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Chapter 2

Boundary-Value Problems in

Electrostatics

In this chapter we will examine solutions to Poisson’s and Laplace’s equations in electrostat-

ics. Before we proceed to a formal solution of Poisson’s equation, we will look at a few simple

solutions. In the next section we will exploit the uniqueness theorem in a particularly neat

way through the Method of Images, but first, back to Gauss’ Law for a simple example. . .

2.1 Preliminaries

Example: Charged sphere inside grounded, conducting shell.

A sphere of radius a, carrying a spherically symmetric charge distribution with the total

charge Q, is placed inside a grounded, conducting sphere of radius b (b > a). Find the

potential in the region a ≤ r ≤ b.

Q

a

b

O

Φ = 0 on surface

Thus we have to solve Poisson’s equation, subject to the boundary conditions Φ(r) = 0 for

39
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r = b. Apply Gauss’ Law to the region a < r < b:

E(r) =
Q

4πε0r2
er ; a ≤ r ≤ b (2.1.1)

for which the potential is

Φ =
Q

4πε0r
+ Φ0 ; a ≤ r ≤ b , (2.1.2)

where Φ0 is a constant.

The boundary conditions tell us that Φ vanishes at r = b. Thus we have

Φ =
Q

4πε0

(
1

r
− 1

b

)
; a ≤ r ≤ b . (2.1.3)

Let us check that our solution for Φ(r) satisfies Poission’s equation for a ≤ r ≤ b. We are

implicitly working in spherical polars (r, θ, ϕ), therefore (from your favourite vector-calculus

course, or back of Jackson):

∇2Φ(r, θ, ϕ) =
1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sin2 θ

{
sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+
∂2Φ

∂ϕ2

}
=

Q

4πε0

1

r2
∂

∂r

{
r2
(
− 1

r2

)}
=

Q

4πε0

1

r2
∂

∂r

(
− 1

)
= 0 (2.1.4)

Hence Φ(r) satisfies ∇2Φ(r) = 0 in the charge free region a ≤ r ≤ b, and satisfies the

boundary condition Φ(b) = 0 on the surface. Therefore, it is the unique solution of Poisson’s

equation in this region. Of course, due to spherical symmetry, Φ(r) doesn’t depend on θ or

ϕ, and therefore the calculation of the ∇2Φ(r) is particularly simple.

Finally, let us find the surface charge density on the conductor. At the boundary of the

conductor,

E =
Q

4πε0b2
er = − Q

4πε0b2
n̂ , (2.1.5)

where n̂ is the normal to the conductor surface, oriented outward. Thus the surface charge

density is given by

σ = − Q

4πb2
(2.1.6)

which has negative sign compared to Q, as expected. Indeed the total induced charge on

the conductor is equal and opposite to that of the charge distribution.

Once again, the method was particularly simple in this case because of spherical symmetry.

Similar simplifications occur in the case of cylindrical symmetry.
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2.2 Method of Images

The uniqueness property of the solutions of Laplace’s and Poisson’s Equations leads to a

neat method of obtaining their solution in particular geometric cases.

Consider a charge q placed at r1 = hk above an infi-

nite grounded conducting plane at z = 0, as shown on

the right. Then on the conducting plane the poten-

tial must vanish. Thus, in the space above the z = 0

plane, we have the Poisson’s equation

∇2
rΦ(r) = −4πqδ3(r− r1) , (2.2.1)

with the boundary condition

Φ(r)|z=0 = 0 . (2.2.2)

q

P

Φ = 0

�r − �r1

�r1

�r

Now consider a system with a charge q placed at r1,

and a charge −q placed at −r1 in the absence of the

conducting plane, as shown on the right. The poten-

tial Φ(r) ≡ Φ1(r) + Φ2(r) is

Φ(r) =
q

4πε0

1

|r− r1|
+
−q

4πε0

1

|r + r1|
. (2.2.3)

At z = 0, the potential vanishes because here

points are equidistant from the positive and negative

charges. Thus, we have Φ(r)|z=0 = 0. Furthermore,

the potential Φ(r) satisfies the Poisson’s equation

∇2
rΦ(r) = −4πq

[
δ3(r− r1)− δ3(r + r1)

]
. (2.2.4)

�r − �r1

�r + �r1

�r1 �r

−q

q
P

Φ = 0

In the space above the plane z = 0, it coincides with Eq. (2.2.2) since δ3(r + r1) vanishes

there. In other words, for z > 0, we have Poisson’s equation for a point charge at r1, since

no further changes have been introduced in this region (the only charge we have introduced

is below the plane z = 0). Thus, by our uniqueness theorem, the potential above z = 0

plane is the same as that of a charge q placed above a grounded sheet at z = 0.



42 Chapter 2

2.2.1 Point Charge near grounded Sphere

Consider a point charge q placed at a dis-

tance b from the center of a grounded con-

ducting sphere of radius a < b. We will now

show that an equivalent problem is to place

an image charge q′ = −qa/b as shown, at

a distance b′ = a2/b from the center of the

sphere.

b0

a

b

P� = 0

Q

qO

r

✓

By symmetry, the image charge q′ must lie along OQ, at a distance b′, say, from the center

of the sphere. Thus the resultant potential of the image system is

Φ(r) =
1

4πε0

{
q

|r− b| +
q′

|r− b′|

}
. (2.2.5)

We need two equations to determine q′ and b′; we will obtain these by imposing that Φ

vanishes at the two points where OQ intersects the sphere

1

4πε0

{
q

b− a +
q′

a− b′
}

= 0

1

4πε0

{
q

a+ b
+

q′

a+ b′

}
= 0.

For the ratio q′/q, we obtain

q′

q
= −a− b

′

b− a = −a+ b′

a+ b
. (2.2.6)

If A/B = C/D ≡ α, then (A + C)/(B + D) = (αB + αD)/(B + D) = α. Hence,

A/B = C/D = (A+ C)/(B +D) and we have q′/q = −a/b or

q′ = −q a
b
. (2.2.7)

Now, from q′/q = (−a)/b and q′/q = (a− b′)/(a− b) we have q′/q = (−b′)/a and

q′/q = (−a)/b = (−b′)/a ⇒ b′ = a2/b . (2.2.8)

Finally, let us verify that Φ does indeed vanish for all points on the surface of the sphere.
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On the surface,

|r− b′|2 = a2 − 2a
a2

b
cos θ +

a4

b2

=
a2

b2
{
a2 − 2ab cos θ + b2

}
=

a2

b2
|r− b|2 , (2.2.9)

and hence

Φ(r)|r=a =
1

4πε0

{
q

|r− b| −
qa

b

1

|r− b|a/b

}
= 0. (2.2.10)

Thus we have

1. The image system satisfies the original Poisson’s equation for r ≥ a since the only

additional charge we have introduced is in the region r < a.

2. The potential for the image system satisfies the condition Φ = 0 at r = a.

Thus, by the uniqueness theorem, the required potential for r > a is

Φ(r) =
1

4πε0

{
q

|r− b| −
qa

b

1

|r− b′|

}
(2.2.11)

with b′ = b a2/b2.

Induced charge density

In Chapter 1, we showed that the induced charge density on the surface of a conductor is

σ = ε0E · n (2.2.12)

where n is the outward normal to the surface.

From Eq.(2.2.11), we have

E(r) = −∇Φ(r) =
1

4πε0

{
q

r− b

|r− b|3 −
qa

b

r− b a2/b2

|r− b a2/b2|3
}

(2.2.13)

At the surface, |r− b a2/b2| = (a/b)|r− b|, yielding

E(r)|r=a =
1

4πε0

{
q

r− b

|r− b|3 − q
r− b a2/b2

(a/b)2|r− b|3
}

=
q

4πε0

{
r− b

|r− b|3 −
r b2/a2 − b

|r− b|3
}
.

