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Chapter 2

Boundary-Value Problems in

Electrostatics

In this chapter we will examine solutions to Poisson’s and Laplace’s equations in electrostat-
ics. Before we proceed to a formal solution of Poisson’s equation, we will look at a few simple
solutions. In the next section we will exploit the uniqueness theorem in a particularly neat

way through the Method of Images, but first, back to Gauss’ Law for a simple example. ..

2.1 Preliminaries

Example: Charged sphere inside grounded, conducting shell.

A sphere of radius a, carrying a spherically symmetric charge distribution with the total
charge @, is placed inside a grounded, conducting sphere of radius b (b > a). Find the
potential in the region a < r < b.

® = (0 on surface

R

Thus we have to solve Poisson’s equation, subject to the boundary conditions ®(r) = 0 for

39
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r =0b. Apply Gauss’ Law to the region a < r < b:

Q .
E(r) = p— e ; a<r<b (2.1.1)
for which the potential is
¢ = ¢ Dy ; a<r<b, (2.1.2)
4megr

where ® is a constant.

The boundary conditions tell us that & vanishes at » = b. Thus we have

O /1 1
e = e—— <r<bop. .
o e \r " 3) a<r<hb (2.1.3)

Let us check that our solution for ®(r) satisfies Poission’s equation for a < r < b. We are
implicitly working in spherical polars (r, 8, ), therefore (from your favourite vector-calculus

course, or back of Jackson):

2 _ 19/(.00 b w02 (a0 22 82—(1)
Vedb(r,0,p) = S\ 5, +r2sin29 SmGae smeae +8g02
Q 19 f,( 1
Amey 12 Or r?

_ Q19 _
_ 72%(_1) _ 0 (2.1.4)

4dreg

Hence ®(r) satisfies V2®(r) = 0 in the charge free region a < r < b, and satisfies the
boundary condition ®(b) = 0 on the surface. Therefore, it is the unique solution of Poisson’s
equation in this region. Of course, due to spherical symmetry, ®(r) doesn’t depend on 6 or
¢, and therefore the calculation of the V2®(r) is particularly simple.

Finally, let us find the surface charge density on the conductor. At the boundary of the

conductor,

Q Q .
Y - , 2.1.5
4renh? © 47renb? n ( )

where 11 is the normal to the conductor surface, oriented outward. Thus the surface charge

density is given by

> — _% (2.1.6)

which has negative sign compared to (), as expected. Indeed the total induced charge on

the conductor is equal and opposite to that of the charge distribution.

Once again, the method was particularly simple in this case because of spherical symmetry.

Similar simplifications occur in the case of cylindrical symmetry.
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2.2 Method of Images

The uniqueness property of the solutions of Laplace’s and Poisson’s Equations leads to a

neat method of obtaining their solution in particular geometric cases.

Consider a charge ¢ placed at ry = hk above an infi-

nite grounded conducting plane at z = 0, as shown on q
the right. Then on the conducting plane the poten- 1
tial must vanish. Thus, in the space above the z =0 P

plane, we have the Poisson’s equation (a1

Vi®(r) = —4mqd®(r — 1) , (2.2.1)

with the boundary condition

B(r)]. =0 . (2.2.2)

=l
|
!

Now consider a system with a charge ¢ placed at rq, q’
and a charge —q placed at —r; in the absence of the P
conducting plane, as shown on the right. The poten- —
tial ®(r) = ®y(r) + Po(r) is

. q 1 n —q 1
Cdmeg|r —rq|  4meg 414

d(r) (2.2.3)
At z = 0, the potential vanishes because here
points are equidistant from the positive and negative

charges. Thus, we have ®(r)|.—o = 0. Furthermore,

the potential ®(r) satisfies the Poisson’s equation —q

Vi®(r) = —4mq [0°(r — 1) = 0°(r +11)] . (2.2.4)

In the space above the plane z = 0, it coincides with Eq. (2.2.2) since *(r + ry) vanishes
there. In other words, for z > 0, we have Poisson’s equation for a point charge at ry, since
no further changes have been introduced in this region (the only charge we have introduced
is below the plane z = 0). Thus, by our uniqueness theorem, the potential above z = 0

plane is the same as that of a charge ¢ placed above a grounded sheet at z = 0.
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2.2.1 Point Charge near grounded Sphere

® =0 P

Consider a point charge ¢ placed at a dis-
tance b from the center of a grounded con-

ducting sphere of radius a < b. We will now

show that an equivalent problem is to place

an image charge ¢ = —qa/b as shown, at
a distance ¥ = a?/b from the center of the
sphere.

By symmetry, the image charge ¢’ must lie along OQ), at a distance ¥, say, from the center

of the sphere. Thus the resultant potential of the image system is

1 q q
o = . 2.2.5
D {|r—b| * |r—b’|} (225)

We need two equations to determine ¢’ and ’; we will obtain these by imposing that &

vanishes at the two points where OQ) intersects the sphere

1 q q B
47T60{b—a+a—b’} =0

1 q q
= 0.
47reo{a+b+a+b’}

For the ratio ¢’/q, we obtain

q a—-0b  a+l

¢ b—a  a+b’

(2.2.6)

If A/B = C/D = «, then (A+ C)/(B+ D) = (aB + aD)/(B+ D) = «. Hence,
A/B=C/D=(A+C)/(B+ D) and we have ¢'/qg = —a/b or

q = _q% , (2.2.7)
Now, from ¢'/q = (—a)/b and ¢'/q = (a — ') /(a — b) we have ¢'/q = (=b")/a and
q/q=(—a)/b=(=b)/a = b =d’/b. (2.2.8)

Finally, let us verify that ® does indeed vanish for all points on the surface of the sphere.
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On the surface,

2 4
r—b|? = a? —2a%0089+%
a2
= {a2 — 2abcos 6 + b2}

2

- Z_2|r — b2, (2.2.9)
and hence
1 q qa 1

®(r)|,—, = @ = 0. 2.2.10
(x)l Ame {yr b br— b|a/b} (22.10)

Thus we have

1. The image system satisfies the original Poisson’s equation for r > a since the only

additional charge we have introduced is in the region r < a.
2. The potential for the image system satisfies the condition ® =0 at r = a.

Thus, by the uniqueness theorem, the required potential for r > a is

1 q qga 1
®(r) = - — 2.2.11
)= e {|r—b\ b |r—b’\} (22.11)

with b’ = ba?/b%.

