A puck of mass m is moving without friction on the x-y plane and is attached to the origin (x=y=0) with a spring of spring constant k and a "relaxed" length L.

- 1. Using polar coordinates r, ϕ , write down the Lagrangian for this situation
- Write down the generalized momenta and determine which ones are conserved.
- 3. Write down the Euler-Lagrange equations for the coordinates.
- 4. Find the necessary condition for equilibrium motion at fixed distance r_0 around the center with constant angular velocity $\dot{\phi} = \omega$, i.e, express r_0 in terms of ω .
- 5. Parametrize small deviations from the equilibrium by introducing new coordinates δr and $\delta \phi$ with $r(t) = r_0 + \delta r(t)$ and $\phi(t) = \omega t + \delta \phi(t)$. In the following, assume that $\delta \phi(t=0) = \delta \dot{\phi}(t=0) = \delta \dot{r}(t=0) = 0$ while $\delta r(t=0)$ is not necessarily zero. Plug this ansatz into your Euler-Lagrange equations and evaluate by discarding all terms that contain more than one small factor (δr or $\delta \phi$ and their derivatives), as well as using the equilibrium condition to replace r_0 .
- 6. Show that the resulting equations have as their solutions small oscillations of δr around the equilibrium value and calculate the frequency of these oscillations in terms of ω and L. (Don't worry about the corresponding solution for $\delta \phi$.)