(2.2.14)
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We see that terms proportional to b cancel, and the remaining terms are proportional to r:

E(r)|r=a =
q

4πε0
r

1− b2/a2
|r− b|3 . (2.2.15)

Thus, on the surface of the r = a sphere, electric field has only radial component, i.e. it is

normal to the sphere’s surface. In our case, r = a êr and n = êr, thus

σ = ε0E · n = − q

4π

a

|a êr − b|3
{
b2/a2 − 1

}
= − q

4πa

b2 − a2
(a2 − 2ab cos θ + b2)3/2

. (2.2.16)

Note that the surface charge density is not uniform. Still, one can verify that∫
S

σ dS = a2
∫ 2π

0

dφ

∫ π

0

σ sin θ dθ = 2πa2
∫ π

0

σ sin θ dθ = −qa/b = q′ , (2.2.17)

as expected. Indeed,∫
S

σ dS =− q

4π

b2 − a2
a

2πa2
∫ π

0

sin θ dθ

(a2 − 2ab cos θ + b2)3/2
. (2.2.18)

Changing integration variable: cos θ = −z, sin θdθ = dz, we get∫
S

σ dS =− qa

2
(b2 − a2)

∫ 1

−1

dz

(a2 + 2abz + b2)3/2

= −qa
2

(b2 − a2) 1

2ab
· (−2) ·

(
1

b+ a
− 1

b− a

)
= −q a

b
= q′ . (2.2.19)

2.2.2 Point charge near insulated conducting sphere

at potential V

This is a simple modification of the method above. To increase the potential at all points on

the sphere by the same amount V , we introduce an additional image charge q̂ = 4πε0a V at

the center of the sphere yielding Φ = V at r = a. Because we have introduced no additional

charges in the region r ≥ a, we apply the uniqueness theorem to say that the resultant

potential is

Φ(r) =
1

4πε0

{
q

|r− b| −
qa

b

1

|r− b a2/b2|

}
+
a

r
V . (2.2.20)

The total charge on the conducting sphere is now

Q = q′ + q̂ = q′ + 4πε0a V . (2.2.21)

Thus the potential V on the sphere is related to the total charge on the sphere Q by

V =
Q− q′
4πε0a

. (2.2.22)
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2.2.3 Point charge near insulated, conducting sphere

with total charge Q

Using Eq. (2.2.22) to express V in Eq. (2.2.20) in terms of Q, we obtain

Φ(r) =
1

4πε0

{
q

|r− b| +
q′

|r− b a2/b2|

}
+
Q− q′
4πε0r

(2.2.23)

or

Φ(r) =
1

4πε0

{
q

|r− b| +
q′

|r− b a2/b2| +
Q− q′
r

}
. (2.2.24)

The first term here is the potential due to the original charge q, the second term corresponds

to the image charge q′ located at b′, and the third term corresponds to the image charge

Q− q′ located at the center of the sphere.

We can now calculate the Force on the charge q; this is just given by Coulomb’s law for the

forces between q and the two image charges:

F =
1

4πε0
q

{
Q− q′
b3

b +
q′

|b− b′|3 (b− b′)

}
. (2.2.25)

Using b′ = b a2/b2 gives

F =
1

4πε0

q b

b3

{
Q− q′ + q′

|1− a2/b2|3 (1− a2/b2)
}

=
1

4πε0

q b

b3

{
Q− q′

[
1− 1

(1− a2/b2)2
]}

=
1

4πε0

q b

b3

{
Q+ q

a

b

[
a4/b4 − 2a2/b2

(1− a2/b2)2
]}

=
1

4πε0

q b

b3

{
Q− qa3(2b2 − a2)

b(b2 − a2)2
}
. (2.2.26)

Note that, due to the induced surface charge density on the conductor, the force is always

attractive when the distance b− a is sufficiently small irrespective of Q. Namely,

F|b→a → −
1

4πε0

q b

b

q

4(b− a)2
= − q

4πε0
êb

q

[2(b− a)]2
, (2.2.27)

i.e. the force tends to that between two charges q and −q separated by the distance 2(b−a).
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2.3 Formal solution of Poisson’s Equation:

Preliminaries

We will now proceed to a formal solution using Green functions. First, however, a mathe-

matical digression. . .

2.3.1 Dirac δ-Function

The Dirac δ-function is defined as follows:

1.

δ(x− a) = 0 if x 6= a. (2.3.1)

2. ∫
R

dx δ(x− a) =

{
1 if a ∈ R
0 otherwise

(2.3.2)

The delta function is not strictly a function but rather a distribution; it is defined purely

through its effect under an integral. It immediately follows from the definition that∫
dx f(x)δ(x− a) = f(a) (2.3.3)

if a lies within the region of integration.

The δ-function δ(x− a) may be thought of as the limit of a Gaussian centered at a in which

the width tends to zero whilst the area under the Gaussian remains unity.

δ(x− a) = lim
ε→0

δε(x− a) (2.3.4)

δε(x− a) =
1√
πε
e−

(x−a)2
ε (2.3.5)

It is easy to see that limε→0 δε(x) = 0 if x 6= a and
∫∞
−∞ δε(x − a) = 1. To this end, we use

the basic Gaussian integration formula∫ ∞
−∞

e−x
2

dx =
√
π (2.3.6)

and its modification ∫ ∞
−∞

e−αx
2

dx =

√
π

α
. (2.3.7)
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A derivation of the Gaussian integration formula as simple as “2×2 = 4” proceeds as follows.

Denote

I ≡
∫ ∞
−∞

e−x
2

dx . (2.3.8)

Then

I × I =

∫ ∞
−∞

e−x
2

dx

∫ ∞
−∞

e−y
2

dy =

∫ ∞
−∞

dx

∫ ∞
−∞

dy e−(x
2+y2) . (2.3.9)

Treat x and y as coordinates on 2-dimensional plane, and introduce polar coordinates (ρ, ϕ).

Then x2 + y2 = ρ2 and dx dy = ρdρ dϕ, which gives

I × I =

∫ 2π

0

dϕ︸ ︷︷ ︸
2π

∫ ∞
0

ρ dρ︸︷︷︸
d(ρ2)/2

e−ρ
2

= π

∫ ∞
0

d(ρ2)e−ρ
2

︸ ︷︷ ︸
1

= π . (2.3.10)

Since I × I = π, we have I =
√
π.

Let us check the property (2.3.3)

lim
ε→0

∫ ∞
−∞

δε(x− a) f(x) dx

= lim
ε→0

∫ ∞
−∞

1√
πε
e−

(x−a)2
ε

[
f(a) + (x− a)f ′(a) +

1

2
(x− a)2f ′′(a) + ...

]
dx

= lim
ε→0

[
f(a) + 0 +

1

4
εf ′′(a) +O(ε2)

]
dx = f(a) (2.3.11)

Here, we noticed that the integral with (x − a) has the integrand that is odd with respect

to the point x = a, and also used the integral∫ ∞
−∞

e−αx
2

x2 dx = − d

dα

∫ ∞
−∞

e−αx
2

dx =
1

2α

√
π

α
. (2.3.12)

There are some simple relations that follow from Eq. (2.3.3)

1. The δ-function is a derivative of a step function θ(x):

θ(x) =

{
1 x ≥ 0

0 x < 0
(2.3.13)

Indeed, take the integral over a segment that includes x = 0, e.g., −B ≤ x ≤ A, with

A,B > 0, ∫ A

−B
f(x) θ′(x) dx =f(x) θ(x)

∣∣∣A
−B
−
∫ A

−B
dx f ′(x) θ(x)

= f(A)−
∫ A

0

dx f ′(x)

= f(A)− [f(A)− f(0)] = f(0) (2.3.14)



48 Chapter 2

On the other hand, ∫ A

−B
dx f(x) δ(x) = f(0) . (2.3.15)

Hence, δ(x) = θ′(x) (and δ(x− a) = θ′(x− a)).

2. Consider now the derivative of the delta function:∫
dx f(x)δ′(x− a)

∣∣∣∣
integ. by parts

= −
∫
dx f ′(x)δ(x− a)

= −f ′(a)

3. Let us see what happens if we rescale the argument of the delta function: δ(x)→ δ(γx).

If γ > 0, then ∫ ∞
−∞

f(x) δ(γx) dx =

∫ ∞
−∞

f(y/γ) δ(y)
dy

γ
=
f(0)

γ
. (2.3.16)

So, in this case δ(γx) = δ(x)/γ.

If γ < 0, then∫ ∞
−∞

f(x) δ(γx) dx =

∫ −∞
∞

f(y/γ) δ(y)
dy

γ
= −f(0)

γ
. (2.3.17)

So, in this case δ(γx) = −δ(x)/γ.

Combining the two results, we conclude that δ(γx) = δ(x)/|γ|.

4. Consider now the delta function with a function g(x) as its argument. Obviously, only

the regions of x, where g(x) vanishes, are important. Let xi’s be the zeros of g(x), and

take x = xi + y in the vicinity of these roots. Then∫
dx f(x)δ(g(x)) =

∑
i

∫ ε

−ε
dy f(xi + y)δ(g(xi + y))

=
∑
i

∫ ε

−ε
dy [f(xi) + yf ′(xi) + . . .]δ[g(xi) + yg′(xi) + . . .] (2.3.18)

Since g(xi) = 0, we deal with δ[yg′(xi)] = δ(y)/|g′(xi)|, which gives∫
dx f(x)δ(g(x)) =

∑
i

f(xi)

|g′(xi)|
. (2.3.19)
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5. The definition extends naturally to three (or higher) dimensions:

δ(x−X) = δ(x1 −X1)δ(x2 −X2)δ(x3 −X3) (2.3.20)

so that ∫
V

d3x δ(x−X) =

{
1 if X ∈ V
0 otherwise

(2.3.21)

Note that it is this last property that defines the multi-dimensional δ-function, with

this simple representation in a Cartesian basis; you have to be a little careful when

working in curvilinear coordinates.