Induced charge density

In Chapter 1, we showed that the induced charge density on the surface of a conductor is
oc=¢E-n (2.2.12)

where n is the outward normal to the surface.
From Eq.(2.2.11), we have

1 r-b ga r—bad*/V?
E = -Vo = - = 2.2.1
(r) = —Vel) = {q T—bPF b r—ba/i2P (22.13)

At the surface, [r — ba?/b?| = (a/b)|r — b|, yielding

1 r-b r—bd/l* | g r—b rb’/a®-b
dmeo \"Tr—bP (/b —bP S " dmeo \r—bF  [r—bP J
(2.2.14)

E(r)|r:a =
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We see that terms proportional to b cancel, and the remaining terms are proportional to r:

q 1-1b*/a*

E r=a —
(x)l Areg ' lr — b3

(2.2.15)

Thus, on the surface of the r = a sphere, electric field has only radial component, i.e. it is

normal to the sphere’s surface. In our case, r = a €, and n = ¢€,, thus

b — a?

q a 2/ 2 q
—eE-n=_1 S § A — 1V = — . 2.2.16
7= R 47 |aé, — b3 {t*/a J 47ta (a? — 2abcos 6 + b2)3/2 ( )
Note that the surface charge density is not uniform. Still, one can verify that
2w ™ ™
/adS’ = a2/ dgb/ o sinfdf = 27Ta2/ osinfdf =—qa/b=q", (2.2.17)
S 0 0 0
as expected. Indeed,
q b®—a? 2/7r sin 6 df
ds =— — 2 . 2.2.18
/SO ar o o (a2 —2abcosb + b?)3/2 ( )
Changing integration variable: cos = —z, sin 6df = dz, we get
1
qa .5 o dz
dsS =——(b" —
/SU 2( a)/_l (a? + 2abz + b?)3/2
qa .o o 1 1 1 a ,
=——0b"—a")=— - (—2)- - =—q-=¢ . 2.2.19
a5y (2 <b+a b—a) 5 1 (22.19)

2.2.2 Point charge near insulated conducting sphere

at potential V

This is a simple modification of the method above. To increase the potential at all points on
the sphere by the same amount V', we introduce an additional image charge ¢ = 4mega V' at
the center of the sphere yielding & = V' at r = a. Because we have introduced no additional
charges in the region » > a, we apply the uniqueness theorem to say that the resultant

potential is

1 q qa 1 a
P = - — -V. 2.2.20
(x) 4mo{yr—b\ b |r—ba2/b2|}+r (22.20)

The total charge on the conducting sphere is now
Q=q¢+q4=q +4nreaV . (2.2.21)

Thus the potential V' on the sphere is related to the total charge on the sphere ) by

Q—d
V= e (2.2.22)
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2.2.3 Point charge near insulated, conducting sphere
with total charge ()

Using Eq. (2.2.22) to express V in Eq. (2.2.20) in terms of @), we obtain

B(r) = — { ¢ .4 }+Q_q/ (2.2.23)

" 47 r —b| |r—ba?/t? dmeqr
or
1 q ¢ Q—d
d(r) = . 2.2.24
(x) 47T60{]r—b\ LT Ry R (22.24)

The first term here is the potential due to the original charge ¢, the second term corresponds
to the image charge ¢’ located at b’, and the third term corresponds to the image charge
Q@ — ¢ located at the center of the sphere.

We can now calculate the Force on the charge ¢; this is just given by Coulomb’s law for the

forces between ¢ and the two image charges:

1 fQ—¢ q :
F= b b—-b . 2.2.2

Using b’ = ba?/b? gives

1 g¢b q
F— Dl ¢+ —9 -
dmreq b3 {Q ¢+ |1—a2/b2\3( /)

1 g¢b , 1 1 ¢b a [a*/b* — 242 /b2
—Feob—g{@‘q {1‘ <1—a2/bz>2ﬂ - 4mob—3{@ 0 [ (1= /) ]}

1 gb qa®(2b* — a?)
ey b {Q b(b2 — a2)? : (2.2.26)

Note that, due to the induced surface charge density on the conductor, the force is always

attractive when the distance b — a is sufficiently small irrespective of (). Namely,

L ¢gb ¢ q¢ . q

F _ - — —
lbe = ey b 4(b— a)? dreg e 2(b—a)]?’

(2.2.27)

i.e. the force tends to that between two charges g and —gq separated by the distance 2(b—a).
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2.3 Formal solution of Poisson’s Equation:

Preliminaries

We will now proceed to a formal solution using Green functions. First, however, a mathe-

matical digression. . .

2.3.1 Dirac /-Function

The Dirac d-function is defined as follows:

1.

0z —a)=0 it  x#a. (2.3.1)

0 otherwise

/d:ré(x—a):{ L ifach (2.3.2)
R

The delta function is not strictly a function but rather a distribution; it is defined purely

through its effect under an integral. It immediately follows from the definition that

/ dz f(2)6(z — a) = f(a) (2.3.3)

if a lies within the region of integration.
The -function §(x — a) may be thought of as the limit of a Gaussian centered at a in which

the width tends to zero whilst the area under the Gaussian remains unity.

dzr—a) = 11_1% de(z — a) (2.3.4)
1 r—a 2
de(r —a) = e (2.3.5)

e

It is easy to see that lim. o d.(z) = 0 if x # a and ffooo de(r —a) = 1. To this end, we use

the basic Gaussian integration formula

/_OO e ¥de = /7 (2.3.6)

and its modification

& 2 N
T dr = 4 — . 2.3.7
/_ e x - ( )
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A derivation of the Gaussian integration formula as simple as “2x 2 = 4” proceeds as follows.

Denote

IE/ e dr . (2.3.8)

e}

I x I:/ e"”Qd:c/ eyZdy:/ dyc/ dy e~ @ +v°) (2.3.9)

Treat x and y as coordinates on 2-dimensional plane, and introduce polar coordinates (p, ¢).

Then

Then 22 + 3% = p? and dx dy = pdp dp, which gives

27 [e’s) 0
IxI =/ dp / pdp e = ”/ d(p*)e ™ =7 . (23.10)
0 0o =~ 0
jf—/ d(p®)/2 %{_’

Since I x I = m, we have I = /7.
Let us check the property (2.3.3)

[e.9]

12% dc(x —a) f(z)dz

~ lim /_Z \/17?66() [f(a) (2 —a)f'(a) + %(x a2 f"(a) + ] dz

=l [f(a) 40+ 1ef"(a) + O] do = f(a) (2.3.11)

Here, we noticed that the integral with (z — a) has the integrand that is odd with respect
to the point z = a, and also used the integral

> 2 d [* 2 1
/ e P dy = —— e dy = —, | 2 . (2.3.12)

o da J_ 200\ «

There are some simple relations that follow from Eq. (2.3.3)

1. The d-function is a derivative of a step function 0(z):

1 >0
0 = - 2.3.13
(z) { 0 <0 ( )
Indeed, take the integral over a segment that includes x =0, e.g., —B <z < A, with
A B >0,
A A A
[ 1@ 0@ do=f@ @) - [ o) o)
-B - —B

A
)= [ doria
— F(A) — [£(A4) - £(0)] = £(0) (2.3.14)
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On the other hand,

/_ dx f(z) 6(x) = f(0) . (2.3.15)

B

Hence, §(z) = ¢'(x) (and §(x — a) = 0'(z — a)).

. Counsider now the derivative of the delta function:

/da: f(x)d (x —a)

= —/d:vf’(x)é(:n—a)

integ. by parts

- @

. Let us see what happens if we rescale the argument of the delta function: §(z) — d(yz).
If v > 0, then

| i@ st o= [ g s 2= 19 (2:3.16)

So, in this case 0(yx) = d(x) /7.
If v <0, then
> d 0
| 1@ st de= [ s o 2 =10 (23.17)

So, in this case 0(yx) = —d0(z)/7.
Combining the two results, we conclude that 6(yx) = d(z)/|v|.

