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Midterm 1 solutions.

Problem 1.

Two spherical cavities of radii a and b, respectively, are hollowed out from the interior of a neutral metal sphere of
radius R as shown below. Point charges qa and qb are placed at the centers of the cavities. Find the surface charge
densities σa and σb on the surfaces of the two cavities and the surface charge density σR the outer surface of the metal
sphere.

R

a

b

qa

qb

Solution

We use superposition principle solve three problems: charge qa in the cavity hollowed out of an infinite conductor
with potential 0, same for charge qb, and conducting sphere of radius R with charge qa + qb. The solution of the first
problem satisfies Poission equation in the first cavity and has potential Φ1 = 0 everywhere else, same for the second
with Φ2 = 0 outside the second cavity, and the solution of the third problem satisfies Laplace equation outside the
sphere with radius R and has constant potential Φ3 = qa+qb

4πε0R
inside that sphere.

The superposition of these three problems has the potential

Φ = Φ1 + Φ2 + Φ3 (∗)

which is constant (=Φ3) throughout our conductor with two cavities. In addition, the potential inside the first cavity
is

Φ =
qa

4πε0|~r − ~ra|
+ Φ3

which obviously satisfies Poisson equation

∇2Φ = − qa
ε0
δ(~r − ~ra)

since Φ3=const there. Similarly, the potential inside the second sphere satisfies correct Poisson equation, and the
potential outside the sphere of radius R satisfies Laplace equation. Thus, our superposition (∗) satisfies correct Poisson
equations and boundary conditions that the potential throughout the conductor is constant.

Finally, the surface charge on the first cavity is the same as in auxiliiary problem

σa = − qa
4πa2

and similarly

σb = − qb
4πb2
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As seen from the third auxiliary problem, the charge on the outer surface of the sphere is distributed symmetrically
so

σR =
qa + qb
4πR2

Problem 2.

A conducting sphere of radius R1 carries charge Q. A second, initially uncharged conducting sphere of radius R2 is
placed at large distance R� R1, R2 and then connected to the first sphere by a very thin wire with large resistance.
After a long time, the system of two conducting spheres reaches equilibrium.

(a)
Find the electrostatic force between two spheres

(b)
Find the ohmic heat dissipated in the wire and the spheres. Neglect effects of radiation.

Solution

(a)
The potential of a charged conducting sphere of radius a is

Φ =
q

4πε0a

At the equilibrium, the potentials of two spheres must be the same so

Q1

4πε0R1
=
Q−Q1

4πε0R2
⇒ Q1 = Q

R1

R1 +R2
, Q2 = Q

R2

R1 +R2

Force between two charges is

F =
Q1Q2

4πε0R2
=

Q2

4πε0R2

R1R2

(R1 +R2)2

(b)
In the beginning, the energy of the first conducting sphere is

E =
Q2

8πε0R1

In the end the energies of the spheres are

E1 =
Q2

1

8πε0R1
, E2 =

Q2
2

8πε0R2

At the absence of radiation, the difference of energies is dissipated as the ohmic heat so

Heat =
Q2

8πε0R1
− Q2

8πε0

R1

(R1 +R2)2
− Q2

8πε0

R1

(R1 +R2)2
=

Q2

8πε0

R2

(R1 +R2)2

Problem 3 (5 points).

Find the solution of Laplace equation in a 2-dimensional square well of size a where three sides are kept at zero
potential and the fourth side at constant potential V .

Solution
By analogy with the problem from Lecture 9

Φ(x, y) =

∞∑
n=1

An sinhαny sinαnx, αn =
πn

a
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=0

=0

=0

=V

Boundary conditions at x = 0, a and y = 0 are trivially satisfied. At y = a we get

V =

∞∑
n=1

An sinhαna sinαnx

so

An =
2V

a sinhπn

∫ a

0

sin
πnx

a
=

2V

a sinhπn

[
1− (−1)n

]
and the solution takes the form

Φ(x, y) =
4V

π

∑
n=odd

1

n sinhπn
sin

πnx

a
sinh

πny

a
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Extra credit - 3 points.

Same for setup shown below

=

=0

=0

V

=V

Solution
By superposition principle

Φ(x, y) =
4V

π

∑
n=odd

1

n sinhπn
sin

πnx

a
sinh

πny

a
+ (x↔ y)