Example. Let us show how one can use the properties of the δ-function to change integration

from, say, Cartesian 2-dimension variables x, y to polar coordinates ρ, ϕ. To this end, we

utilize that ∫ ∞
0

d(ρ2) δ(ρ2 − x2 − y2) = 1 (2.3.22)

and ∫ 2π

0

dϕ δ (sinϕ− y/ρ) =
2

| cosϕ0|
, (2.3.23)

where ϕ0 is a root of the equation sinϕ = y/ρ, and cosϕ0 is the derivative of (sinϕ− y/ρ)

at the root. Note, that sinϕ = y/ρ has two roots, both having the same absolute value of

the derivative at the root (that explains the factor of 2 on the right hand side). Evidently,

| cosϕ0| = |x|/ρ. Thus, we have∫ ∞
−∞

dx

∫ ∞
−∞

dy . . .

=

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
0

d(ρ2) δ(ρ2 − x2 − y2)
∫ 2π

0

dϕ δ (sinϕ− y/ρ)
|x|
2ρ

. . . (2.3.24)

Now, it is easy to check that ∫ ∞
−∞

dy δ (sinϕ− y/ρ) = ρ (2.3.25)

and∫ ∞
−∞

dx |x| δ(ρ2 − x2 − y2) =

∫ 0

−∞
dx (−x) δ(ρ2 − x2 − y2) +

∫ ∞
0

dx x δ(ρ2 − x2 − y2)

=

∫ ∞
0

d(x2) δ(ρ2 − x2 − y2) = 1 . (2.3.26)
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Hence, ∫ ∞
−∞

dx

∫ ∞
−∞

dy . . . =
1

2

∫ ∞
0

d(ρ2)

∫ 2π

0

dϕ . . .

=

∫ ∞
0

ρ dρ

∫ 2π

0

dϕ . . . . (2.3.27)

As another simple illustration of the power of the δ-function, let us return to the expression,

Eq. (1.5), for the potential due to a continuous charge distribution

Φ(x) =
1

4πε0

∫
V

d3x′
ρ(x′)

|x− x′| . (2.3.28)

We now introduce the δ-function to enable us to write a set of N discrete charges qi at xi

as a charge distribution

ρ(x′) =
∑
i

qiδ
(3)(x′ − xi) (2.3.29)

so that

Φ(x) =
1

4πε0

∫
V

d3x′
∑

i qiδ
(3)(x′ − xi)

|x− x′|
=

1

4πε0

∑
i

qi
|x− xi|

(2.3.30)

which is our familiar expression for the potential due to a set of point charges.

Poisson’s Equation for a Point Charge

We have already seen (see Eq. (2.1.4)) that

∇2(1/r) = 0 r 6= 0. (2.3.31)

Furthermore, from our proof of Gauss’ law, we can see that∫
dV ∇2(1/r) = −4π. (2.3.32)

Indeed, from the divergence theorem,∫
dV ∇ · ∇(1/r) =

∮
S

dS n̂ · ∇(1/r) . (2.3.33)

Using ∇(1/r) = −êr/r2 and choosing a sphere of radius r as the surface S (in which case

n̂ = êr and dS = r2 dΩ), we get∫
dV ∇2(1/r) = −

∫
dΩ = −4π . (2.3.34)

Thus we can identify ∇2(1/r) = −4πδ(3)(x) and write
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∇2

(
1

|x− x′|

)
= −4πδ(3)(x− x′) (2.3.35)

2.4 Formal Solution of Boundary-Value Problem

using Green Functions

Our starting point is Green’s theorem, Eq. (1.11):∫
V

d3x′[ψ1(x
′)∇′2ψ2(x

′)− ψ2(x
′)∇′2ψ1(x

′)]

=

∫
S

[ψ1(x
′)∇′ψ2(x

′)− ψ2(x
′)∇′ψ1(x

′)] · n dS ′. (2.4.1)

where the “primed” denotes differentiation with respect to the primed indices. Let us apply

this for the case when ψ1(x
′) = 1

|x−x′| , and thus satisfies

∇′2ψ1(x
′) = −4πδ(3)(x− x′) , (2.4.2)

i.e. ψ1(x
′) is proportional to the potential produced by a point charge located at x, while

ψ2(x
′) ≡ Φ(x′) satisfies

∇′2Φ(x′) = −ρ(x′)/ε0 , (2.4.3)

and hence may be interpreted as a potential generated by a charge distribution with density

ρ(x′). This yields ∫
d3x′

{
1

|x− x′|

(−ρ(x′)

ε0

)
+ Φ(x′)4πδ(3)(x− x′)

}
=

∫
dS ′ n ·

{
1

|x− x′|∇
′Φ(x′)− Φ(x′)∇′

(
1

|x− x′|

)}
. (2.4.4)

Applying our rule for integrating over δ-functions, we obtain a relation

Φ(x) =
1

4πε0

∫
V

d3x′
ρ(x′)

|x− x′|

+
1

4π

∫
S

dS ′
{

1

|x− x′|
∂Φ(x′)

∂n′
− Φ(x′)

∂

∂n′

(
1

|x− x′|

)}
. (2.4.5)

between the potential Φ(x) in a volume V and the values of Φ(x′) and ∂Φ(x′)/∂n′ on a

surface S, which is the boundary of V . The function 1/|x − x′| is said to be a Green

function for the problem.
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The crucial property of ψ1(x
′) that allowed us to extract Φ(x) (i.e. ψ2(x)) as a separate

term, was ∇′2ψ1(x
′) = −4πδ(3)(x− x′). The solution of this equation, and hence, the Green

function is not unique: it is just a function satisfying

∇′2G(x,x′) = −4πδ(3)(x− x′). (2.4.6)

In general, one may write it in the form

G(x,x′) =
1

|x− x′| + F (x,x′), (2.4.7)

where F (x,x′) is a solution of Laplace’s equation

∇′2F (x,x′) = 0. (2.4.8)

Thus our expression for the potential can be generalized to

Φ(x) =
1

4πε0

∫
V

d3x′G(x,x′)ρ(x′)

+
1

4π

∫
S=∂V

dS ′
{
G(x,x′)

∂Φ(x′)

∂n′
− Φ(x′)

∂G(x,x′)

∂n′

}
(2.4.9)

The utility of this generalization is the following. In Eq.(2.4.5), the surface integral involves

both Φ(x′), and ∂Φ(x′)/∂n′; in general we cannot specify both simultaneously at a point

on the surface, since the problem is then overdetermined. Thus in Eq.(2.4.5 ) we have an

implicit equation for Φ(x), with the unknown also appearing under the integral on the right-

hand side. In Eq.(2.4.9), we can choose G(x,x′) so that the surface integral depends only

on the prescribed boundary values of Φ (Dirichlet) or ∂Φ/∂n′ (Neumann).
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2.4.1 Boundary Conditions on Green Functions

We will now consider the boundary conditions we have to impose on the Green Functions to

accomplish the above aim.

Dirichlet Problem

Here the value of Φ(x′) is specified on the surface, and therefore it is natural to impose that

the Green function GD(x,x′) satisfy

GD(x,x′) = 0 for x′ on S, (2.4.10)

and thus

Φ(x) =
1

4πε0

∫
V

d3x′GD(x,x′)ρ(x′)− 1

4π

∫
S

dS ′Φ(x′)
∂GD(x,x′)

∂n′
. (2.4.11)

Thus the surface integral only involves Φ(x′), and not the unknown ∂Φ(x′)/∂n′.

Neumann Problem

Here it is tempting to construct the Green function GN(x,x′) such that

∂GN(x,x′)

∂n′
= 0 for x′ on S. (2.4.12)

However, recall that the Green function satisfies∫
S

dS ′
∂GN(x,x′)

∂n′
=

∫
d3x′∇′2GN(x,x′) = −4π, (2.4.13)

and thus ∂GN(x,x′)/∂n′ cannot vanish everywhere. The simplest solution is to impose

∂GN(x,x′)

∂n′
= −4π

S
,∀x′ ∈ S (2.4.14)

where S is the total area of the surface. Thus the solution is

Φ(x) =
1

4πε0

∫
V

d3x′GN(x,x′)ρ(x′)

+
1

4π

∫
S

dS ′GN(x,x′)
∂Φ(x′)

∂n′
+

1

S

∫
S

dS ′Φ(x′) , (2.4.15)

where the final term is just the average value of Φ(x′) on the surface S. The inclusion of this

term is perhaps not surprising; recall that the solution to the Neumann problem is unique

only up to an additive constant.
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2.4.2 Reciprocity relation for GD(x,y)

For the Dirichlet problem, we have GD(x,y) = GD(y,x).