. Consider now the delta function with a function g(x) as its argument. Obviously, only

the regions of x, where g(z) vanishes, are important. Let x;’s be the zeros of g(x), and

take x = z; + y in the vicinity of these roots. Then

/dﬂﬂf Z/dyfwy 9(wi +))
—Z/_ dy [f (x:) + yf'(z:) + .. 10[g(z:) +yg'(z:) +..] (2.3.18)

Since g(x;) = 0, we deal with [yg'(x;)] = d(y)/|g'(x;)|, which gives

/dxf Z P x’ (2.3.19)
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5. The definition extends naturally to three (or higher) dimensions:

so that
/ B d(x — X) = { L ifxXeV (2.3.21)
% 0 otherwise

Note that it is this last property that defines the multi-dimensional J-function, with
this simple representation in a Cartesian basis; you have to be a little careful when

working in curvilinear coordinates.

Example. Let us show how one can use the properties of the J-function to change integration
from, say, Cartesian 2-dimension variables x,y to polar coordinates p, . To this end, we
utilize that

/000 d(p*)6(p* —2® —y*) =1 (2.3.22)

and

2

| cos g

/0 ' dpd (sinp —y/p) = (2.3.23)

where g is a root of the equation sin ¢ = y/p, and cos g is the derivative of (sinp — y/p)
at the root. Note, that sin = y/p has two roots, both having the same absolute value of
the derivative at the root (that explains the factor of 2 on the right hand side). Evidently,
| cos wo| = |x|/p. Thus, we have

/ dx/ dy ...
> > = 2 2 o [ . ||

= dx dy d(p*)6(p* —z* —y) de 0 (sinp —y/p) 2 (2.3.24)
—00 —o0 0 0

Now, it is easy to check that

dy5 sinp —y/p)=p (2.3.25)

\

and

/ dz |z 6(p* — 2* — ¢ =/ 0(p* —x —y)+/ooodxx5(p2—x2—y2)
—/0 d(z*)6(p* —2* —y*) = 1. (2.3.26)
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00 ) 1 o0 2w
/dx/ dy...:§/ d(pQ)/ dp...

0 0
oo 2
:/ pdp/ dp... . (2.3.27)
0 0

As another simple illustration of the power of the d-function, let us return to the expression,

Hence,

Eq. (1.5), for the potential due to a continuous charge distribution

1 /

P(x) = —/ d*x’ ﬂ. (2.3.28)
drreq Jy |x — x/|

We now introduce the d-function to enable us to write a set of N discrete charges ¢; at x;

as a charge distribution
p(x) =D 6D (x —x,) (2.3.29)

so that

Ca:08) (! — x.
CI)(X) — 1 /de/quz(S (X XZ)
v

47eg |x — x|
1 4
= 2.3.30
47eg ; |x — x| ( )

which is our familiar expression for the potential due to a set of point charges.

Poisson’s Equation for a Point Charge
We have already seen (see Eq. (2.1.4)) that
Vi(1/r)=0 1 #0. (2.3.31)
Furthermore, from our proof of Gauss’ law, we can see that
/dV V3(1/r) = —4n. (2.3.32)
Indeed, from the divergence theorem,
/dVV V(1)) = fgdSﬁ V(1) | (2.3.33)

Using V(1/r) = —é&,/r? and choosing a sphere of radius r as the surface S (in which case
n=e, and dS = r?df2), we get

dV V*(1/r) = — [ dQ = —4x . (2.3.34)
/ /

Thus we can identify V?(1/r) = —470® (x) and write
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V2 (L) 4 (x — %) (2.3.35)

[x = x|

2.4 Formal Solution of Boundary-Value Problem

using Green Functions

Our starting point is Green’s theorem, Eq. (1.11):
[ )T () = )90,
1%
— [ )V a() = 2) V() - malS (2.41)

where the “primed” denotes differentiation with respect to the primed indices. Let us apply

this for the case when ¢ (x’) = —lx_lxl|a

and thus satisfies

V2 (x) = —4m6® (x — X) | (2.4.2)

i.e. 11(x’) is proportional to the potential produced by a point charge located at x, while
ho(x') = O(x') satisfies

V20 (x') = —p(x') /e , (2.4.3)

and hence may be interpreted as a potential generated by a charge distribution with density
p(x). This yields

foe (it (29 romre o}

— /dS’ n- { = _1 7 V'o(x') — o(x )V (|X _1 X’I) } . (2.4.4)

Applying our rule for integrating over J-functions, we obtain a relation

P(x) _L/‘/d%/ﬂ

e |x — x/|
1 , 1 (9(1)(X/) N O 1

between the potential ®(x) in a volume V and the values of ®(x') and d®(x’')/On' on a
surface S, which is the boundary of V. The function 1/|x — x’| is said to be a Green

function for the problem.
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The crucial property of ¥;(x’) that allowed us to extract ®(x) (i.e. (X)) as a separate

term, was V29, (x') = —476®) (x — x’). The solution of this equation, and hence, the Green

function is not unique: it is just a function satisfying
V2G(x,x) = —4m6®) (x — ¥/).

In general, one may write it in the form

1

T x—x

G(x,x) + F(x,x),

where F'(x,x’) is a solution of Laplace’s equation
V?F(x,x') = 0.

Thus our expression for the potential can be generalized to

(2.4.6)

(2.4.7)

(2.4.8)

1
O(x) = 4deq

1
+— ds’ {G(X, x')

A Js—ov

/ d*x’ G(x,x")p(x')

v

0d(x')
on’

- @(X’)T} (2.4.9)

0G(x,x")

The utility of this generalization is the following. In Eq.(2.4.5), the surface integral involves

both ®(x’), and 0®(x')/dn’; in general we cannot specify both simultaneously at a point

on the surface, since the problem is then overdetermined. Thus in Eq.(2.4.5 ) we have an

implicit equation for ®(x), with the unknown also appearing under the integral on the right-

hand side. In Eq.(2.4.9), we can choose G(x,x’) so that the surface integral depends only

on the prescribed boundary values of ® (Dirichlet) or 0®/0n’ (Neumann).
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2.4.1 Boundary Conditions on Green Functions

We will now consider the boundary conditions we have to impose on the Green Functions to
accomplish the above aim.

Dirichlet Problem

Here the value of ®(x’) is specified on the surface, and therefore it is natural to impose that

the Green function Gp(x,x’) satisfy

Gp(x,x') =0 forx' on S, (2.4.10)
and thus
1 1 /
d(x) = /d%ﬂ%wng@ﬁ———/dgéwﬂgﬁfifl (2.4.11)
Amey Jy At Jg on'

Thus the surface integral only involves ®(x’), and not the unknown 0®(x’)/on’.

Neumann Problem

Here it is tempting to construct the Green function Gy (x,x’) such that

/
%%%ﬂ:0MfmS (2.4.12)
However, recall that the Green function satisfies
/
/dS’% = /d?’x’ VG N (x,X) = —4r, (2.4.13)
S

and thus 0Gn(x,x’)/0n’ cannot vanish everywhere. The simplest solution is to impose

OGN (x,X) 4 ,
—_— = —— 2.4.14
E 3 vx' e S ( )

where S is the total area of the surface. Thus the solution is
1
/ 0’ G (3, X' p(x)
1%

- 4dmeg
0P (x') 1 , ,
o —l—g/SdS o(x') (2.4.15)

®(x)

1
d !/ /
+_47r i S'Gn(x,x")

where the final term is just the average value of ®(x’) on the surface S. The inclusion of this
term is perhaps not surprising; recall that the solution to the Neumann problem is unique

only up to an additive constant.
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2.4.2 Reciprocity relation for Gp(x,y)

For the Dirichlet problem, we have Gp(x,y) = Gp(y, x).

