
1804 Midterm (16points). 03/04/21, 11:00 -12:40 p.m.

Problem 1 .

An iron sphere of radius R carries a charge Q and has a uniform magnetization ~M = Mê3.

It is initially at rest. Find

(a) Angular momentum stored in the fields

(b) If the sphere is demagnetized by heating (keeping ~M uniform), by use of Faraday’s

law find the induced electric field, then find the torque induced by ~E on the sphere, and

finally the angular momentum imparted to sphere as M goes to zero.

Hint: The magnetic field outside the sphere is equal to the magnetic field of a pure dipole

with ~m = 4
3
πR3 ~M

Solution

(a)

The electric and magnetic fields (at r > R) are:

~E =
Q

4πε0r2
r̂, ~B =

µ0

4πr3
(3r̂(~m · r̂)− ~m) ⇒ ~E × ~B =

Qµ0m

16π2ε0r5
ê3 × ~r

where ~m = 4
3
πR3 ~M .

The angular momentum stored in the fields is

∫ ∞
R
drr2

∫ π

0
dθ sin θ

∫ 2π

0
dφε0~r × ( ~E × ~B) =

∫ ∞
R
drr2

∫ π

0
dθ sin θ

∫ 2π

0
dφ

µ0mQ

16π2r4
(ê3 − (ê3 · r̂)r̂)

By symmetry, the angular momentum ~L is collinear to ê3 so

~L = ê3

∫ ∞
R
drr2

∫ π

0
dθ
∫ 2π

0
dφ

µ0mQ

16π2r4
sin3 θ =

µ0Q

6πR
~m =

2

9
µ0QR

2M

(b)

If ~m = m(t)ê3 the induced electric field takes the form

~E = −∂
~A

∂t
= − ∂

∂t

µ0m(t)ê3 × r̂
4πr2

= − µ0

4πr2
ê3 × r̂

dm

dt
= − µ0

4πr2
φ̂ sin θ

dm

dt

The torque for the charge dq on the surface is

d~τ = dq ~r × ~E = dq
µ0

4πR
θ̂ sin θ

dm

dt
, r̂ × φ̂ = −θ̂

Again, from symmetry we know that ~τ ‖ ê3 so

dτ3 = − dq µ0

4πR
sin2 θ

dm

dt
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Since the charge is distributed uniformly over the surface of the sphere dq = Q
4πR2R

2 sin θdθdφ

and the total torque is

τ3 = −
∫ π

0
dθ sin θ

∫ 2π

0
dφ sin2 θ

µ0Q

16π2R

dm

dt
= − µ0Q

6πR

dm

dt

The angular momentum imparted to sphere is

~m = ê3

∫ ∞
0
τ3(t)dt = −µ0Q

6πR
ê3

∫ ∞
0

dm

dt
dt =

µ0Q

6πR
mê3 =

2

9
µ0QR

2Mê3

Problem 2.

A circular wire of radius R lies in x, y plane with the center at the origin. It carries

current

I(t) = I0θ(t)

Find the magnetic field at z = 0.

Solution

W.l.o.g., consider the point of observation (x,0,0).

d ~B =
µ0

4π
Id~l × ~r − ~r′

|~r − ~r′|3
θ(c2t2 − |~r − ~r′|2)

=
µ0I

4π
(−ê1 sinφ+ ê2 cosφ)× ((x−R cosφ)ê1 −R sinφê2)

θ(c2t2 − x2 −R2 + 2xR cosφ)

|x2 +R2 − 2xR cosφ|3/2

=
µ0I

4π
ê3(R− x cosφ)

θ(c2t2 − x2 −R2 + 2xR cosφ)

|x2 +R2 − 2xR cosφ|3/2

~B =
∫
d ~B =

µ0IR

4π
ê3

∫ 2π

0
dφ
θ(c2t2 − x2 −R2 + 2xR cosφ)

|x2 +R2 − 2xR cosφ|3/2
(R− x cosφ)

=
µ0IR

π
ê3

∫ 2π

0
dα

θ(c2t2 − x2 −R2 + 2xR cos 2α)

|x2 +R2 − 2xR cos 2α|3/2
(R− x cos 2α)

=
µ0IR

π
ê3

∫ 2π

0
dα

θ(c2t2 − (x−R)2 − 2xR sin2 α)

|(x−R)2 + 2xR sin2 α|3/2
(R− x+ 2x sin2 α)

=
4µ0IR

π
ê3

∫ π/2

0
dα

θ(c2t2 − (x−R)2 − 2xR sin2 α)

|(x−R)2 + 2xR sin2 α|3/2
(R− x+ 2x sin2 α)

=
4µ0IR

π
ê3

∫ 1

0

dξ√
1− ξ2

θ(c2t2 − (x−R)2 − 2xRξ2)

|(x−R)2 + 2xRξ2|3/2
(R− x+ 2xξ2)

=
4µ0IR

π
ê3θ

(
t− |x−R|

c

)∫ κ

0

dξ√
1− ξ2

R− x+ 2xξ2

|(x−R)2 + 2xRξ2|3/2

where κ ≡ min
(√

c2t2−(x−R)2

2xR
, 1
)
.
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This integral can be performed only numerically. Two simple cases are x� R and x = 0:

Large x� R

~B =
µ0IR

4πx3
ê3θ

(
t− x

c

)∫ 2π

0
dφ
(
1 + 3

R

x
cosφ

)
(R− x cosφ) = − µ0 ~m

4πx3
θ
(
t− x

c

)
where ~m = πIR2ê3. This agrees with the formula for the field of a pure dipole ~m = πR2Iê3.

At x = 0

~B =
µ0IR

4π
ê3θ

(
t− x

c

)∫ 2π

0
dφ

1

R2
=

µ0I

2R
θ
(
t− x

c

)

Problem 3

A circularly polarized electromagnetic plane wave is normally incident on an infinitely

large plane made from a perfect conductor. Find the charge and current densities induced

on the conducting plane.

Solution

Let us choose the z axis in the direction normal to the plane and the wave coming from

above the plane. The incident wave has the form (ê3 × ê+ = −iê+)

~E = − iê+E0e
−iωt+ikz, ~B =

n̂

c
× ~E = − ê3

c
× ~E = ê+

E0

c
e−iωt+ikz

where ê+ = 1√
2
(ê1 + iê2) and −i is added for convenience (E0 is real). The reflected wave is

~E = ~ERe
−iωt−ikz, ~B =

n̂

c
× ~E =

ê3
c
× ~ER e

−iωt−ikz

The boundary condition for the electric field is Eabove
‖ = Ebelow

‖ = 0 so ~ER = iê+E0 and the

reflected wave is

~E = iê+E0e
−iωt−ikz, ~B =

ê3
c
× ~ER e

−iωt−ikz = ê+
E0

c
e−iωt−ikz

The sum of the reflected and incident waves takes the form:

~E = 2ê+E0 sin kz e−iωt, ~B = 2ê+
E0

c
cos kz e−iωt

Now, σ and K can be found from the remaining boundary conditions

ε1 ~E
above
⊥ − ε2 ~Ebelow

⊥ = σ,
1

µ1

~Babove
⊥ − 1

µ2

~Bbelow
⊥ = ~K

We get σ = 0 and ~K = 2
µ0c
ê+E0 e

−iωt. Taking the real part we get

Kx =
2

µ0c
E0 cosωt, Ky =

2

µ0c
E0 sinωt