Proof

Apply Green’s theorem for the case ψ1(x
′) = GD(x,x′), and ψ2(x

′) = GD(y,x′):∫
V

d3x′ (GD(x,x′)∇′2GD(y,x′)−GD(y,x′)∇′2GD(x,x′)) =∫
S

dS ′ n · (GD(x,x′)∇′GD(y,x′)−GD(y,x′)∇′GD(x,x′)).

But for the Dirichlet problem GD(x,x′) vanishes for all x′ ∈ S, and hence the right-hand

side of the above is zero. Thus we have∫
d3x′

{
GD(x,x′){−4πδ(3)(y − x′)} −GD(y,x′){−4πδ(3)(x− x′)}

}
= 0 (2.4.16)

and hence

GD(x,y) = GD(y,x)

2.5 Methods of Finding Green Functions

The secret, then, to the solution of boundary value problems is determining the correct Green

function, or equivalently obtaining the function F (x,x′). There are several techniques:

1. Make a guess about the form of F (x,x′). Here we recall that F is just the solution

of the homogeneous Laplace’s equation ∇′2F (x,x′) = 0 inside V , and therefore is just

the solution of the potential for a system of charges external to V . In particular, for

the Dirichlet problem, since GD(x,x′) vanishes at x′ ∈ S, we have that F (x,x′) is just

the potential of that system of charges external to V which, when combined with a

point charge at x, assures that the potential vanishes on the surface. And finding that

system of charges is precisely what we were doing in the Method of Images . . .

2. Expand the Green function as a series of orthonormal eigenfunctions of the Laplacian

operator. We will be exploring this method later in the Chapter.



Boundary-Value Problems in Electrostatics 55

2.5.1 Dirichlet Green Function for the Plane

Potential for Dirichlet boundary conditions

Φ(x) =

∫
V

d3x′GD(x,x′)ρ(x′)− ε0
∫
S

dS ′Φ(x′)
∂GD(x,x′)

∂n′
. (2.5.1)

When there are no explicit charges, then

Φ(x) = −ε0
∫
S

dS ′Φ(x′)
∂GD(x,x′)

∂n′
. (2.5.2)

The Green function for the plane is

GD(x,x′) =
1

4πε0

[
1

|x′ − x| −
1

|x′ + x|

]
, (2.5.3)

or in components

GD(x,x′) =
1

4πε0

[
1√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2
− 1√

(x′ − x)2 + (y′ − y)2 + (z′ + z)2

]
.

(2.5.4)

Consider a boundary-value problem specified on a conducting xy plane, with a constant

potential Φ(x, y, z = 0) = V for x > 0 and Φ(x, y, z = 0) = 0 for x < 0 (the two half-planes

may be considered as separated by a nonconducting line at x = 0).

Let us find the potential above the xy-plane, i.e. for z > 0. Then we have ∂GD(x,x′)/∂n′ =

−∂GD(x,x′)/∂z′ thus we need

ε0
∂GD(x,x′)

∂z′
=

1

4π

∂

∂z′

[
1

[(x′ − x)2 + (y′ − y)2 + (z′ − z)2]1/2

− 1

[(x′ − x)2 + (y′ − y)2 + (z′ + z)2]1/2

]
=

1

4π

(
−1

2

)[
z′ − z

[(x′ − x)2 + (y′ − y)2 + (z′ − z)2]3/2

− z′ + z

[(x′ − x)2 + (y′ − y)2 + (z′ + z)2]3/2

]
. (2.5.5)

Projecting on z′ = 0 gives

ε0
∂GD(x,x′)

∂z′

∣∣∣∣
z′=0

=
1

4π

2z

[(x′ − x)2 + (y′ − y)2 + z2]3/2
. (2.5.6)

As a result,

Φ(x)|z>0 =
V

2π
z

∫ ∞
0

dx′
∫ ∞
−∞

dy′

[(x′ − x)2 + (y′ − y)2 + z2]3/2
. (2.5.7)
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Integral over y′∫ ∞
−∞

dy′

[(x′ − x)2 + (y′ − y︸ ︷︷ ︸
η

)2 + z2]3/2
=

∫ ∞
−∞

dη

[(x′ − x)2 + z2︸ ︷︷ ︸
ζ2

+η2]3/2

=

∫ ∞
−∞

dη

(ζ2 + η2)3/2
= 2

∫ ∞
0

dη

(ζ2 + η2)3/2
. (2.5.8)

Change variable η = ζ tan θ, dη = ζdθ/ cos2 θ, and ζ2 + η2 = ζ2/ cos2 θ. Then∫ ∞
0

dη

(ζ2 + η2)3/2
=

∫ π/2

0

ζ dθ

cos2 θ

cos3 θ

ζ3
=

1

ζ2

∫ π/2

0

dθ cos θ =
1

ζ2
=

1

(x′ − x)2 + z2
. (2.5.9)

Thus,

Φ(x)|z>0 =
V z

π

∫ ∞
0

dx′

(x′ − x)2 + z2
. (2.5.10)

Integral over x′ ∫ ∞
0

dx′

(x′ − x︸ ︷︷ ︸
ξ

)2 + z2
=

∫ ∞
−x

dξ

ξ2 + z2
. (2.5.11)

Change variable ξ = z tan θ, dξ = z dθ/ cos2 θ, ξ2 + z2 = z2/ cos2 θ. Then∫ ∞
−x

dξ

ξ2 + z2
=

∫ π/2

tan−1(−x/z)

z dθ

cos2 θ

cos2 θ

z2
=

1

z

∫ π/2

− tan−1(x/z)

dθ =
1

z

[π
2

+ tan−1
(x
z

)]
.

(2.5.12)

Finally,

Φ(x)|z>0 =
V

2
+
V

π
tan−1

(x
z

)
. (2.5.13)

Introducing polar coordinates in xz-plane: z = ρ cosφ , x = ρ sinφ ⇒ x/z = tanφ we have

Φ(x)|z>0 = V

[
1

2
+
φ

π

]
. (2.5.14)

Thus, equipotential surfaces correspond to planes having a constant angle φ with the zy-plane,

with Φ(φ = 0) = V/2 on the zy-plane itself, and, as expected, Φ(φ = π/2) = V on the x > 0

part of the xy-plane, while Φ(φ = −π/2) = 0 on the x < 0 part of the xy-plane.

Calculating electric field:

E = −∇Φ(x) = −φ̂1

ρ

∂

∂φ
Φ(x) = − V

πρ
φ̂ . (2.5.15)
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Thus, the lines of forces are given by semi-circles going from the right half of the xy plane

to its left half.

On the right half of the plane, x > 0, the electric field is directed vertically up, with the

strength |E+| = V/πx, and the surface charge density there is

σ(x > 0) =
|E|
ε0

=
V

πε0x
.

On the left half of the plane, x < 0, the electric field is directed vertically down, with the

same strength |E−| = V/πρ = V/π|x|, and the surface charge density is given there by

σ(x < 0) = −|E|
ε0

= − V

πε0|x|
=

V

πε0x
.

2.5.2 Dirichlet Green Function for the Sphere

b0

a

b

P� = 0

Q

qO

r

✓

We saw earlier how to use the method of images to construct the potential Φ(x′) for a point

charge at x outside a grounded conducting sphere of radius a. In particular, for a charge q,

at a distance b from the center of the sphere, the potential was given by

Φ(r) =
q

4πε0

{
1

|r− b| −
a/b

|r− b a2/b2|

}
. (2.5.16)

Thus Φ(x′) is precisely the Green function GD(x,x′) that we need. Note that you have to

be careful to distinguish the variable we are integrating over, x′, and the variable at which

we are evaluating the potential, x. Perhaps counter-intuitively, it is at the point x that we

place our point charge.
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From Eq.(2.2.11), we have that the Green function is

G(x,x′) =
1

4πε0

{
1

|x′ − x| −
a

x|x′ − x a2/x2|

}
,

(2.5.17)

and it is easy to check that, indeed, G(x,x′) = G(x′,x).

Introducing γ as the angle between x and x′, we can rewrite this as

G(x,x′) =
1

(x2 + x′2 − 2xx′ cos γ)1/2
− 1

(x2x′2/a2 + a2 − 2xx′ cos γ)1/2
. (2.5.18)

Here, cos γ ≡ n ·n′ with n and n′ being unit vectors in the directions of x and x′ respectively.

It can be expressed in terms of the spherical polar coordinates of x and x′, where

x = x sin θ cosϕx̂+ x sin θ sinϕŷ + x cos θẑ

and

x′ = x′ sin θ′ cosϕ′x̂+ x′ sin θ′ sinϕ′ŷ + x′ cos θ′ẑ .