Proof
Apply Green’s theorem for the case 1 (x') = Gp(x,x’), and 19(x') = Gp(y,x'):
| 4 Golx.x) 9 Gly. X) = Giply,xX) VG, X)) =
v

/ dS'n - (Gp(x,x)V'Gp(y,x') — Gp(y,x)\V'Gp(x,x")).
s

But for the Dirichlet problem Gp(x,x’) vanishes for all x’ € S, and hence the right-hand

side of the above is zero. Thus we have
/d3x’ {Gp(x,x){-4m6¥(y — x)} = Gp(y,x) {46 (x —x)}} =0 (2.4.16)

and hence

GD (Xv y) = GD(Y? X)

2.5 Methods of Finding Green Functions

The secret, then, to the solution of boundary value problems is determining the correct Green

function, or equivalently obtaining the function F'(x,x’). There are several techniques:

1. Make a guess about the form of F(x,x’). Here we recall that F' is just the solution
of the homogeneous Laplace’s equation V?F(x,x’) = 0 inside V, and therefore is just
the solution of the potential for a system of charges external to V. In particular, for
the Dirichlet problem, since G'p(x,x’) vanishes at X’ € S, we have that F'(x,x’) is just
the potential of that system of charges external to V' which, when combined with a
point charge at x, assures that the potential vanishes on the surface. And finding that

system of charges is precisely what we were doing in the Method of Images. ..

2. Expand the Green function as a series of orthonormal eigenfunctions of the Laplacian

operator. We will be exploring this method later in the Chapter.



Boundary-Value Problems in Electrostatics 55

2.5.1 Dirichlet Green Function for the Plane

Potential for Dirichlet boundary conditions

oG !
O(x) = / &’z Gp(x,x)p(x') — € / ds’ ‘D(X')M- (2.5.1)
Vv S 8n
When there are no explicit charges, then
oG !
B(x) = —60/ dS’@(x’)M. (2.5.2)
S 871/
The Green function for the plane is
1 1 1
G ) = - 2.5.3
p(x,x) dreg Lx/ —x|  |[¥+x|]’ ( )
or in components
1 1 1
Gp(x,x') = —
dmeo | V(@' 2P+ —yP +(Z =2 V@ -+ -y + (2

(2.5.4)

Consider a boundary-value problem specified on a conducting xy plane, with a constant
potential ®(z,y,z =0) =V for > 0 and ®(z,y,z =0) = 0 for x < 0 (the two half-planes
may be considered as separated by a nonconducting line at z = 0).

Let us find the potential above the zy-plane, i.e. for z > 0. Then we have 0Gp(x,x’)/On’ =
—0Gp(x,x')/02' thus we need

0Gp(xxX) 10 |
0 gy A0 | (2 —2)2 (Y — )2+ (2 — 2)2]V2

— 1 }
[(.Z'/ — iL‘)2 + (y/ _ y)2 + (,Z’ + Z)2]1/2

:i (_%) [[(a:’ —x)2 + (y’zi_y)z2 + (2 = 2)?]2
2+ z

_ } | (2.5.5)

[(ZE/ — I)2 + (y/ _ y)Q + (Z’ 4 2)2]3/2

Projecting on 2z’ = 0 gives

0Gp(x,x’)
0z

_ . (2.5.6)

€0

As a result,

V (0.] oo dy/
P = — ! . 2.5.
(X)‘z>0 ot z /0 dx /_Oo [(33'/ _ x)2 T (y/ _ y)2 + 22]3/2 ( 5 7>




56 Chapter 2

Integral over 3/

- P )2 (yf — )2 4 22]3/2 - I )2 2 213/2
(2" —2)? + (Y —y)* + 27 (2" —2)" + 2" +n?]

n ¢2

[ L B oo L
— /oo (2 +n2)32 2/0 PR (2.5.8)

Change variable n = ( tan 6, dn = (df/ cos® 0, and (? + n? = ¢*/ cos? . Then

o dn ™2 Cdf cos*h 1 [™? 1 1
/O (CQ + 772)3/2 /0 COS2 9 §3 <’2 /0 cos §2 (ZE’ _ J,’)Q + 22 ( i) 9)

Thus,

Vz [ dx’
d a0 = —— _— 2.5.1
(X)l >0 T 0 (ZE, —.T>2 +22 ( 5 O)
Integral over x’
— = —_— 2.5.11
[ e[ a5 251
13

Change variable £ = ztan 6, d¢ = 2df/ cos? 0, £ + 2% = 22/ cos® §. Then

oo d w/2 do 20 1 w/2 1
252:/ Z_Zg:_/ dgz_[zﬁan—l(z)],
—z 5 +z tan—1(—z/z2) cos?f z z —tan—1(z/2) z L2 <

(2.5.12)
Finally,
vV Vv
®(X)|.0 = = + — tan ™! (§> . (2.5.13)
2 7 z
Introducing polar coordinates in xz-plane: z = pcos¢ , © = psin¢ = x/z = tan ¢ we have
1 ¢
Px)s0 =V |5+ - 2.5.14
o= |5+ ] (25.14)

Thus, equipotential surfaces correspond to planes having a constant angle ¢ with the zy-plane,
with ®(¢ = 0) = V/2 on the zy-plane itself, and, as expected, ®(¢ = 7/2) =V on the z > 0
part of the zy-plane, while ®(¢ = —7/2) = 0 on the = < 0 part of the xy-plane.
Calculating electric field:

19 Vo
B=-VO(x) = 4500 =~ ¢ (2.5.15)
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Thus, the lines of forces are given by semi-circles going from the right half of the zy plane
to its left half.

On the right half of the plane, z > 0, the electric field is directed vertically up, with the
strength |E, | = V/7zx, and the surface charge density there is

Bl V

€ TET

o(x>0) =

On the left half of the plane, x < 0, the electric field is directed vertically down, with the
same strength |E_| = V/7mp = V/7w|z|, and the surface charge density is given there by

@_V_V

<0)=-— - - .
ol@ ) €0 Teolx|  meox

2.5.2 Dirichlet Green Function for the Sphere

® =0 P

We saw earlier how to use the method of images to construct the potential ®(x’) for a point
charge at x outside a grounded conducting sphere of radius a. In particular, for a charge ¢,

at a distance b from the center of the sphere, the potential was given by

q 1 a/b
¢@%7M%{h—b(_h—bﬁwﬂ}' (2:5.16)

Thus ®(x’) is precisely the Green function Gp(x,x’) that we need. Note that you have to

be careful to distinguish the variable we are integrating over, x’, and the variable at which
we are evaluating the potential, x. Perhaps counter-intuitively, it is at the point x that we

place our point charge.
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0 From Eq.(2.2.11), we have that the Green function is

\ > vy G x) 1 { 1 a }

" dreg X —x|  z]x —xa?/s?|

(2.5.17)

and it is easy to check that, indeed, G(x,x') = G(xX/, x).

VZ

Introducing v as the angle between x and x’, we can rewrite this as

1 1
(22 4+ 22 — 22’ cosy)V2  (2222/a? + a? — 2z’ cos ) /2

G(x,x') = (2.5.18)

Here, cosy = n-n’ with n and n’ being unit vectors in the directions of x and x’ respectively.

