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604 Midterm (16 points). Tue Nov 26, 10:55 a.m.-12:25 p.m.

Problem 1 (5 points).

An electric dipole p is located a distance d above an infinite grounded conducting plane. If the dipole is free to
rotate, in what orientation it will come to rest?

Solution

First, let us calculate the potential energy of the dipole oriented along the θ, φ direction in spherical polar coordi-
nates. The mirror image of this dipole is a dipole located a distance d below the z = 0 surface and oriented along
θ, π − φ direction. The potential energy is

U =
1

32πε0d3
[(~p1 · ~p2)− 3(~p1 · ~e3)(~p2 · ~e3)] = − p2

4πε0d3
(1 + cos2 θ)

The dipole will come to rest in θ = 0 or θ = π orientation depending whether the original angle θ was smaller or
grater than π/2.

Problem 2 (5 points).

A free surface charge σf = ς cos θ is glued over the surface of the sphere of radius a made from dielectric with
susceptibility χe. Find the potential inside and outside of the sphere.

Solution
As usual, when we have asymuthal symmetry we start with

Φ(r, θ, ϕ) =

{ ∑
lAlr

lPl(cos θ) r < a∑
l Clr

−l−1Pl(cos θ) r > a
, (1)

and impose the boundary conditions at the surface of the sphere

Eθ(a−) = Eθ(a+) (tangential condition)

ε0Er(a+)− εEr(a−) = ς cos θ (normal condition)

Similarly to the example of dielectric sphere in external field (see Eqs. (4.5.13)-(4.5.25) from Chapter 4)

Eθ =


−
∑
l

Alr
l−1 d

dθ
Pl(cos θ) = −

∑
l

Alr
l−1P 1

l (cos θ) r < a

−
∑
l

Clr
−l−2 d

dθ
Pl(cos θ) = −

∑
l

Clr
−l−2P 1

l (cos θ) r > a
, (2)

and

Er =


−
∑
l

Al · l · rl−1Pl(cos θ) r < a∑
l

Cl(l + 1)r−l−2Pl(cos θ) r > a
. (3)

Using the orthogonality property of the Legendre polynomials we have

Ala
l−1 = Cla

−l−2 ⇒ Al = Cla
−2l−1. (4)

The normal boundary condition yields

ε0
∑
l

Cl(l + 1)a−l−2Pl(cos θ) + ε
∑
l

Al l a
l−1Pl(cos θ) = ςP1(cos θ) (5)

There are two cases

ε0[Cl(l + 1)a−l−2] = − εAllal−1 , l 6= 1 (6)

2ε0C1a
−3 + εA1 = ς , l = 1 (7)
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Substituting Eq. (4) into Eq. (6), we find

ε0[Cl(l + 1)a−l−2] =− εCla−2l−1 lal−1 ⇒ Cl = 0⇒ Al = 0 , l 6= 1. (8)

At l = 1 from Eq. (4) and Eq. (7) we get

A1 =
ς

2ε0 + ε
, C1 =

ςa3

2ε0 + ε
(9)

so the potential is

Φ(r, θ, ϕ) =

{
ς

2ε0+ε
r cos θ r < a

ςa3

(2ε0+ε)r2
cos θ r > a

(10)

Problem 3 (6 points).

Find the Dirichlet Green function of Laplace equation for the interior of infinite cylinder with radius a.

Solution
Up to Eqs. (3.37) and (3.38) from “Chapter 3” file everything is the same as for infinite space. The difference

is in the boundary condition for y2(x′). For infinite space, we had y2(x′) → 0 as x′ → ∞ so the proper choice was
y2(x′) = Km(x′). Now, the boundary condition is y2(ka) = 0 so we should take

y2(x′) = Km(x′)− Km(ka)

Im(ka)
Im(x′)

The Wronskian W (y1(x′), y2(x′) = − 1
x′ is the same as for infinite space case since W (I(x′), I(x′) = 0 so the Green

function can be obtained from Eq. (3.7.45) by replacement of Km(ks) by

Lm(ks) = K(ks)− Km(ka)

Im(ka)
Im(ks)

Finally, the Green function reads

G(~r, ~r′) =
1

π

∞∑
m=−∞

∫ ∞
−∞

dk eik(z−z
′)Im(|k|s<)Lm(|k|s>)

A quick check at a→∞: we get Eq. (3.7.45) since the additional term in L vanishes due to Km(ka)
Im(ka)

a→∞→ 0.