Then

cos γ = n · n′ = (sin θ cosϕ, sin θ sinϕ, cos θ) · (sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′)

= sin θ sin θ′ cos(ϕ− ϕ′) + cos θ cos θ′ . (2.5.19)

The general solution for the potential is then

Φ(x) =
1

4πε0

∫
V

d3x′G(x,x′)ρ(x′)− 1

4π

∫
S

dS ′Φ(x′)
∂G(x,x′)

∂n′
. (2.5.20)

Thus we need the normal gradient of the Green function to the surface, which points inward,

∂G

∂n′

∣∣∣∣
surface

= − ∂G

∂x′

∣∣∣∣
x′=a

=
1

2

{
2a− 2x cos γ

(x2 + a2 − 2ax cos γ)3/2
− 2x2a/a2 − 2x cos γ

(x2a2/a2 + a2 − 2ax cos γ)3/2

}
= − x2 − a2

a(x2 + a2 − 2ax cos γ)3/2
. (2.5.21)

Thus we have all the ingredients to solve the Dirichlet problem outside a sphere of radius a.
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2.5.3 Solution of Laplace’s equation outside a sphere comprising

two hemispheres, the upper at constant potentials V and

the lower one grounded

Because the source is zero, we only need the surface term from Eq. (2.5.20)

Φ(x) = −ε0
∫
S

dS ′Φ(x′)
∂G(x,x′)

∂n′
. (2.5.22)

Now dS ′ = a2dϕ′d(cos θ′), yielding

Φ(x) = − 1

4π
a2
∫ 2π

0

dϕ′V

∫ 1

0

d(cos θ′)
∂G

∂n′

=
V

4π

∫ 2π

0

dϕ′
∫ 1

0

d(cos θ′)
a(x2 − a2)

(a2 + x2 − 2ax cos γ)3/2
. (2.5.23)

As already mentioned, we can express cos γ in terms of the spherical polar coordinates of x

and x′:

cos γ = sin θ sin θ′ cos(ϕ− ϕ′) + cos θ cos θ′ , (2.5.24)

giving

Φ(x) =
V

4π
a(x2 − a2)

∫ 2π

0

dϕ′
∫ 1

0

d(cos θ′)

(a2 + x2 − 2ax cos γ)3/2
. (2.5.25)

In general, we cannot obtain the solution in closed form; γ is just too complicated a function

of θ′ and ϕ′. However, we can study the solution in specific cases.

Solution above North Pole

On the z-axis, θ = 0, so that cos γ = cos θ′, and |x| = z. Denoting u ≡ cos θ′, we have

Φ(z)|θ=0 =
V

4π
a(z2 − a2) 2π

∫ 1

0

du

(a2 + z2 − 2azu)3/2
. (2.5.26)

The integration can be performed easily, by making the substitution y = a2 + z2 − 2azu.

Then

Φ(z)|θ=0 =
V

2
a(z2 − a2) 1

(−1/2)

1

−2az

[
1

z − a −
1

(a2 + z2)1/2

]
(2.5.27)

or

Φ(z)|θ=0 =
V

2z

[
z + a− z2 − a2

(a2 + z2)1/2

]
, (2.5.28)
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yielding finally

Φ(z)|θ=0 =
V

2

(
1 +

a

z

)[
1− z − a

(a2 + z2)1/2

]
(2.5.29)

Note that the boundary conditions are trivially satisfied at z = a. Furthermore, for z � a,

we have

Φ(z)|θ=0 =
V

2
+
V a

2z
− V z2 − a2

2z(a2 + z2)1/2

=
V

2
+
V a

2z
− V z2(1− a2/z2)

2z2(1 + a2/z2)1/2

=
V

2
+
V a

2z
− V 1− a2/z2

2(1 + a2/z2)1/2

=
V a

2z
+

3V a2

4z2
− 7V a4

16z4
+ . . . . (2.5.30)

As one can see, the constant term V/2 disappears at large distances, and we have a V a/2z

behavior corresponding to the total charge

Q = 2πV aε0

on the sphere.

Solution at Large Distances

We can also obtain the solution for x � a, by means of a Taylor expansion. We begin by

writing

a2 + x2 ± 2ax cos γ = (a2 + x2)(1± 2α cos γ) (2.5.31)

where

α =
ax

a2 + x2
, (2.5.32)

yielding

Φ(x) =
V

4π

a(x2 − a2)
(a2 + x2)3/2

∫ 2π

0

dϕ′
∫ 1

0

d(cos θ′)

{
1

(1− 2α cos γ)3/2
− 1

(1 + 2α cos γ)3/2

}
.

(2.5.33)

We now expand the integrand as a power series in α, using{
1

(1− 2α cos γ)3/2
− 1

(1 + 2α cos γ)3/2

}
= 1 +

(
−3

2

)
(−2α cos γ)

+
1

2!

(
−3

2

)(
−5

2

)
(−2α cos γ)2 +

1

3!

(
−3

2

)(
−5

2

)(
−7

2

)
(−2α cos γ)3

− {α→ −α} , (2.5.34)
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which yields

{} =1 + 3α cos γ +
15

2
α2 cos2 γ +

35

2
α3 cos3 γ − {α→ −α}

= 6α cos γ + 35α3 cos3 γ +O(α5). (2.5.35)

Note, that only odd powers of α cos γ appear in the expansion. The integrals for the first

two terms in the expansion are perfectly tractable. Recalling that

cos γ = sin θ sin θ′ cos(ϕ− ϕ′) + cos θ cos θ′ ,

and using that the integral of cos(ϕ− ϕ′) over the 2π interval vanishes, we find∫ 2π

0

dϕ′
∫ 1

0

d(cos θ′) cos γ =

∫ 2π

0

dϕ′
∫ 1

0

d(cos θ′) cos θ cos θ′

= 2π × cos θ × 1

2
= π cos θ . (2.5.36)

Similarly, using that the integral of cos3(ϕ−ϕ′) over the 2π interval also vanishes, we obtain∫ 2π

0

dϕ′
∫ 1

0

d(cos θ′) cos3 γ =

∫ 2π

0

dϕ′
∫ 1

0

d(cos θ′) (2.5.37)

×
{

3 sin2 θ sin2 θ′ cos2(ϕ− ϕ′) cos θ cos θ′ + cos3 θ cos3 θ′
}
.

Since the integral of cos2(ϕ− ϕ′) over the 2π interval is equal to (1/2)× 2π = π, we have∫ 2π

0

dϕ′
∫ 1

0

d(cos θ′) cos3 γ =3π sin2 θ cos θ

∫ 1

0

d(cos θ′) sin2 θ′ cos θ′

+ 2π cos3 θ

∫ 1

0

d(cos θ′) cos3 θ′ . (2.5.38)

Changing cos θ′ = ξ, we arrive at∫ 2π

0

dϕ′
∫ 1

0

d(cos θ′) cos3 γ =3π sin2 θ cos θ

∫ 1

0

dξ (1− ξ2) ξ + 2π cos3 θ

∫ 1

0

dξ ξ3 (2.5.39)

which gives∫ 2π

0

dϕ′
∫ 1

0

d(cos θ′) cos3 γ = π cos θ

[
3

4
sin2 θ +

1

2
cos2 θ

]
=
π

4
cos θ(3− cos2 θ) . (2.5.40)

Finally, combining the two results we obtain

Φ(x) =
3V a2x(x2 − a2)

2(a2 + x2)5/2
cos θ

{
1 +

35

24

a2x2

(a2 + x2)2
(3− cos2 θ) +O(a4/x4)

}
. (2.5.41)
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Note that we can express this power series as a series in a2/x2, rather than α, yielding

Φ(x, θ, ϕ) =
3V a2

2x2

{
cos θ − 7a2

12x2

(
5

2
cos3 θ − 3

2
cos θ

)
+O(a4/x4)

}
. (2.5.42)

Note, that only odd powers of cos θ appear in the final result, in accordance with the sym-

metry of the problem (when we change z → −z, the potential Φ on the sphere changes sign).

One can also verify that the expression above gives the correct expression for θ = 0, i.e. on

the z axis..

As we go to higher order terms in the expansion, the angular integrals become increasingly

intractable, and this approach fails. However, the eagle-eyed amongst you may recognize

the angular terms as the Legendre polynomials P1(cos θ) and P3(cos θ), and this brings us

to the next section.

2.6 Orthogonal Functions

The expansion of the solution of a linear differential equation in terms of orthogonal func-

tions is one of the most powerful techniques in mathematical physics.

Consider a set of functions Un(ξ), n = 0, 1, . . . , defined on a ≤ ξ ≤ b.