It can be expressed in terms of the spherical polar coordinates of x and x’, where

x = xsinf cos & + xsinfsin gy + x cosh2

and
x' = 2'sin# cos ¢'T + 2’ sin @' sin @' + 2’ cos '3 .
Then
cosy=n-n" = (sinfcosp,sinfsinp,cosh) - (sinb cosy’, sin b sin ', cosd')
= sinfsinf’ cos(p — ¢') + cosfcos b’ . (2.5.19)

The general solution for the potential is then

D(x) = — /‘/de’G(x,x’)p(X')_i/

 dre AT Jg

0G (x,x')

dS' &(x') 5

(2.5.20)

Thus we need the normal gradient of the Green function to the surface, which points inward,

8_G
on’

surface o’
1 { 2a — 27 cosy 21%a/a® — 2x cosy }

2 | (22 + a® — 2az cos )32 (22a%/a? + a® — 2ax cos )32
% —a?
= — . 2.5.21
a(z? 4 a® — 2ax cosy)3/? ( )

Thus we have all the ingredients to solve the Dirichlet problem outside a sphere of radius a.
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2.5.3 Solution of Laplace’s equation outside a sphere comprising
two hemispheres, the upper at constant potentials VV and

the lower one grounded

Because the source is zero, we only need the surface term from Eq. (2.5.20)

oG !
B(x) = —e / 48" o(x) 285 X) (2.5.2)
S 8n’
Now dS’" = a?dy'd(cos§'), yielding
1 ) 2 1 aG
d(x) = 30 /0 d(p/V/O d(cos 9’)%
ey 1 a(a? — a?)
= — do' | d o' . 2.5.23
4 /0 7 /0 (cos )(a2 + 22 — 2ax cosy)3/2 ( )
As already mentioned, we can express cos~y in terms of the spherical polar coordinates of x
and x':
cosy = sinfsin 6’ cos(¢p — ') + cosf cos b’ | (2.5.24)
giving
1% 2 ! d(cost)
P(x) = — 2—2/d’/ . 2.5.25
(x) 47Ta(x @) 0 t o (a?+ 2% — 2ax cosv)3/? ( )

In general, we cannot obtain the solution in closed form; 7 is just too complicated a function

of # and ¢’. However, we can study the solution in specific cases.

Solution above North Pole

On the z-axis, § = 0, so that cosy = cos €', and |x| = z. Denoting u = cos@’, we have

V

(2)pg = -z - o) 2 /0 ( du

. 2.5.26
a? + 22 — 2azu)3/? ( )

The integration can be performed easily, by making the substitution y = a® + 22 — 2azu.
Then

Voo, o, 11 1 1
(=)o = 5@(,2 — >(—1/2) —2az L’ —a  (a®+ 22)1/2] (25.27)

2 2

V ¢ —a
P(2)lg=p = 35 {z T 22)1/21 : (2.5.28)
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yielding finally

B(2)|,_y = g (1 + %) {1 - @%} (2.5.29)

Note that the boundary conditions are trivially satisfied at z = a. Furthermore, for z > a,
we have

V.  Va 2% — a?

®(2)lo=o R 2z(a? 4 22)1/2
:K+@_ 22(1 — a?/2?)
2 22 222(1 + a?/22)1/?
V. Va 1—a?/2?

> "2 T iy a2 )R
~ Va 3Va* TVa
B R T
As one can see, the constant term V//2 disappears at large distances, and we have a Va/2z

(2.5.30)

behavior corresponding to the total charge
Q = 2nVae

on the sphere.

Solution at Large Distances

We can also obtain the solution for x > a, by means of a Taylor expansion. We begin by

writing

a® + 2° 4+ 2ax cosy = (a® + 2°)(1 £ 2a cos ) (2.5.31)
where
ax

= 2.5.32
T ( )

yielding

Voa(z?—a?) [T ! 1 1
X)) = —"——35 do' | d 74 — .
(x) 47 (a? 4 x2)3/2 /0 4 /0 (cos ) (1 —2acosv)32 (1 +2acosvy)3/?

(2.5.33)

We now expand the integrand as a power series in «, using

! ! 1+ k (-2 )
— = —— ) (—2acos
(1 —2acosv)3? (14 2acosvy)3/? 2 7

Ao b (D)o

—{a— —a} , (2.5.34)
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which yields

15 35
{} =1+ 3acosy+ 5012 cos® y + ?a?’ cos®y — {a — —a}
= 6 cosy + 35a° cos® v + O(a®). (2.5.35)

Note, that only odd powers of acosy appear in the expansion. The integrals for the first

two terms in the expansion are perfectly tractable. Recalling that
cosy = sinfsin 6 cos(¢p — ') + cosfcost’ |

and using that the integral of cos(p — ¢') over the 27 interval vanishes, we find

27 1 27 1
/ dy’ / d(cos ') cosy = / dy’ / d(cos ') cos 6 cos 0’
0 0 0 0
1

= 271 X cos B X 5= mcosh . (2.5.36)

Similarly, using that the integral of cos®(¢ — ¢') over the 27 interval also vanishes, we obtain
27 1 2 1
/ dgp’/ d(cos ') cos® :/ dgo’/ d(cos @) (2.5.37)
0 0 0 0
X {3 sin? 0 sin” §' cos® (¢ — ') cos O cos §' + cos® O cos® 9’} .
Since the integral of cos?(¢ — ¢') over the 27 interval is equal to (1/2) x 27 = 7, we have
o 1 1
/ dy’ / d(cos ') cos® v =3 sin”  cos 0 / d(cos ') sin? @' cos ¢
0 0 0
1
+ 27 cos® 0 / d(cos ') cos® 0 . (2.5.38)
0
Changing cos @ = &, we arrive at
o 1 1 1
/ dgp’/ d(cos ') cos® v =37 sin? QCOSQ/ dé (1 — &%) € 4 27 cos® 0/ de& (2.5.39)
0 0 0 0
which gives
2w 1 3 1 T
/ dgo'/ d(cos @) cos® v = mcos {Z sin? 0 + 5 cos? 0} = - cos 0(3 —cos?f) . (2.5.40)
0 0

Finally, combining the two results we obtain

35  a’z?
24 (a® + 22)?

3Valz(z? — a?)
O(x) = 2(a? + x2)5/2

cos 0 {1 + (3 —cos?0) + O(a4/x4)} : (2.5.41)
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Note that we can express this power series as a series in a?/x?, rather than «, yielding

3Va? 7a*> (5 5, 3 44
O(z,0, ) = 507 {cos@ = 1og2 (5 cos” ) — 5(3089) +O(a"/x )} (2.5.42)

Note, that only odd powers of cos @ appear in the final result, in accordance with the sym-
metry of the problem (when we change z — —z, the potential ® on the sphere changes sign).
One can also verify that the expression above gives the correct expression for § = 0, i.e. on
the 2z axis..

As we go to higher order terms in the expansion, the angular integrals become increasingly
intractable, and this approach fails. However, the eagle-eyed amongst you may recognize
the angular terms as the Legendre polynomials Pj(cosf) and Ps(cosf), and this brings us

to the next section.

2.6 Orthogonal Functions

The expansion of the solution of a linear differential equation in terms of orthogonal func-
tions is one of the most powerful techniques in mathematical physics.
Consider a set of functions U, (), n =0,1,..., defined on a < ¢ < b.

