’® ; AdmeoElL =gqb/r'® ; Ei =0
B =0 . B, =0 ; B, =o.

@ To express this in terms of coordinates in K, we note that 2 = b2 + v2¢/2
@ But we also have ct’ = y(ct — Bz) = et
@ Thus 7’2 = b? 4 v242¢2 and we have

qyvt qb

’_ - [
dmeo By = (b2 + v242¢2)3/2 dmeo (b2 + v242¢2)3/2 B3 =0



Electric and magnetic fields of relativistically

moving point charge, cont.

Lecture 21 E = ,# /
1 (b2 + v242¢2)3/2

@ We now use transformation laws
E| = Eq;
E} = ~(E2 — BceBs);
Eé = ’Y(Eg =+ ,BCBQ);
changing there g — —f:
E, = Ej;
Ea = y(Ej3 + BeBy);
E3 = v(Ey — BcB));

Fields of moving
charge

to write
o qyvt
Er=F1= (b2 + v242£2)3/2
b
By = 'VEé _ Yq

(b2 + v242¢2)3/2

Bz = (02 + v24212)3/2

11/13

b
g E, =0

B, =B
Bl =~(By + £ E3)
bBY = y(Bs — £B»)

B1 =B,
By = (B} — gE@
BS = 'Y(Bé + ZEé

Es=~E}=0, Bi=0, By =~By =0, Bgz’yéEézéEg
C C

@ Thus in the laboratory frame we see a magnetic induction



Electric and magnetic fields of relativistically
moving point charge, cont.

Lecture 21

o qyvt oo vab
By =FEr = (b2 + v242¢2)3/2 B =~k = (b2 + v2~2t2)3/2
Bs=~E, =0, Bi=0, By=+B,=0, Bg:yéEézéEz
(& C

@ Note that in the limit v — ¢, we have 8 — 1 and the magnetic induction
equals the transverse electric field

Fields of moving

charge @ In the nonrelativistic limit v — 0,
v Ygb vgb qVvXxr
By = — — — B~ =
87 T (02t v2y242)3/2 (b2 + v2t2)3/2 c 13

@ We have used vb = vrsin6.

@ The result is just the Biot-Savart Law

@ Finally, let us look at the field lines. We have
Ey b
F1 Tt

@ The electric field is still a central field in the frame K



Electric and magnetic fields of relativistically
moving point charge, cont.
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qyvt / vgb
Ei=FE, = — , Fo=qE)= ——————
1 1 (02 + v24242)3/2 2T T 2 1 024242)3/2
B B

E3=~vE3=0, Bi=0, Bo=vBy =0, B3=’YZE§:ZE2

@ If we now look at the magnitude of the field, however, we find

Fields of moving

charge _ 9 2 2,2\1/2
Bl = (b2 + v242¢2)3/2 (b7 +07t%)

@ Setting b = rsin 6, vt = r cosd, we have

Yqr B q
r3(sin? 6 4+ 42 cos2 0)3/2  r242(sin? 0/~2 4 cos? )3/2

|E| =

@ This gives
Bl= 550 — B%sin?6)3/2

@ The lines of force, whilst central, are no longer isotropic
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