1. The set {Un(ξ)} is orthonormal iff (if and only if )∫ b

a

dξ Un(ξ)U∗m(ξ) = δmn . (2.6.1)

2. The set is said to be complete iff

∞∑
n=0

Un(ξ)U∗n(ξ′) = δ(ξ − ξ′). (2.6.2)

The completeness relation is important because it implies that any square-integrable func-

tion f(ξ) defined over the interval a ≤ ξ ≤ b can be expressed as a series in the orthogonal

functions U(ξ). This is easy to see:

f(ξ) =

∫
dξ′ f(ξ′)δ(ξ − ξ′) (defn. of δ-func.)

=

∫
dξ′ f(ξ′)

∞∑
n=0

Un(ξ)U∗n(ξ′) (completeness)

=
∞∑
n=0

Un(ξ)

∫
dξ′ f(ξ′)U∗n(ξ′).
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Thus we may write

f(ξ) =
∞∑
n=0

Un(ξ)an (2.6.3)

where

an =

∫
dξ′f(ξ′)U∗n(ξ′). (2.6.4)
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2.6.1 Fourier Series

One of the best-known cases where we expand in terms of orthogonal functions is the Fourier

expansion. Consider the expansion applied to the interval −a/2 ≤ x ≤ a/2. The set of

ortonormal functions is provided by the sines and cosines :

Cm(x) =

√
2

a
cos

(
2πmx

a

)
, m = 1, 2, . . .

Sm(x) =

√
2

a
sin

(
2πmx

a

)
, m = 1, 2, . . .

C0(x) =
1√
a
.

It is easy to show that the set Cm(x), Sm(x) forms an orthonormal set of functions, viz.∫
dxSm(x)Sn(x) =

∫
dxCm(x)Cn(x) = δmn,∫
dxSm(x)Cn(x) = 0.

Later we will prove completeness,

1

a
+

2

a

∞∑
m=1

cos

(
2πmx

a

)
cos

(
2πmx′

a

)
+

2

a

∞∑
m=1

sin

(
2πmx

a

)
sin

(
2πmx′

a

)
= δ(x− x′)

(2.6.5)

and thus we can write any function f(x) on the interval −a/2 ≤ x ≤ a/2 as

f(x) =
A0

2
+
∞∑
m=1

{
Am cos

(
2πmx′

a

)
+Bm sin

(
2πmx′

a

)}
, (2.6.6)

where

Am =
2

a

∫ a/2

−a/2
dx f(x) cos

(
2πmx

a

)
m = 0, 1, 2, . . .

Bm =
2

a

∫ a/2

−a/2
dx f(x) sin

(
2πmx

a

)
m = 1, 2, . . .

The completeness condition may be also written as

1

a
+

2

a

∞∑
m=1

cos

[
2πm(x− x′)

a

]
= δ(x− x′) (2.6.7)

We can combine the sine and cosine terms by noting

cosx =
1

2

[
eix + e−ix

]
sinx =

1

2i

[
eix − e−ix

]
,
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and introducing a new set of functions

Um(x) =
1√
a
ei2πmx/a m = 0,±1,±2, . . . , (2.6.8)

we get an expansion

f(x) =
∞∑

m=−∞

Am Um(x), (2.6.9)

where

Am =
1√
a

∫ a/2

−a/2
dx′f(x′)e−2πimx

′/a. (2.6.10)

Proof of completeness

∞∑
n=−∞

ein(x−x
′) = 2πδ(x− x′)

for x, x′ ∈ [−π, π]:

For simplicity, take x instead of x− x′. We have

∞∑
n=−∞

einx =
∞∑
n=0

einx +
∞∑
n=1

e−inx =
1

1− eix +
e−ix

1− e−ix = 0

if x 6= 0. To check for the δ-function contribution, calculate∫ π

−π
dx

∞∑
n=−∞

einx =
∞∑

n=−∞

∫ π

−π
dx einx = 2π

⇒ ∑∞
−∞ e

inx = 2πδ(x), Q.E.D.

For the interval [−a/2, a/2] we get:

∞∑
n=−∞

ein
2π
a
(x−x′) = aδ(x− x′) . (2.6.11)

Taking the real part of both sides of this equation we reproduce Eq. (2.6.7).

An orthonormal set sin
(
π
a
mx
)

If we have to expand a function f(x) which vanishes at the ends of the interval [0, a] we can

use an orthonormal set of sin’s only:

Un(x) =

√
2

a
sin
(π
a
nx
)
.
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It is easy to check that

2

a

∫ a

0

dx sin
(π
a
mx
)

sin
(π
a
nx
)

= δmn (2.6.12)

and
2

a

∞∑
n=1

sin
(π
a
nx
)

sin
(π
a
nx′
)

= δ(x− x′) . (2.6.13)

(Strictly speaking, in the r.h.s of Eq.(2.6.13) we get δ(x− x′)− δ(x + x′) but the last term

does not contribute for x, x′ ∈ [0, a]).

Thus, we get an expansion

f(x) =

√
2

a

∞∑
n=1

fn sin
(π
a
nx
)
,

fn =

√
2

a

∫ a

0

dx f(x) sin
(π
a
nx
)
. (2.6.14)

2.6.2 Fourier transformation

Combining Eqs. (??) and (2.6.15), we have

f(x) =
1

a

∞∑
m=−∞

e2πimx/a
∫ a/2

−a/2
dx′f(x′)e−2πimx

′/a . (2.6.15)

Suppose we now let a → ∞, so that the discrete sum over m becomes an integral over a

continuous variable k where

2πm

a
→ k . (2.6.16)

Then we have ∑
m

→ a

2π

∫
dk , (2.6.17)

and Eq. (2.6.15) converts into

f(x) =
1

2π

∫ ∞
−∞

dkeikx
∫ ∞
−∞

dx′f(x′)e−kx
′

︸ ︷︷ ︸
≡
√
2πA(k)

. (2.6.18)

Thus the discrete coefficients become a continuous function A(k) and we get the Fourier

Transforms

f(x) =
1√
2π

∫
dk A(k)eikx ,

A(k) =
1√
2π

∫
dx′ f(x′)e−ikx

′
.
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Note that the assignment of the coefficients outside the integrals depends on the convention

adopted; in all cases the product should be equal to 1/2π.

The orthogonality and completeness relations assume the continuous, and symmetric, forms

1

2π

∫ ∞
−∞

dx eix(k−k
′) =δ(k − k′) (2.6.19)

1

2π

∫ ∞
−∞

dk eik(x−x
′) =δ(x− x′) (2.6.20)

2.6.3 Sturm-Liouville Equation

How does one obtain a complete set of orthonormal functions? We will now show that, for

a certain class of differential equations, the solutions are orthogonal, for specific boundary

conditions.

The Sturm-Liouville Equation is the differential equation

p(x)
d2ψλ
dx2

+
dp(x)

dx

dψλ
dx

+ q(x)ψλ(x) = −λr(x)ψλ(x) (2.6.21)

which we may write in the more compact form

d

dx

[
p(x)

dψλ
dx

]
+ q(x)ψλ = −λr(x)ψλ. (2.6.22)

Here the parameter λ identifies the solution, and plays the rôle of an eigenvalue, with ψλ

the corresponding eigenvector. In the next couple of lectures we will encounter several

equations of this form – the Legendre and Bessel equations, and of course you are familiar

with the time-independent Schrödinger equation.

2.6.4 Theorem

For the Sturm-Liouville equation, with p, q, r real functions of x, the integral

(λ∗ − λ′)
∫ b

a

dx r(x)ψ∗λ(x)ψλ′(x) (2.6.23)

is zero provided the following boundary condition is satisfied:[
p(x)

(
ψ∗λ
dψλ′

dx
− ψλ′

dψ∗λ
dx

)]b
a

= 0. (2.6.24)
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Proof

ψλ and ψλ′ satisfy

d

dx

[
p(x)

dψλ
dx

]
+ q(x)ψλ = −λr(x)ψλ (2.6.25)

d

dx

[
p(x)

dψλ′

dx

]
+ q(x)ψλ′ = −λ′r(x)ψλ′ , (2.6.26)

respectively. Multiplying Eq. (2.6.25) by ψ∗λ′ and Eq. (2.6.26) by ψ∗λ and integrating, we

obtain ∫ b

a

ψ∗λ′
d

dx

[
p(x)

dψλ
dx

]
+

∫ b

a

dxψ∗λ′qψλ = −λ
∫ b

a

dxψ∗λ′rψλ∫ b

a

ψ∗λ
d

dx

[
p(x)

dψλ′

dx

]
+

∫ b

a

dxψ∗λqψλ′ = −λ′
∫ b

a

dxψ∗λrψλ′ .