1. The set {U,(§)} is orthonormal iff (if and only if)
b
| e Ul €) U3 ) = (2:6.1)
2. The set is said to be complete iff

> Unl€ =6(£-¢). (2.6.2)

n=0

The completeness relation is important because it implies that any square-integrable func-
tion f(£) defined over the interval a < ¢ < b can be expressed as a series in the orthogonal

functions U(§). This is easy to see:

6 = / de' f(€)5(¢ — €)  (defu. of o-func.)

= / e’ f(& Z U, (& (completeness)
n=0
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Thus we may write

F(&) = Un(&)an

n=0

where

%=/&ﬂ&%w>

63

(2.6.3)

(2.6.4)
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2.6.1 Fourier Series

One of the best-known cases where we expand in terms of orthogonal functions is the Fourier
expansion. Consider the expansion applied to the interval —a/2 < x < a/2. The set of

ortonormal functions is provided by the sines and cosines:

2 2

Cn(z) = \/jcos(ﬂmx>, m=1,2,...
a a
2 2

Sp(z) = \/jsin< me), m=1,2,...
a a

Co(l’) =

= 5~

It is easy to show that the set C,(x
/ 4 Sy () S (x) = / 4z Co(2)Con(z) = o,
/dem(x)C’n(x) = 0.

\./

, S () forms an orthonormal set of functions, viz.

Later we will prove completeness,

1 2 2rmz 2mma’ 2 2mmx 2mma’
4z z ‘ N
a—l—ag cos( ” )cos( ) aE Sln( )Sln( " ) (xr — ")

m=1 m=
(2.6.5)

and thus we can write any function f(z) on the interval —a/2 <z < a/2 as

flz) = AO + i {A cos (%Zm ) + B, sin (27:” )} , (2.6.6)

where

2 [? 2
A, = —/ d:vf(a:)cos( me) m=20,1,2,...

a —a/2 a
2 [o? 2
B, = —/ dxf(a:)sin(wmx> m=1,2,...
a —a/2 a
The completeness condition may be also written as
1 2 2rm(z — ')
-+ - ——— = f(x—2a 2.6.7
. + p; ,;COS [ - ] (x — ) ( )

We can combine the sine and cosine terms by noting

cosx = % [ei‘” + e_m]
1
2

sinz = — [em — e”'ﬂ ,
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and introducing a new set of functions

1 .
Un(z) = NG ermmela =0, 41,42, ..., (2.6.8)

we get an expansion

f@) =Y Anln(x), (2.6.9)
where
A 1 a/2 d /f< /) —2mima’ /a (26 10)
m=— x f(x')e : 6.
\/a —a/2
Proof of completeness
Z M@= — ong(x — a')

for x, 2’ € [—m, 7]
For simplicity, take = instead of x — 2’. We have

[e. 9]

inx = nx = —inx 1
Z € - Z@ +Z€ - 1_€ix+1ie—iaz =0

n=-—o0o n=0 n=1

if © # 0. To check for the J-function contribution, calculate

[e.o]

/Wd:v Z e — i /deemx = 27

= > ™ =2ni(z), Q.E.D.
For the interval [—a/2, a/2] we get:

Z e @) = g5(x — ) (2.6.11)

n=—oo

Taking the real part of both sides of this equation we reproduce Eq. (2.6.7).

An orthonormal set sin (gmx)

If we have to expand a function f(z) which vanishes at the ends of the interval [0, a] we can

use an orthonormal set of sin’s only:

U, (z) = \/g sin (gnx> .
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It is easy to check that
2 a
—/ dx sin (Em:v) sin (Lwc) = Omn (2.6.12)
a J a a

and

- Zsm ( nx) sin (Lm') = 0(z—1'). (2.6.13)

a

(Strictly speaking, in the r.h.s of Eq.(2.6.13) we get §(x — ') — §(x + 2’) but the last term
does not contribute for z, 2" € [0, al).

Thus, we get an expansion

fla) = \ﬁfjf sn (Zna)
fo = \/g/oad:c f(@)sin an) . (2.6.14)

2.6.2 Fourier transformation

Combining Eqgs. (??) and (2.6.15), we have

1 o0 a/2

f(l’) — Z eZﬂ'imx/a/ dm/f(x/>€727rimz’/a ) (2615)

a
m=—00 —a/2

Suppose we now let a — 00, so that the discrete sum over m becomes an integral over a

continuous variable k where

2
ULy ¥ (2.6.16)

a

> i/dk , (2.6.17)
— 2

Then we have

and Eq. (2.6.15) converts into

1

f(x) = %/ dke*® /_OO da' f(z')e " (2.6.18)

z\/%A(k)
Thus the discrete coefficients become a continuous function A(k) and we get the Fourier

Transforms

f@) = %2_7 [ axager.
= / da! f(a)e
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Note that the assignment of the coefficients outside the integrals depends on the convention
adopted; in all cases the product should be equal to 1/27.

The orthogonality and completeness relations assume the continuous, and symmetric, forms

I

o | d e *K) =5k — k') (2.6.19)
I

o ) dk e =) =§(z — ) (2.6.20)

2.6.3 Sturm-Liouville Equation

How does one obtain a complete set of orthonormal functions? We will now show that, for
a certain class of differential equations, the solutions are orthogonal, for specific boundary
conditions.
The Sturm-Liouville Equation is the differential equation

d*y | dp(x) dipy

p(x) T + p—— + q(z)a(z) = =Ar(x)r(x) (2.6.21)

which we may write in the more compact form

% {p(x)%} +q(@)ihs = —Ar(@)n. (2.6.22)

Here the parameter )\ identifies the solution, and plays the role of an eigenvalue, with
the corresponding eigenvector. In the next couple of lectures we will encounter several
equations of this form — the Legendre and Bessel equations, and of course you are familiar

with the time-independent Schrodinger equation.

2.6.4 Theorem
For the Sturm-Liouville equation, with p, ¢, r real functions of z, the integral
b
(O — ) / da ()% () () (2.6.23)

is zero provided the following boundary condition is satisfied:

% b
[P(ﬂf) (wi% — d%)l = 0. (2.6.24)

dx "
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Proof

¥y and ¥y satisfy

%{p(@dmm W = —hr(@)s (2.6.25)
%{p<x>%]+q<x>w = Xr(@)y, (2.6.26)

respectively. Multiplying Eq. (2.6.25) by ¢} and Eq. (2.6.26) by #} and integrating, we

obtain
d b b
[ oo 2] + [Carviaen = -» [Carviro,

[ [po 2]+ [Cawvsane = —x [(awviro

Integrating by parts yields

b * b

_/ dx d;i;‘lp%—k/ drVyqy = {%,d%] A/dw;m% (2.6.27)
Ayt diy b diy

_/a d{L‘ %p%ﬁ-/@ d$¢;qu’ = { qp)\ ;p)\:| X/dxwf\rw)\/ (2628)

Observing that, since ¢, p,r are real, the L.h.s. of Eq. (2.6.27) is the complex conjugate of
the Lh.s. of Eq. (2.6.28) we can take the difference to obtain

(A" =X\) /dx r(x)P iy =0, (2.6.29)
providing
{ (z >(%de, wxd%)] = 0. (2.6.30)
Corollaries

1. If r(z) does not change sign in (a,b)

/br(m)my? £0 (2.6.31)
and hence \* = . )
2. For X # ),
/b dxr(x) Py =0, (2.6.32)

i.e. the functions v, are orthogonal.
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2.7 Separation of Variables in Cartesian Coordinates

We will now see how the Sturm-Liouville equation arises in the solution of Laplace’s equation,
and how we can then use the Sturm-Liouville theorem to provide an orthonormal set of
functions. The method we will use will be the separation of variables. It is best shown
by illustration.