Integrating by parts yields

−
∫ b

a

dx
dψ∗λ′

dx
p
dψλ
dx

+

∫ b

a

dxψ∗λ′qψλ = −
[
pψ∗λ′

dψλ
dx

]b
a

− λ
∫
dxψ∗λ′rψλ (2.6.27)

−
∫ b

a

dx
dψ∗λ
dx

p
dψλ′

dx
+

∫ b

a

dxψ∗λqψλ′ = −
[
pψ∗λ

dψλ′

dx

]b
a

− λ′
∫
dxψ∗λrψλ′ (2.6.28)

Observing that, since q, p, r are real, the l.h.s. of Eq. (2.6.27) is the complex conjugate of

the l.h.s. of Eq. (2.6.28) we can take the difference to obtain

(λ∗ − λ′)
∫
dx r(x)ψ∗λψλ′ = 0, (2.6.29)

providing [
p(x)

(
ψ∗λ
dψλ′

dx
− ψλ′

dψ∗λ
dx

)]b
a

= 0. (2.6.30)

Corollaries

1. If r(x) does not change sign in (a, b)∫ b

a

r(x)|ψλ|2 6= 0 (2.6.31)

and hence λ∗ = λ.

2. For λ′ 6= λ, ∫ b

a

dx r(x)ψ∗λψλ′ = 0, (2.6.32)

i.e. the functions ψλ are orthogonal.
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2.7 Separation of Variables in Cartesian Coordinates

We will now see how the Sturm-Liouville equation arises in the solution of Laplace’s equation,

and how we can then use the Sturm-Liouville theorem to provide an orthonormal set of

functions. The method we will use will be the separation of variables. It is best shown

by illustration.

Consider the solution of Laplace’s equation in a box 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c, with

the values of the potential prescribed on the boundary. In particular, let us consider the case

where Φ vanishes on the boundary, except on the plane z = c where Φ(x, y, z = c) = V (x, y).

In Cartesian coordinates, the natural coordinate system for the problem, Laplace’s equation

assumes the form

∂2

∂x2
Φ(x, y, z) +

∂2

∂y2
Φ(x, y, z) +

∂2

∂z2
Φ(x, y, z) = 0. (2.7.1)

We will seek solutions to this equation that are factorizable, i.e.

Φ(x, y, z) = X(x)Y (y)Z(z), (2.7.2)

and build up our final solution from such factorizable solutions. Substituting this form into

Laplace’s equation, we obtain

d2X(x)

dx2
Y (y)Z(z) +X(x)

d2Y (y)

dy2
X(z) +X(x)Y (y)

d2Z(z)

dz2
= 0, (2.7.3)

which we may write as

1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2
= 0. (2.7.4)

We have separated the equation into three terms, each dependent on a different variable.

Since the equation holds for all x, y, z, we can say that each term must separately be constant.

Thus

1

X
X ′′ = C1 (2.7.5)

1

Y
Y ′′ = C2 (2.7.6)

1

Z
Z ′′ = C3 (2.7.7)

where C1 + C2 + C3 = 0.

Let us consider Eq. (2.7.5)

d2X(x)

dx2
− C1X = 0, (2.7.8)
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and choose a trial solution

X(x) = eαx. (2.7.9)

Then we have that α2 = C1.

1. If C1 > 0, α is real, and the trial solution is exponential.

2. If C1 < 0, α is imaginary, and the trial solution is oscillatory.

The boundary conditions require that X vanish at x = 0, a, and this is only possible for the

oscillating solutions. Thus if we choose C1 = −α2, where α real, the general solution will be

of the form

X(x) = A cosαx+B sinαx. (2.7.10)

Since X must vanish at x = 0,

X(x) = sinαx. (2.7.11)

Furthermore, X also vanishes at x = a, and thus

α = αn =
nπ

a
, n = 1, 2, . . . . (2.7.12)

Thus we have a set of solutions

Xn(x) = sinαnx. (2.7.13)

Eq. (2.7.5) is a Sturm-Liouville equation, with p(x) = 1, q(x) = 0, r(x) = 1 and λ = α2. It

satisfies the conditions required for the Sturm-Liouville theorem, and hence we immediately

know that the functions Xn(x) are orthogonal. We can treat Y (y) similarly, and obtain

Ym(y) = sin βmy; βm =
mπ

b
,m = 1, 2, . . . (2.7.14)

Finally, we obtain Z from

Z ′′

Z
= α2

n + β2
m =

n2π2

a2
+
m2π2

b2
> 0. (2.7.15)

In this case, the solution is a real exponential, and imposing the boundary condition Z(0) = 0

we have

Z(z) = sinh(γnmz) (2.7.16)
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where

γnm = π
√
n2/a2 +m2/b2. (2.7.17)

Thus the general solution, using the completeness property, is

Φ(x, y, z) =
∞∑

m,n=1

Anm sin(αnx) sin(βmy) sinh(γnmz) . (2.7.18)

We obtain the coefficients Amn by imposing the boundary conditions on the plane z = c:

V (x, y) =
∞∑

m,n=1

Anm sin(αnx) sin(βmy) sinh(γnmc) . (2.7.19)

Using the orthonormal property of the basis functions, we have∫ a

0

dx sin
nπx

a

∫ b

0

dy sin
mπy

b
V (x, y)

=
∑
m′,n′

An′m′

∫ a

0

dx sin
nπx

a
sin

n′πx

a

∫ b

0

dy sin
mπy

b
sin

m′πy

b
sinh γn′m′c

=
∑
n′,m′

An′m′
a

2
δn′n

b

2
δm′m sinh γn′m′c

=
ab

4
Anm sinh γnmc

Thus we have

Anm =
4

ab sinh(γnmc)

∫ a

0

dx

∫ b

0

dy V (x, y) sin(αnx) sin(βmy) . (2.7.20)

2.7.1 Two-dimensional Square Well

This is the two-dimensional version of the above prob-

lem. We have a square well, of width a, with the poten-

tial at the bottom constrained to be Φ(x, 0) = V , and

zero potential on the sides, with Φ vanishing as y →∞.

We wish to calculate the potential inside the well.
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Laplace’s equation becomes

∂2Φ

∂x2
+
∂2Φ

∂y2
= 0 (2.7.21)

subject to the boundary conditions

Φ(0, y) = Φ(a, y) = 0

Φ(x, 0) = V

Φ(x, y) → 0 as y →∞

As before, we look for separable solutions Φ(x, y) = X(x)Y (y), yielding

1

X

d2X

dx2
+

1

Y

d2Y

dy2
= 0, (2.7.22)

so that each of the above terms must separately be constant.

Since X(0) = X(a) = 0, the solution for X must be oscillatory,

X ′′ + α2X = 0 (2.7.23)

giving X(x) = sinαx. The boundary condition at x = a then yields

Xn(x) = sinαnx; where αn = nπ
a
, n = 1, 2, . . . . (2.7.24)

The corresponding function Yn(y) must satisfy

Y ′′n − α2
nYn = 0 (2.7.25)

with exponential solutions Yn(y) = exp(±αny). The boundary condition Φ → 0 as y → ∞
requires that we take the exponentially falling solution, and thus

Yn(y) = e−αny. (2.7.26)

Thus the factorizable solutions are of the form

Φn(x, y) = e−αny sinαnx (2.7.27)

so that the general solution is

Φ(x, y) =
∑
n

Ane
−αny sinαnx; αn =

nπ

a
. (2.7.28)
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We determine the coefficients An by imposing the boundary condition at y = 0:

V =
∑
n

An sinαnx, (2.7.29)

and using the orthogonality of the sin functions, we obtain∫ a

0

V sin
n′πx

a
dx =

∑
n

An

∫ a

0

dx sin
nπx

a
sin

n′πx

a

=
a

2
An′ .

The integral is straightforward:

An =
2V

a

∫ a

0

dx sin
nπx

a

= −2V

a

a

nπ

[
cos

nπx

a

]a
0

=
2V

nπ
[1− (−1)n],

and thus

An =

{
4V/nπ n odd

0 n even
(2.7.30)

with

Φ(x, y) =
4V

π

∑
n odd

1

n
e−nπy/a sin

nπx

a
. (2.7.31)

For y/a � 1, we can treat this as a series, and we converge to an accurate solution within

a few terms - remember that exponential! To illustrate the rate of convergence, we plot the

partial sum

ΦN(x, y) =
4V

π

∑
n odd n ≤ N

1

n
e−nπy/a sin

nπx

a
(2.7.32)

as a function of x for a fixed value of y = 0.1 a and for several values of N : N = 1 (one

term), N = 3 (two terms), N = 5 (three terms) and N = 41 (20 terms). One can see that

convergence is really fast. But in this case, we can actually sum the series.