Consider the solution of Laplace’s equation in a box 0 <z <a, 0 <y <b, 0 <z < ¢, with
the values of the potential prescribed on the boundary. In particular, let us consider the case
where ® vanishes on the boundary, except on the plane z = ¢ where ®(z,y,z = ¢) = V(z,y).
In Cartesian coordinates, the natural coordinate system for the problem, Laplace’s equation
assumes the form

0? 0? 0?
ag(l‘y,) ag(l’y,) ag(ﬂcy,) 0. (2.7.1)

We will seek solutions to this equation that are factorizable, i.e.
D(w,y,2) = X (@)Y (1) Z(2), (2.7.2)

and build up our final solution from such factorizable solutions. Substituting this form into

Laplace’s equation, we obtain

d*X (z) d*Y (y) d*Z(z)
which we may write as
1d*X 14 1d*7
d d d = 0. (2.7.4)

X dz? +?dy2 +Edz2
We have separated the equation into three terms, each dependent on a different variable.

Since the equation holds for all z, y, z, we can say that each term must separately be constant.
Thus

1
—_X" = 2.7.
X “ 279
1
YY" = 2.7.
= Cy (2.7.6)
1
—_7" = 2.7.
Z Cs (2.7.7)
where C] + Cy + C3 = 0.
Let us consider Eq. (2.7.5)
d*X
@) _cx—o. (2.7.8)

dz?
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and choose a trial solution
X(z) = e*. (2.7.9)
Then we have that o? = C;.
1. If C7 > 0, « is real, and the trial solution is exponential.
2. It ¢4 <0, a is imaginary, and the trial solution is oscillatory.

The boundary conditions require that X vanish at x = 0, a, and this is only possible for the
oscillating solutions. Thus if we choose C; = —a?, where a real, the general solution will be

of the form
X(x) = Acosax + Bsinax. (2.7.10)
Since X must vanish at x = 0,
X(x) =sinax. (2.7.11)

Furthermore, X also vanishes at * = a, and thus

a=ap="2 n=12 .. (2.7.12)
a
Thus we have a set of solutions
X, (x) = sina,z. (2.7.13)

Eq. (2.7.5) is a Sturm-Liouville equation, with p(z) = 1, ¢(z) =0, r(z) = 1 and A = o?. It
satisfies the conditions required for the Sturm-Liouville theorem, and hence we immediately

know that the functions X, (z) are orthogonal. We can treat Y (y) similarly, and obtain
Vuly) = sinfyi B = 7oom=1.2,... (2.7.14)

Finally, we obtain Z from

" N N BQ n27r2 m27T2
— = X =
Z " m a? b?

> 0. (2.7.15)

In this case, the solution is a real exponential, and imposing the boundary condition Z(0) = 0

we have

Z(z) = sinh(Ynm2) (2.7.16)
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where

Yrm :W\/nz/a2+m2/b2- (2.7.17)

Thus the general solution, using the completeness property, is

O(z,y,2) = Z Ay sin(a,x) sin( S, y) sinh(ym2) - (2.7.18)
m,n=1
We obtain the coefficients A,,, by imposing the boundary conditions on the plane z = ¢:
V(z,y) = Z Apm sin(ap,x) sin(5,,y) sinh(y,mc) - (2.7.19)
m,n=1

Using the orthonormal property of the basis functions, we have

a b
/ da sin / dy sin mﬂyV(a:, Y)
0 @ Jo b

« pmx | nmx [ mmy | mny |
= g A dx sin — sin dy sin sin 2 sinh v,/ c
0 0
m/ n/

a a b

b
= Z A’I’L/m/gdn/n §5m/m Slnh ’Yn/mlc

n’,m’

b
= %Anm sinh v,

Thus we have

4

a b
App = e | d dy V (z,y) sin(a,x) sin(By) . (2.7.20
absinh(ynmc) /0 T /0 yV(x,y)sin(a,z)sin(Bny) . ( )

2.7.1 Two-dimensional Square Well

® finite
This is the two-dimensional version of the above prob-
lem. We have a square well, of width a, with the poten- =0 d=0
. . —_— -
tial at the bottom constrained to be ®(z,0) = V, and
zero potential on the sides, with ® vanishing as y — oo. =V
We wish to calculate the potential inside the well. 0
y =
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Laplace’s equation becomes

Pd PP

subject to the boundary conditions

®(0,y) = ®(a,y) = 0
O(z,0) = V

O(z,y) — 0 asy— o0

As before, we look for separable solutions ®(z,y) = X (z)Y (y), yielding

18X 1&8Y

Lot e 2.7.22
Xz Tyvaer Y (2722)

so that each of the above terms must separately be constant.
Since X (0) = X (a) = 0, the solution for X must be oscillatory,

X"+a’X =0 (2.7.23)
giving X (x) = sin ax. The boundary condition at = a then yields
Xn(z) = sin a,z; where oy, = "F,n = 1,2,.... (2.7.24)
The corresponding function Y;,(y) must satisfy
Y/ — a2y, =0 (2.7.25)

with exponential solutions Y, (y) = exp(+a,y). The boundary condition & — 0 as y — oo

requires that we take the exponentially falling solution, and thus
Y, (y) = e Y. (2.7.26)
Thus the factorizable solutions are of the form
S, (z,y) = e *Ysina,x (2.7.27)

so that the general solution is

a

@(SC’ y) = Z Anefany Sin O{nx’ Qp = —. (2728)
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We determine the coefficients A,, by imposing the boundary condition at y = 0:

V=> A,sina,z, (2.7.29)

and using the orthogonality of the sin functions, we obtain

a !/ a /
. n'mx . nmx . n'ww
V sin de = E A, dx sin — sin
0 a 0 a a
n

- A,
2
The integral is straightforward:
2 a
A, = —V dx sin@
a J a
2V a [ mrxr
= ——— |cos —
a nm a lo
2V
= —[1—(=1)"
=1 (-1)1)
and thus
4V dd
A, = { /nm no (2.7.30)
0 n even
with

4V 1
O(x,y) = — Z Ee_my/“ sin ?. (2.7.31)
n odd

For y/a > 1, we can treat this as a series, and we converge to an accurate solution within
a few terms - remember that exponential! To illustrate the rate of convergence, we plot the

partial sum

nmwxr

4V 1
Oy(z,y) = — Z - e~"m/% sin Y (2.7.32)
noddn <N

as a function of z for a fixed value of y = 0.1a and for several values of N: N =1 (one
term), N = 3 (two terms), N = 5 (three terms) and N = 41 (20 terms). One can see that
convergence is really fast. But in this case, we can actually sum the series.

We begin by recalling that

i

e =cosx +isinx. (2.7.33)
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Figure 2.1: Partial sum ®y(z,y) given by Eq. (2.7.32) for V.=1,a=1and N =

as a function of x for y = 0.1.

yielding
sin L — [ einma/a,
a
Thus we may write the general solution as
4V 1 .
(I)(.’L', y) - _efnﬂy/a Im ezmrz/a
T n
n odd
4V 1 , :
- 1 (inm/a)(z+iy) _ I plinm/a)(@+iy)
- - me m Z
n odd n odd

We now introduce the variable

Z = elm/a)(@+w)

so that the solution becomes

4 1 4 1
o— 2V Limzr = Y DA
T n 0 n
n odd n odd
To sum this series, we recall that
VAR A
n(l+2%2) = Z——+ —
n(l+2) 5 T35 T
2 3
In(l-2) = —Z—Z——Z—+...,

Chapter 2

1,3,5,41

(2.7.34)

(2.7.35)

(2.7.36)
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and thus

S Lo _ %{1n(1+2)—1n(1—Z)}

n
n odd
| 1+ Z
= =In :
1-Z
Hence we may write the general solution as
2V 1+Z
) =—Iml ) 2.7.37
(r.9) = Tl (2.737)

Now we need to write this solution explicitly in terms of x and y. We begin by denoting

~ 1+Z
J=—— 2.7.38
T 7 ( )
and writing 7 = |Z| exp if where 0 is the phase of Z, i.e. tanf = Im Z/ Re Z, or
~ Im Z
f = tan™! "2 (2.7.39)
ReZ
Thus
~ <~ ~ Im Z
InZ =|Z| +if = ImInZ =0 =tan~! —= . (2.7.40)
ReZ
Now, we need to find Im Z and Re Z. To this end, we write
1+ 7 1+ 2)(1— 27 1—|ZP*+2ilmZ
+ :(+)( ): 1217 + 2i Im : (2.7.41)
1-Z I1— Z|? 11— Z|?
and thus Im Z = 2Im Z/|1 — Z|?> and Re Z = (1 — | Z|?)/|1 — Z|2, so that
mZ 2ImZ
e (2.7.42)
ReZ 1-1Z]
This gives
1+ 7 2Im Z
Im 1 =tan"' | ——- | . 2.7.43
mn — an (1—]Z|2) ( )
Recall that
7 = elim/aetiy) — g=my/agizn/a _ o—my/a [COS T 4 isin H] : (2.7.44)
a a
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Figure 2.2: Potential ®(x,y) given by Eq. (2.7.47) for V =1 and a = 1 as a 3D plot and as
a function of z for several values of y.

Thus, we have

_ . T
ImZ = e ™/%in — |
a

’2’2 _ 6—271'y/a ’

and thus
2V 2e~™/% sin =
CD(iC, ?/) = 7 tan [—1 e , (2.7.45>
which, after using
1 — g 2my/a e o ‘
e = (€ =T [2 = sinh(my/a) (2.7.46)
becomes
2V sinmx/a
® ="—tan' | ——— . 2.7.47
(xa y) T aln (Sinh ﬂ_y/a) ( )

The potential ®(z,y) for a = 1 and V' =1 is plotted in Fig. 2.7.1.
In practice, such two-dimensional problems can be done in a much simpler way, by observing
that the real and imaginary components, v and v respectively, of an analytic complex
function f(z = x + iy) satisfy the two-dimensional Laplace’s equation

Pu  Pu Pv Pu

7 tar = gmtas =0 (2.7.48)
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This is a direct consequence of the Cauchy-Riemann equations.

2.7.2 Field and Charge Distribution in Two-dimensional Corners
Consider two conducting planes meeting at

an angle 8, with potential V' on the planes. é@

The most appropriate coordinate system for o=V
the problem is that of cylindrical polars
(s,0,z), with the z axis along the line of in-

tersection of the planes. Note that if we con-

sider the problem sufficiently close to the in-
tersection, the shape of the surface at larger \ o

distances will be unimportant. 5

Then Laplace’s equation assumes the form

_13(6@) 1 9%

V20(s,0) (2.7.49)

= — S— R
sds \ Os * s% 062
where we have suppressed the z variable. As before we look for factorizing solutions of the

form
O(s,0) = R(s)T(0). (2.7.50)

Then we have

s 0 ( OR 10°T
22 s == ——— =0. 2.7.51
R85<808)+T802 v (2.7.51)
Each term depends on a different variable, and this must hold for all s and z. Thus each
term is separably constant. For the function T'(0), let us take

10T,

Since T must attain the same value at € = 0 and # = (3, the solution must be oscillatory

2

rather than exponential, and hence v must be positive. Thus the solution is

T,(0) { A,cosvf + B,sinvl; v #0 (2.753)

A0+BOQ; v=20

For the radial function, we have

2 (5%> —1V’R=0. (2.7.54)
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For v #£ 0, let us take as trial solution R ~ s%,

(a® —v%)s* =0, (2.7.55)
yielding o« = £v. We need to consider the case v = 0 separately. Here we have
0 ([ OR
—|s—=— ) =0 2.7.56
0s (S Os > ( )
with solution
Ry(s) = ag+ by Ins. (2.7.57)

Thus the general form of R, is

R (s) a,s”" +b,s7";, v>0 (2.7.58)
v\S) = s .
ag+bplns; v=0

and the general solution for the potential has the form

O(s,0) = (ap+bolns)(Ag + Bob) + Z(a,,s” +b,s7")(A, cosvf + B, sinvf) . (2.7.59)

v>0
The solution must be valid as s — 0 (note that we are not interested in the solution for s
large), and therefore the terms proportional to In s and s~ cannot contribute. Thus by = 0
and b, = 0. We can also take ag = 1, which amounts to redefining agAg into Ag. Then our

solution is of the form

O(s,0) = Ao+ Byl + Z a,s”(A, cosvd + B, sinvh) . (2.7.60)

v>0
We will now use the boundary conditions on the planes to further constrain the solution. At

8 = 0 we have

O(s,0) =V = Ay + Za,,s”A,, : (2.7.61)

v>0
i.e., ® =V, independent of s, and therefore Ag = V and A, = 0. Now, at § = 3 we also
have ® = V', independent of s, or

O(s,8) = V=A0+ Bof + Z a,s" B, sinvs . (2.7.62)
v>0
The s-dependence disappears only if a, B, sinvf (for v > 0) vanish, which (for a nontrivial
solution) happens if sinv/3 = 0, that requires
V:%T,nzl,Q,... .
Then we have V = Ay + ByB. Now, since we have already established that Ag = V, we

conclude that By = 0. Thus our final result (after redefinition a, B, — B,,) is given by
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nmd

O(s,0) =V + > Bps"Psin 5 (2.7.63)
n=1

As we get closer into the corner, s — 0, the first term will dominate, and

0
O(s,0) ~ V + Bys™?sin % . (2.7.64)
Taking the gradient, we obtain
0P 109
E=-Vd=— e, — ——
v 9s > 500
™81 .51 . 7O B 5 T
=— —3" sin —eg — ——35" cos —eg . 2.7.65
5 5% 5 5 (2769
Note that for # = 0 and 6 = 3, the electric field does not have radial component, i.e. E is
normal to the surface of conductor. Also, because cos %9 =1 for # = 0 and cos %9 = —1 for

0 = 3, the field on both surfaces is oriented (for positive B;) from the interior of the angle

toward the conductor. Induced surface charge density is given by
B
o =¢ (E-n)= —%3“/51 . (2.7.66)

Now observe that
1. For 8 < m, we have that E and ¢ vanish as s — 0.
2. For § > m, E and ¢ become singular as s — 0.

Thus we see behaviour familiar from our knowledge of “action at points” — the fields and

surface charge densities become singular near sharp edges.