We begin by recalling that

eix = cosx+ i sinx. (2.7.33)
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x

�N (x, y = 0.1)
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N = 5
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Figure 2.1: Partial sum ΦN(x, y) given by Eq. (2.7.32) for V = 1, a = 1 and N = 1, 3, 5, 41

as a function of x for y = 0.1.

yielding

sin
nπx

a
= Im einπx/a. (2.7.34)

Thus we may write the general solution as

Φ(x, y) =
4V

π

∑
n odd

1

n
e−nπy/a Im einπx/a

=
4V

π

∑
n odd

1

n
Im e(inπ/a)(x+iy) =

4V

π
Im

∑
n odd

1

n
e(inπ/a)(x+iy) .

We now introduce the variable

Z = e(iπ/a)(x+iy), (2.7.35)

so that the solution becomes

Φ =
4V

π

∑
n odd

1

n
ImZn =

4V

π
Im

∑
n odd

1

n
Zn . (2.7.36)

To sum this series, we recall that

ln(1 + Z) = Z − Z2

2
+
Z3

3
+ . . . ,

ln(1− Z) = −Z − Z2

2
− Z3

3
+ . . . ,
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and thus ∑
n odd

1

n
Zn =

1

2
{ln(1 + Z)− ln(1− Z)}

=
1

2
ln

1 + Z

1− Z .

Hence we may write the general solution as

Φ(x, y) =
2V

π
Im ln

1 + Z

1− Z . (2.7.37)

Now we need to write this solution explicitly in terms of x and y. We begin by denoting

Z̃ ≡ 1 + Z

1− Z (2.7.38)

and writing Z̃ = |Z̃| exp iθ̃ where θ̃ is the phase of Z̃, i.e. tan θ̃ = Im Z̃/Re Z̃, or

θ̃ = tan−1
Im Z̃

Re Z̃
. (2.7.39)

Thus

ln Z̃ = ln |Z̃|+ iθ̃ =⇒ Im ln Z̃ = θ̃ = tan−1
Im Z̃

Re Z̃
. (2.7.40)

Now, we need to find Im Z̃ and Re Z̃. To this end, we write

1 + Z

1− Z =
(1 + Z)(1− Z∗)
|1− Z|2 =

1− |Z|2 + 2i ImZ

|1− Z|2 , (2.7.41)

and thus Im Z̃ = 2 ImZ/|1− Z|2 and Re Z̃ = (1− |Z|2)/|1− Z|2, so that

Im Z̃

Re Z̃
=

2 ImZ

1− |Z|2 (2.7.42)

This gives

Im ln
1 + Z

1− Z = tan−1
(

2 ImZ

1− |Z|2
)
. (2.7.43)

Recall that

Z = e(iπ/a)(x+iy) = e−πy/aeixπ/a = e−πy/a
[
cos

πx

a
+ i sin

πx

a

]
. (2.7.44)
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Figure 2.2: Potential Φ(x, y) given by Eq. (2.7.47) for V = 1 and a = 1 as a 3D plot and as

a function of x for several values of y.

Thus, we have

ImZ = e−πy/a sin
πx

a
,

|Z|2 = e−2πy/a ,

and thus

Φ(x, y) =
2V

π
tan−1

[
2e−πy/a sin πx

a

1− e−2πy/a

]
, (2.7.45)

which, after using

1− e−2πy/a
2e−πy/a

= (eπy/a − e−πy/a)/2 = sinh(πy/a) (2.7.46)

becomes

Φ(x, y) =
2V

π
tan−1

(
sin πx/a

sinhπy/a

)
. (2.7.47)

The potential Φ(x, y) for a = 1 and V = 1 is plotted in Fig. 2.7.1.

In practice, such two-dimensional problems can be done in a much simpler way, by observing

that the real and imaginary components, u and v respectively, of an analytic complex

function f(z = x+ iy) satisfy the two-dimensional Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0;

∂2v

∂x2
+
∂2v

∂y2
= 0. (2.7.48)
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This is a direct consequence of the Cauchy-Riemann equations.

2.7.2 Field and Charge Distribution in Two-dimensional Corners

Consider two conducting planes meeting at

an angle β, with potential V on the planes.

The most appropriate coordinate system for

the problem is that of cylindrical polars

(s, θ, z), with the z axis along the line of in-

tersection of the planes. Note that if we con-

sider the problem sufficiently close to the in-

tersection, the shape of the surface at larger

distances will be unimportant.

Then Laplace’s equation assumes the form

∇2Φ(s, θ) =
1

s

∂

∂s

(
s
∂Φ

∂s

)
+

1

s2
∂2Φ

∂θ2
(2.7.49)

where we have suppressed the z variable. As before we look for factorizing solutions of the

form

Φ(s, θ) = R(s)T (θ). (2.7.50)

Then we have

s

R

∂

∂s

(
s
∂R

∂s

)
+

1

T

∂2T

∂θ2
= 0. (2.7.51)

Each term depends on a different variable, and this must hold for all s and z. Thus each

term is separably constant. For the function T (θ), let us take

1

T

∂2T

∂θ2
= −ν2. (2.7.52)

Since T must attain the same value at θ = 0 and θ = β, the solution must be oscillatory

rather than exponential, and hence ν2 must be positive. Thus the solution is

Tν(θ) =

{
Aν cos νθ +Bν sin νθ; ν 6= 0

A0 +B0θ; ν = 0
(2.7.53)

For the radial function, we have

s
∂

∂s

(
s
∂R

∂s

)
− ν2R = 0. (2.7.54)
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For ν 6= 0, let us take as trial solution R ∼ sα,

(α2 − ν2)sα = 0, (2.7.55)

yielding α = ±ν. We need to consider the case ν = 0 separately. Here we have

∂

∂s

(
s
∂R

∂s

)
= 0 (2.7.56)

with solution

R0(s) = a0 + b0 ln s. (2.7.57)

Thus the general form of Rν is

Rν(s) =

{
aνs

ν + bνs
−ν ; ν > 0

a0 + b0 ln s; ν = 0
, (2.7.58)

and the general solution for the potential has the form

Φ(s, θ) = (a0 + b0 ln s)(A0 +B0θ) +
∑
ν>0

(aνs
ν + bνs

−ν)(Aν cos νθ +Bν sin νθ) . (2.7.59)

The solution must be valid as s → 0 (note that we are not interested in the solution for s

large), and therefore the terms proportional to ln s and s−ν cannot contribute. Thus b0 = 0

and bν = 0. We can also take a0 = 1, which amounts to redefining a0A0 into A0. Then our

solution is of the form

Φ(s, θ) = A0 +B0θ +
∑
ν>0

aνs
ν(Aν cos νθ +Bν sin νθ) . (2.7.60)

We will now use the boundary conditions on the planes to further constrain the solution. At

θ = 0 we have

Φ(s, 0) = V = A0 +
∑
ν>0

aνs
νAν , (2.7.61)

i.e., Φ = V , independent of s, and therefore A0 = V and Aν = 0. Now, at θ = β we also

have Φ = V , independent of s, or

Φ(s, β) = V = A0 +B0β +
∑
ν>0

aνs
νBν sin νβ . (2.7.62)

The s-dependence disappears only if aνBν sin νβ (for ν > 0) vanish, which (for a nontrivial

solution) happens if sin νβ = 0, that requires

ν =
nπ

β
, n = 1, 2, . . . .

Then we have V = A0 + B0β. Now, since we have already established that A0 = V , we

conclude that B0 = 0. Thus our final result (after redefinition aνBν → Bn) is given by
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Φ(s, θ) = V +
∞∑
n=1

Bns
nπ/β sin

nπθ

β
. (2.7.63)

As we get closer into the corner, s→ 0, the first term will dominate, and

Φ(s, θ) ∼ V +B1s
π/β sin

πθ

β
. (2.7.64)

Taking the gradient, we obtain

E = −∇Φ =− ∂Φ

∂s
es −

1

s

∂Φ

∂θ
eθ

=− πB1

β
sπ/β−1 sin

πθ

β
es −

πB1

β
sπ/β−1 cos

πθ

β
eθ . (2.7.65)

Note that for θ = 0 and θ = β, the electric field does not have radial component, i.e. E is

normal to the surface of conductor. Also, because cos πθ
β

= 1 for θ = 0 and cos πθ
β

= −1 for

θ = β, the field on both surfaces is oriented (for positive B1) from the interior of the angle

toward the conductor. Induced surface charge density is given by

σ = ε0 (E · n) = −πB1ε0
β

sπ/β−1 . (2.7.66)

Now observe that

1. For β < π, we have that E and σ vanish as s→ 0.

2. For β > π, E and σ become singular as s→ 0.

Thus we see behaviour familiar from our knowledge of “action at points” – the fields and

surface charge densities become singular near sharp edges.


